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Models that predict gene expression and chromatin states 
from DNA sequences hold the promise to better under-
stand transcriptional regulation and how it is affected by 

the many noncoding genetic variants associated with human dis-
eases and traits. These models complement population-based asso-
ciation studies, which are often limited to common variants and 
struggle to disentangle causality from association due to linkage dis-
equilibrium (LD). Additionally, experimental validation of human 
genetic variants is laborious and limited to cell types or tissues that 
can be recapitulated in the laboratory, making it intractable to test 
all variants of interest in the relevant biological contexts. Although 
sequence-based computational models can in principle overcome 
these challenges, their accuracy is still limited1–4, making expression 
prediction from sequence a critical unsolved problem.

Deep convolutional neural networks (CNNs) achieve the current 
state of the art at predicting gene expression from DNA sequences 
for the human and mouse genomes1–4. However, to make predic-
tions, these models are only able to consider sequence elements 
up to 20 kb away from the transcription start site (TSS) because 
the locality of convolutions limits information flow in the network 
between distal elements. Many well-studied regulatory elements, 
including enhancers, repressors, and insulators, can influence gene 
expression from far greater than 20 kb away5. Thus, increasing infor-
mation flow between distal elements is a promising path to increase 
predictive accuracy.

In this work, we introduce a neural network architecture based 
on self-attention towards this goal. We frame the machine learn-
ing problem as predicting thousands of epigenetic and transcrip-
tional datasets in a multitask setting across long DNA sequences. 
Training on most of the human and mouse genomes and testing 
on held out sequences, we observed improved correlation between 
predictions and measured data relative to previous state-of-the-art 
models without self-attention. We demonstrate more effective use 
of long-range information, as benchmarked by CRISPRi enhancer 
assays. The model also produces more accurate predictions of 

mutation effects, as measured by direct mutagenesis assays and 
population eQTL studies.

Results
Enformer improves gene expression prediction. We developed 
a new model architecture named Enformer (a portmanteau of 
enhancer and transformer) to predict gene expression and chro-
matin states in humans and mice from DNA sequences (Fig.  1a 
and Extended Data Fig. 1). Transformers are a class of deep learn-
ing models that have achieved substantial breakthroughs in natu-
ral language processing (NLP)6,7 and were also recently applied 
to model short DNA sequences8. They consist of attention layers 
that transform each position in the input sequence by computing a 
weighted sum across the representations of all other positions in the 
sequence. Attention weight between any two positions depends on 
the embeddings of their current representation vectors and the dis-
tance between them. This allows the model, for example, to refine 
the prediction at a TSS by gathering information from all relevant 
regions, such as enhancers regulating the gene. Since each position 
directly attends to all other positions in the sequence, they allow for 
a much better information flow between distal elements. By con-
trast, convolutional layers require many successive layers to reach 
distal elements due to their local receptive field. Using transformer 
layers allowed us to substantially increase the receptive field, reach-
ing distal regulatory elements up to 100 kb away while still being 
able to effectively integrate their information. By contrast, previous 
state-of-the-art models Basenji2 or ExPecto only reach elements up 
to 20 kb away (Extended Data Fig. 1). This increase in the receptive 
field is important because it greatly expands the number of relevant 
enhancers seen by the model from 47% (<20 kb) to 84% (<100 kb) 
as estimated from the proportions of high-confidence enhancer–
gene pairs9.

Enformer substantially outperformed the previous best 
model, Basenji2, for predicting RNA expression as measured by 
Cap Analysis Gene Expression10 (CAGE) at the TSS of human 
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protein-coding genes, with the mean correlation increasing from 
0.81 to 0.85 (Fig. 1b, left). This performance increase is twice as large 
as the performance increase between Basenji1 (ref. 3) and Basenji2 
(ref. 2) and closes one-third of the gap to experimental-level accu-
racy, estimated at 0.94 (Extended Data Fig. 2). Gene expression pre-
dictions also better captured tissue- or cell-type specificity (Fig. 1b, 
right), including for closely related samples (Extended Data Fig. 3). 
The performance improvement was consistent across all four types 
of genome-wide tracks, including CAGE measuring transcriptional 
activity, histone modifications, TF binding, and DNA accessibility 
in various cell types and tissues for held-out chromosomes (Fig. 1c). 
The performance improvement was largest for CAGE, possibly 
because tissue-specific gene expression strongly depends on distal 
elements11. The improvement in prediction accuracy was also quali-
tatively evident when visualizing observed and predicted tracks of 
the genome (Fig. 1d). Enformer also yielded greater predictive accu-
racy than ExPecto1, a model trained to predict gene expression lev-
els measured by RNA-seq, for both across-genes (0.850 versus 0.812 
Spearman r) and across-tissues (0.451 versus 0.368 Spearman r)  
evaluation (Extended Data Fig.  4). These results confirm that  
the Enformer architecture advances prediction accuracy for both  
a broad range of epigenetic marks and gene expression from  
DNA sequence.

To pinpoint the benefit of attention layers compared with the 
dilated convolutions used in Basenji2, we replaced attention layers 
with dilated convolutions and tuned the learning rate for optimal 
performance. Attention layers outperformed dilated convolutions 
across all model sizes, numbers of layers, and numbers of train-
ing data points (Extended Data Fig. 5a). The larger receptive field 
was indeed crucial, because we observed a large performance drop 
when restricting the receptive field of Enformer to that of Basenji2 
by replacing global attention layers with local ones (Extended 
Data Fig. 5b). We note that increasing the number of parameters 
improved model performance, consistent with recent advances in 
NLP7. Enformer uses custom relative positional basis functions in 
the transformer layers to more easily distinguish between proxi-
mal and distal regulatory elements, and to distinguish positions 
upstream and downstream of the TSS. Both properties provided a 
noticeable performance improvement over the typically used rela-
tive basis functions and absolute positional encodings in the NLP 
literature (Extended Data Fig. 6a,b). Overall, these results confirm 
that attention layers are better suited than dilated convolutions for 
gene expression prediction.

Enformer attends to cell-type-specific enhancers. To better under-
stand what sequence elements Enformer is utilizing when making 
predictions, we computed two different gene expression contribu-
tion scores — input gradients (gradient × input)12 and attention 
weights (Methods and Supplementary Fig. 1) — for several genes 
with CRISPRi-validated enhancers9,13. Contribution scores highlight 
the input sequences that are most predictive for the expression of a 

particular gene14,15. In silico mutagenesis and gradient × input are 
tissue- or cell-type-specific, since they are computed with respect to 
a particular output CAGE sample (for example, K562). By contrast, 
attention weights are internal to the model and are shared among 
all tissue and cell-type predictions. We inspected the contribution 
scores of several genes and observed that they correlated with his-
tone H3 acetylated at K27 (H3K27ac) and highlighted not only local 
promoter regions, but also distal enhancers more than 20 kb away 
(Fig. 2a and Supplementary Figs. 2 and 3). By contrast, the contribu-
tion scores of Basenji2 were zero for sequences beyond 20 kb from 
the TSS due to the limited receptive field, thereby missing several 
enhancers. This example suggests that Enformer is indeed looking 
at biologically relevant regions, such as enhancers beyond 20 kb, 
when making predictions, and that gene expression contribution 
scores could be used to prioritize relevant enhancers.

Linking candidate enhancers identified via biochemical anno-
tations16 to target genes is an important and unsolved problem5. 
Computational models have historically produced low accuracy 
owing to the combination of noisy labels and class imbalance. To 
systematically evaluate the ability of contribution scores to pin-
point relevant enhancers for a particular gene, we compared sev-
eral contribution scores across all tested enhancer–gene pairs in 
two large-scale CRISPRi studies performed on the K562 cell line9,13. 
In these experiments, CRISPRi was used to suppress the activity of 
more than 10,000 candidate enhancers and measure their effect on 
gene expression.

Enformer contribution scores prioritized validated enhancer–
gene pairs with higher accuracy than Basenji2 contribution scores 
or random scores across almost all relative distances and different 
types of contribution scores (Fig. 2b, Enformer versus Basenji2 ver-
sus Random). The performance of Enformer was comparable to, and 
in some cases even better than, the ABC score13, a state-of-the-art 
method recently proposed specifically for enhancer prioritization. 
This is remarkable because the ABC score relies on experimen-
tal data, such as a HiC-based interaction frequency and H3K27ac 
as input (Fig.  2b, blue versus green, and Extended Data Fig.  7a), 
whereas Enformer uses only DNA sequence as input and was never 
trained to explicitly locate enhancers. This allows Enformer to also 
be used for arbitrary sequence variations lacking experimental data. 
Cell-type-specific contribution scores yielded a higher prioritiza-
tion performance than cell-type-agnostic ones, suggesting that the 
model was using different enhancer sequences in different cell types 
as expected (Extended Data Fig. 7c). Thus, Enformer contribution 
scores are an effective strategy to prioritize candidate enhancers in 
cell types used for model training.

Next, we asked whether the model has learned about another 
important class of regulatory elements: insulator elements, which 
separate two topologically associating domains (TADs) and mini-
mize enhancer–promoter crosstalk between the two. We inspected 
the attention matrices (which were more efficient to compute relative 
to input gradients owing to the many output targets) of sequences 

Fig. 1 | Enformer improves gene expression prediction in held-out genes by using a larger receptive field. a, Enformer is trained to predict human and 
mouse genomic tracks at 128-bp resolution from 200 kb of input DNA sequence. By using transformer modules instead of dilated convolutions, it achieves 
a five times larger receptive field able to detect sequence elements 100 kb away, compared with 20 kb for Basenji2 (ref. 2) or ExPecto1 (Extended Data 
Fig. 1). b, Enformer outperforms Basenji2 in gene expression prediction from sequence both across genes and across CAGE experiments for protein-coding 
genes. Test set performance was measured by Pearson correlation of CAGE gene expression (log(1 + x) transformed) computed across genes for each 
CAGE experiment (left) or across CAGE experiments for each test gene stratified by the observed expression variance across experiments (right). 
Average performance for each model is shown in the corners. Bootstrapped s.d. of these estimates is 0.004 for ‘Across genes’. Gene expression values 
were obtained by summing up the observed or predicted CAGE read counts at all unique TSS locations of the gene. Values for each CAGE experiment 
were standardized to have zero mean and variance of 1 across genes. c, Enformer consistently outperforms Basenji2 across all 4 assay types (columns) 
as measured by Pearson correlation computed across all 128-bp binned genomic positions in the human test set for 5,313 predicted tracks (points). Both 
models were trained and evaluated on the same dataset. Enformer performance was significantly higher across all plots in b and c) (paired Wilcoxon  
P < 10−38). d, Representative example of observed and predicted genomic tracks (log10 scale) at CD44 gene locus located in the test-set region with high 
disagreement between Enformer and Basenji2 predictions (Methods). For each experiment, all three tracks share the same y axis.
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centered at TAD boundaries, and compared them with attention 
from sequences with no particular alignment. From the perspec-
tive of the query position, Enformer paid more attention to TAD 

boundaries than to random positions (vertical red stripe, Fig. 2c) 
and less attention to regions on the opposite side of the boundary 
(off-diagonal blue blocks, Fig.  2c), consistent with the biological 
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observation of reduced inter-TAD interactions. Both of these two 
patterns were statistically significant across 1,500 tested sequences 
(Fig. 2d, ‘Across TAD’ and ‘Key at TAD boundary’). One of the key 
motifs at TAD boundaries that the model used to make DNase and 
CAGE predictions was CTCF, which was found to be associated 
with both positive and negative contribution scores (Extended Data 
Fig. 8). Overall, these results suggest that the model has not only 

learned about the role of tissue-specific enhancers and promoters, 
but also about insulator elements and their role in inhibiting infor-
mation flow between genomic compartments.

Enformer improves variant effect prediction on eQTL data. A 
central goal of this research is to predict the influence of genetic 
variants on cell-type-specific gene expression, in order to inform 
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fine-mapping of the many thousands of noncoding associations 
with phenotypes of interest from genome-wide association stud-
ies (GWAS). Computational models that predict regulatory activity 
from DNA sequences can process distinct alleles and compare pre-
dictions to score genetic variants3,17–19. A successful model would be 
able to produce the results of a gene expression quantitative trait loci 
(eQTL) study without having to measure hundreds to thousands of 
individual gene expression profiles. Thus, we studied eQTLs dis-
covered by the GTEx project across dozens of human tissues to 
validate model predictions20. The primary challenge of such vali-
dation is the influence of co-occurrences between variants (that is, 
linkage disequilibrium) in the profiled population, which transfers 
the causal eQTL’s effect to nearby co-occurring variants’ measure-
ments. Signed linkage disequilibrium profile (SLDP) regression is a 
technique developed to measure the genome-wide statistical con-
cordance between signed variant annotations (such as our model 
predictions) and GWAS summary statistics (such as GTEx eQTLs) 
while accounting for linkage disequilibrium (Methods)21. For 379 
of 648 (59.4%) CAGE datasets, the maximum SLDP Z-score across 
GTEx tissues (representing the most likely closest sample match) 
increased for Enformer predictions relative to Basenji2. Enformer 
maximum Z-scores increased by greater than one s.d. for 228 CAGE 
datasets, relative to 46 decreased by one. The maximum Z-score 
increased on average from 6.3 to 6.9 (Fig. 3a). Note that we do not 
expect increased SLDP Z-scores for CAGE samples without a rel-
evant GTEx tissue match. We observed a qualitative improvement 
in the tissue similarity of the top-ranked CAGE sample for GTEx 
tissues, exemplified by increased SLDP Z-scores for muscle samples 
to GTEx skeletal muscle and adipose samples for GTEx subcutane-
ous adipose tissue (Fig. 3b,c). We also found that Enformer variant 
effect predictions for DNase hypersensitivity had greater SLDP con-
cordance with GTEx than an alternative method called DeepSEA 
Beluga, used in ExPecto1 (Extended Data Fig. 9). Thus, Enformer 
predictions for noncoding-variant activity appear to improve pri-
marily for samples with similar cell-type composition, in line with 
our observations of improved tissue and cell-type specificity for 
held-out sequences.

Although linkage disequilibrium generally results in GTEx 
eQTL associations that can be attributed only to a set of frequently 
co-occurring variants, the latest GTEx release includes many thou-
sands of associations in loci with simple linkage patterns, which 
have been fine-mapped to a single high-probability causal variant22. 
To assess the utility of Enformer predictions for identifying causal 
variants, we defined a classification task for each tissue to discrimi-
nate likely causal variants (causal probability > 0.9, as determined 
by the population-based fine-mapping model SuSiE23) from likely 
spurious eQTLs (causal probability < 0.01), which were matched for 
the eGene when possible (Methods). We represented each variant 
by its prediction difference vector (that is, evaluating the reference 
minus alternative allele, summed across the sequence) for all 5,313 
human datasets, and trained random forest classifiers. Enformer 

predictions enabled a more accurate classifier for 47 of 48 GTEx tis-
sues (Fig. 3d), increasing the mean area under the receiver operating 
characteristic curve (auROC) from 0.729 to 0.747. This improve-
ment was consistent across all distances from the TSS (Fig.  3e), 
suggesting that the model not only better represents variants likely 
overlapping long-range enhancers (enabled by the larger receptive 
field), but also more effectively parses promoters and short-range 
enhancers. The Enformer model was also more accurate at predict-
ing the direction of expression change of these fine-mapped eQTLs 
than was Basenji2 (Extended Data Fig. 10).

One example variant where the Enformer eQTL probability 
prediction increased relative to Basenji2 is rs11644125, which lies 
within an intron ~35 kb downstream of the TSS of NLRC5, a gene 
involved in viral immunity and the cytokine response (Fig. 3f). The 
variant has been statistically fine-mapped as likely to cause changes 
in monocyte and lymphocyte blood cell counts24. According to 
GTEx, the minor allele T decreases gene expression of NLRC5 in 
whole blood relative to the major allele C. Enformer correctly pre-
dicts reduced NLRC5 expression from the upstream TSS in many 
relevant CAGE samples, including PBMCs. Using in silico muta-
genesis of the local region (Methods), we observed that the variant 
rs11644125 modulates the known motif of the transcription factor 
SP1 (ref. 24). Enformer predictions suggest perturbed SP1 binding in 
hematopoietic cells that alters NLRC5 expression as a mechanism 
for these traits.

Enformer improves MPRA mutation effect prediction. Finally, 
we evaluated Enformer’s performance on a second, independent 
variant effect prediction task using a dataset in which massively 
parallel reporter assays (MPRAs) directly measured the functional 
effect of genetic variants through saturation mutagenesis of several 
enhancers and promoters in a variety of cell types25. We used the 
same training and test sets as the CAGI5 competition26, enabling us 
to directly benchmark Enformer’s performance relative to those of 
submissions from other groups. Methods derived from other groups 
deploy a heterogeneous set of approaches, ranging from the use of 
the deltaSVM strategy27, the CADD framework28, and regression 
models using features derived from a combination of conservation 
information and deep learning predictions from DeepBind29 and 
DeepSEA18 (Group 3, Group 5, and Group 7)26. For each variant, we 
evaluated its effect as the predicted difference between the reference 
and alternative allele, retrieving 5,313 features. Next, we compared 
two approaches: (1) we used these features to train a lasso regres-
sion model on the provided training set for each gene, and (2) we 
preselected a subset of features corresponding to cell-type-matched 
and cell-type-agnostic predictions of changes in CAGE and DNase, 
and generated a summary statistic of the features (that is, without 
additional training).

Evaluating these two approaches on each gene’s test set revealed 
that lasso regression with Enformer predictions as features had the 
best average correlation across all loci, among seven alternative  

Fig. 3 | Enformer improves variant effect prediction on eQTL data as measured by SLDP regression and fine-mapped variant classification. a, We 
computed genome-wide statistical concordance between variant effect predictions for individual CAGE datasets and GTEx eQTL summary statistics 
using SLDP21 across all variants in the 1000 Genomes dataset. Taking the GTEx tissue with max Z-score for each sample, Enformer predictions achieved 
greater Z-scores for 59.4% of samples, and 228 are greater by more than one s.d. (versus 46 for Basenji2). Each point represents one of the 638 CAGE 
samples. We used one-sided Binomial tests to compute the P values in the top row panels. b,c, Studying SLDP in skeletal muscle (b) and subcutaneous 
adipose (c) GTEx tissues indicated that biologically relevant CAGE datasets (shown in blue) improve between Basenji2 and Enformer. d, We trained 
random forest classifiers to discriminate between fine-mapped GTEx eQTLs and matched negative variants in each of 48 tissues (Methods). Features 
derived from Enformer enabled more accurate classifiers than Basenji2 features for 47 of 48 tissues. e, We computed auPRC for variants in four roughly 
equally sized TSS distance bins. Violin plots represent measures for the n = 48 tissues (white dots represent the median, thick bars the interquartile range, 
and thin bars the entire data range). Enformer improved accuracy at all distances (one-sided paired Wilcoxon P < 1 × 10–4). f, Enformer prediction for 
rs11644125 improved relative to Basenji2 (data not shown) by better capturing its influence on an NLRC5 TSS ~35 kb upstream. rs11644125 is associated 
with monocyte and lymphocyte counts in the UK BioBank and fine-mapped to >0.99 causal probability24. In silico mutagenesis of the region surrounding 
rs11644125 revealed an affected SP1 transcription factor motif39.
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submissions from the competition (Fig.  4a). Moreover, using the 
Enformer predictions directly as scores, without training, performed 
comparably to the lasso-trained model and also outperformed the 
other submissions. This includes the sequence-based predictor del-
taSVM27, which was trained on independent DNase and histone H3 
monomethylated at K4 (H3K4me1) data derived from matched cell 

types25. The lasso-trained Enformer exceeded the performance of 
Group 3, the winning team from CAGI5 (P = 0.002, paired, one-sided 
Mann–Whitney U test, Fig. 4b). Visualization of the predictions that 
required no additional training revealed that Enformer faithfully 
captured the effects of two out of four transcription-factor-binding 
sites for the LDLR locus (Fig.  4c). Enformer highlighted an  
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additional binding site that had lower effect sizes, but still showed  
a significant difference. By contrast, deltaSVM successfully predicted 
only one binding site but missed the other three, overall exhibiting 
50% reduced Pearson and Spearman correlations to the measured 
effects relative to Enformer. For this locus, cell-type-matched pre-
dictions mirrored cell-type-agnostic predictions, indicating that the 
binding sites which were detected likely corresponded to general 
transcription factors present in most cell types.

Discussion
A long-standing problem in regulatory genomics is that of predict-
ing gene expression purely from DNA sequence. With a novel trans-
former architecture, we have made a significant improvement by 
greatly expanding the receptive field and increasing the information 
flow between distal elements. In this way, the model can better cap-
ture biological phenomena such as enhancers regulating promoters 
despite a large DNA-sequence distance between the two. This led to 
a substantial performance increase in tissue- and cell-type-specific 
gene expression prediction correlation from 0.81 to 0.85, one-third 
of the way toward the experimental-level accuracy of 0.94 estimated 
from replicates.

This improvement in predictive accuracy translated to improved 
models for two key problems of biological relevance: enhancer–
promoter prediction and noncoding variant effect prediction.  

We observed that the model pays attention to enhancers and  
considers insulators when making gene expression predictions, sug-
gesting that it has learned canonical distal regulation patterns. Using 
the Enformer model, we can more accurately predict whether a 
natural variant or CRISPR-perturbed enhancer will cause a notable 
expression change than can previous approaches. By relying solely 
on DNA sequences as input, Enformer has several advantages over 
alternative variant effect prediction methods: (1) unlike most meth-
ods25, it is capable of signed prediction of activating or repressive 
mutations; (2) by not relying explicitly on nucleotide conservation 
statistics, as the majority of tools do25, its predictions are not limited 
to conserved enhancers, which comprise a small proportion of all 
enhancers30; and (3) it can make predictions for arbitrary sequences, 
which enables the synthetic design of enhancers that are opti-
mized to exhibit cell-type specificity31. Altogether, these advances  
and advantages open exciting avenues to study the expanding cata-
logs of genetic variants linked to disease and enhancer biology in 
development and evolution.

Several paths to further improve model accuracy appear prom-
ising. Machine-learning success depends on the training data, 
so increasing the resolution and quality of the target tracks15, and 
curating data from additional organisms2, would likely boost per-
formance. Recent work demonstrated that the highly structured 3D 
DNA contacts, which greatly influence long-range gene regulation, 
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are predictable from the underlying DNA sequence32,33. Artful com-
bination of these models with our own could improve Enformer’s 
modeling of insulators and distal regulation. A limitation of the cur-
rent approach is that we can model and predict only for cell types 
and assays in the training data and cannot generalize to new cell 
types or assays. Parallel research has begun to address this short-
coming via representation learning of cell types and assays and could 
make use of the Enformer architecture in the future34,35. The sensi-
tivity of the model to genetic variants could be further improved by 
training upon the growing number of functional genomic datasets, 
such as those derived from CRISPR perturbations and massively 
parallel reporter assays. Currently, the small size of these datasets 
has limited their usage only to model evaluation. Finally, we antici-
pate that recent improvements in the computational efficiency36 of 
transformer models together with better hardware will allow us to 
further scale-up the models.

In the future, Enformer could be systematically applied to 
fine-map existing GWAS studies22, prioritize rare or de novo vari-
ants observed for rare disorders37,38, and impute regulatory activ-
ity across species to study cis-regulatory evolution2. To foster these 
downstream applications, we have made the pretrained Enformer 
model openly available along with code examples demonstrat-
ing its use. Furthermore, we have precomputed effect predictions 
for all frequent variants in the 1000 Genomes dataset and made 
them openly available. We hope that our model will stimulate an 
improved understanding of gene-regulatory architecture and facili-
tate the development of improved diagnostic tools for diseases of 
genetic origin.
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mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
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Methods
Model architecture. The Enformer architecture consists of three parts: (1) 7 
convolutional blocks with pooling, (2) 11 transformer blocks, and (3) a cropping 
layer followed by final pointwise convolutions branching into 2 organism-specific 
network heads (Extended Data Fig. 1). Enformer takes as input one-hot-encoded 
DNA sequence (A = [1,0,0,0], C = [0,1,0,0], G = [0,0,1,0], T = [0,0,0,1], N = 
[0,0,0,0]) of length 196,608 bp and predicts 5,313 genomic tracks for the human 
genome and 1,643 tracks for the mouse genome, each of length 896 corresponding 
to 114,688 bp aggregated into 128-bp bins. The convolutional blocks with 
pooling first reduce the spatial dimension from 196,608 bp to 1,536 so that each 
sequence position vector represents 128 bp (although the convolutions do observe 
nucleotides in the adjacent pooled regions). The transformer blocks then capture 
long-range interactions across the sequence. The cropping layer trims 320 positions 
on each side to avoid computing the loss on the far ends because these regions 
are disadvantaged because they can observe regulatory elements only on one side 
(toward the sequence center) and not the other (the region beyond the sequence 
boundaries). Finally, the two output heads predict organism-specific tracks. The 
Enformer architecture is similar to the state-of-the-art model Basenji2 (ref. 2). 
However, the following changes helped us improve and exceed its performance: 
Enformer uses transformer blocks instead of dilated convolutions, attention 
pooling instead of max pooling, twice as many channels, and 1.5 times longer input 
sequence (197 kb instead of 131 kb). The detailed model architecture, including the 
selected hyperparameters, is shown in Extended Data Fig. 1.

Attention pooling summarizes a contiguous chunk of the input sequence 
xfullk:k+Lp = x ∈ RLp×C across Lp positions for each of the C channels and returns the 
output value h∈RC as follows:

hj =
∑

i exp
(

xi · wj
)

xij
∑

i exp
(

xi · wj
) ,

where i indexes sequence position in the pooling window, which is weighted by the 
exponentiated dot product xi・wj and w ∈ RC × K is a matrix of learned weights. We 
apply attention pooling to contiguous chunks of the original input sequence using 
window size Lp= 2 and stride of 2. We initialize w to 2 × 1, where 1 is the identity 
matrix to prioritize the larger value, making the operation similar to max pooling. 
This initialization gave slightly better performance than did random initialization 
or initialization with zeros, representing average pooling.

We use multi-head attention (MHA) layers to share information across the 
sequence and model long-range interactions, such as those between promoters and 
enhancers. Each head has a separate set of weights wq∈RC×K, wk∈RC×K, and wv∈RC×V 
which transform the input sequence x∈RL×C into queries qi=xi wq, keys kj=xj wk, 
and values vj=xj wv. Queries represent the current information at each position and 
keys represent the information each position will be looking for to attend to. Their 
dot product plus the relative positional encodings Rij forms the attention matrix, 
which is computed as aij= softmax(qi kj

T/√K + Rij), where the entry aij represents 
the amount of weight query at position i puts on the key at position j. Values 
represent the information that each position will propagate forward to positions 
that attend to it. Each single attention head computes its output as a weighted sum 
across all input positions: av. This allows each query position to use information 
across the whole sequence. The multiple heads compute with independent 
parameters, and we concatenate the outputs from each head to form the final layer 
output followed by a linear layer to combine them. Our layers used 8 heads, value 
size of 192, and key/query size of 64.

MHA applications in NLP typically operate directly on the input sequence, 
tokenized into words and embedded in a richer embedding space. The convolution 
tower preceding MHA in the Enformer model serves to perform an analogous 
operation of embedding nucleotide segments and contributes a compelling 
inductive bias for adjacent nucleotides to function together in motifs. We chose to 
compute at 128-bp resolution because it roughly represents a well-studied length 
of regulatory elements that contain several motifs and is an appropriate bin size 
at which to aggregate the experimental data to be predicted. Finer resolution 
has potential benefits when the data support it15, but would extend the sequence 
length entering the quadratic complexity MHA and make the model engineering 
intractable on currently available hardware.

To inject positional information, we add relative positional encodings40 
Rij to the qi kj

T attention term as formulated in the Transformer-XL paper41. 
Relative positional encodings provide a parameterized baseline for how actively 
two positions in the sequence should influence each other during the layer’s 
transformation as a function of their pairwise distance. Specifically, we use Rij = qi 
rT

i–j + u kT
j + v rT

i–j, where ri–j = wR f(i –j) is a linear function of different relative 
basis functions f(i – j), and u and v are the position-agnostic embeddings used to 
evaluate the preference for specific keys (u) or relative distances (v). We use three 
different basis function classes for f(i – j), as visualized in Extended Data Fig. 5b:

	1.	 fexponentiali (r) = e− log(2) r
r1/2,i , where r1/2,i is placed linearly in the log-space 

between 3 and sequence length.

	2.	 fcentral mask
i (r) =

{

1, if r ≤ 2i
0, otherwise

	3.	 fgamma
i (r) = Gamma

(

r|α =

μi
σ2 , β =

μ2
i

σ2

)

, where Gamma(r|ɑ,β) is the 
gamma probability distribution function. 𝜇i is placed linearly from (sequence 
length / number of features) to sequence length and σ = sequence length /  
(2 × number of features).

For each basis function, we use a symmetric f(|x|) and asymmetric sign(x) 
× f(|x|) version to introduce directionality. We use the same number of relative 
positional basis functions as the value size of MHA (192). The 192 basis functions 
are equally divided among the basis function classes and the symmetric versus 
asymmetric versions thereof. With 3 basis function classes, each basis function 
class provides 64 positional features (32 symmetric and 32 asymmetric).

Dropout rates of 0.01 and 0.05 were used for positional encoding features 
and the final attention matrix respectively in MHA. All other dropout rates are 
annotated in Extended Data Fig. 1a.

Model training and evaluation. The model was trained, evaluated, and tested 
on the same targets, genomic intervals, and using the same Poisson negative 
log-likelihood loss function as Basenji2 (ref. 2). Briefly, the cross-species training/
validation/test sets were constructed using the following procedure to partition 
homologous sequences into the same set. First, we divided both the human and 
mouse genomes into 1 Mb regions. We constructed a bipartite graph, in which 
the vertices represent these regions. Next, we placed edges between 2 regions if 
they have >100 kb of aligning sequence in the hg38-mm10 syntenic net format 
alignment downloaded from the UCSC Genome Browser42. Finally, we partitioned 
connected components in the bipartite graph randomly into training, validation, 
and test sets.

The dataset contains 34,021 training, 2,213 validation, and 1,937 test sequences 
for the human genome, and 29,295 training, 2,209 validation, and 2,017 test 
sequences for the mouse genome. For the human genome, each example contains 
2,131 transcription factor (TF) chromatin immunoprecipitation and sequencing 
(ChIP–seq), 1,860 histone modification ChIP–seq, 684 DNase-seq or ATAC-seq, 
and 638 CAGE tracks (total 5,313, Supplementary Table 2). For the mouse genome, 
each example contains 308 TF ChIP–seq, 750 histone modification ChIP–seq, 
228 DNase-seq or ATAC-seq, and 357 CAGE tracks (total 1,643, Supplementary 
Table 3). We modified the Basenji2 dataset by extending the input sequence to 
196,608 bp from the original 131,072 bp using the hg38 reference genome.

To train a model simultaneously on human and mouse genomes, we 
alternated between a batch containing data from the human genome and 
the mouse genome. The main Enformer model with 1,536 channels was 
implemented in Sonnet v2, TensorFlow (v2.4.0), and was trained on 64 TPU 
v3 cores with batch size of 64 (1 per core) for 150,000 steps (approximately 3 
days) using all-reduce gradient aggregation across the cores at every step. Batch 
normalization statistics were also aggregated across multiple replicas using 0.9 
momentum. We used the Adam optimizer from Sonnet v2 (ref. 43) with a learning 
rate of 0.0005 and default settings for other hyperparameters: β1 = 0.9, β2 = 0.999, 
ε = 1 × 10–8. The optimal learning rate was discovered by grid search yielding the 
highest performance on the validation set. We linearly increased the learning rate 
from 0 to target value in the first 5,000 steps of training. We clipped gradients to 
a maximum global norm of 0.2. We used the same data augmentation as Basenji2 
(ref. 2) during training by randomly shifting the input sequence by up to 3 bp and 
reverse-complementing the input sequence while reversing the targets. Finally, 
we fine-tuned the Enformer model on human data for 30,000 steps using a lower 
learning rate of 0.0001.

We used the pretrained Basenji2 model for all main model comparisons and 
retrained an equivalent model for ablation and hyperparameter sweeps shown in 
Extended Data Fig. 5. In these comparative analyses, we used 768 channels (1/2 
of the original Enformer model obtained by using a value size of 96 in MHA), 
131 kb input sequence, and batch size 32 trained on 32 TPU v3 cores. We did not 
fine-tune these models on the human data. For models using dilated convolutions 
instead of transformer blocks, we used a higher learning rate of 0.02 without ramp 
up of the learning rate. As for Enformer, the optimal learning rate was discovered 
by grid search yielding the highest performance on the validation set. All models 
were trained for 500,000 steps while only storing the model with the highest 
Spearman correlation of CAGE TSS gene expression across genes averaged across 
experiments computed on the validation set every 1,000 steps.

We used the validation set for hyperparameter selection and the test set 
for Basenji2 comparison. We considered two evaluation metrics: (1) Pearson 
correlation computed across all 128-bp binned genomic positions in the validation/
test set for each output track; and (2) Pearson correlation of CAGE gene expression 
values (log(1 + x)-transformed and standardized across genes for each experiment) 
of all protein-coding genes in the validation/test set computed either for each 
CAGE experiment across genes (main metric) or across CAGE experiments for 
each gene (shown in Fig. 1b). Observed and predicted gene expression values 
were obtained by summing up the observed/predicted CAGE read counts at all 
unique TSS locations of the gene. For each TSS location, we used the 128-bp bin 
overlapping the TSS as well as the two neighboring bins (3 bins in total). We used 
test–time augmentation during model evaluation: we averaged the predictions 
from 8 sequences randomly augmented the same way as during training (≤3 bp 
shifts and reverse-complementation). We only evaluated the performance of our 
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model on the test set once to generate Fig. 1 and did not use the test set during 
model development.

To select a representative example, we visualized the top 10 transcripts with 
highest discrepancy between Enformer and Basenji2 performance on the ‘Across 
CAGE experiments’ metric measuring tissue specificity for 33% of the most 
tissue-specific genes. We picked the sixth transcript in the list (ENST00000524922) 
because it cleanly showed differences across all three categories of genomic tracks 
(DNA accessibility, histone modifications, and gene expression).

Enhancer prioritization. We obtained a set of enhancer–gene pairs tested 
using a CRISPRi assay perturbing the enhancer of interest while measuring 
the expression change of the gene in K562 cells from two studies: Gasperini 
et al.9 using scRNA-seq to measure expression changes, and Fulco et al.13 using 
Flow-FISH. We transformed the enhancer and gene coordinates from hg19 to 
hg38 using the UCSC liftOver web tool42. Each enhancer–gene pair contains 
a label denoting whether a significant expression change was induced after 
CRISPRi treatment. We denoted the set of all enhancers as ‘candidate’ enhancers 
and those that showed a change in expression as ‘validated’ enhancers. We 
evaluated different methods on their ability to classify or prioritize enhancer–
gene pairs that exhibited a significant expression change using area under 
precision–recall curve (auPRC)13.

To prioritize enhancer–gene pairs with sequence-based models, we computed 
three different scores: gradient × input, attention, and in silico mutagenesis (ISM). 
For each enhancer–gene pair, we determined the major TSS of the gene by taking 
the highest predicted CAGE value in K562 using Enformer. We extracted the 
DNA sequence centered at the main TSS and computed the following different 
enhancer–gene scores:

	1.	 Gradient × input: We computed the absolute value of the gradient of the 
CAGE targets (either using the K562-specific CAGE targets or all CAGE 
targets, Extended Data Fig. 7c) at the TSS with regard to the input reference 
sequence nucleotide. Note that since our input sequence is one-hot encoded, 
taking the input gradient of the nonzero channel (the reference nucleotide), is 
equivalent to computing gradient × input attributions12. We note that ‘CAGE 
at TSS’ always means summing the absolute gradient values from three ad-
jacent bins, as is also done in gene-focused model evaluation. The three bins 
include the bin overlapping the TSS and one flanking bin on each side. The 
enhancer–gene score was obtained by summing the absolute gradient × input 
scores in the 2-kb window centered at the enhancer.

	2.	 Attention: We first averaged transformer attention matrices across all heads 
and layers. We extracted the row corresponding to the query index positioned 
at the TSS, so that keys correspond to different spatial positions and the at-
tention values specify how much the model attended to these positions when 
making predictions for the TSS. We only computed this contribution score 
for Enformer. The enhancer–gene score was obtained by summing the atten-
tion scores in the 2-kb window centered at the enhancer.

	3.	 ISM: The in silico mutagenesis enhancer–gene score was computed by com-
paring K562 CAGE predictions at the TSS from the reference sequence with 
predictions from modified sequence where the 2-kb enhancer sequence was 
replaced by a random sequence: |f(modified) – f(reference)|.

To reproduce the ABC score introduced in Fulco et al.13, we obtained 
the BigWig of H3K27ac ChIP–seq data in K562 from ENCODE with file 
accession ENCFF779QTH and DNase with file accessions ENCFF413AHU and 
ENCFF936BDN. We summed the normalized reads from replicates. For each 
track and enhancer, we summed up the signal at the enhancer in a fixed window 
of 2 kb centered at the enhancer. This fixed and broader window yielded better 
performance compared to the variable window size of ~500 bp as used in the 
original ABC score (Extended Data Fig. 4a).

GTEx SLDP. We predicted the effect of a genetic variant on various annotations by 
computing a forward pass through the model using the reference and alternative 
alleles, subtracting their difference, and summing outputs across the sequence to 
obtain a signed score for each training dataset. We averaged scores computed using 
the forward and reverse complement sequence and small sequence shifts to the left 
and right. We computed scores for all 1000 Genomes SNPs.

We used SLDP20 to estimate the functional correlation between these scores 
and GTEx v7a summary statistics for 48 tissues while accounting for population 
linkage disequilibrium structure (Supplementary Information).

Fine-mapped GTEx classification. To study specific eQTLs without needing 
to consider LD, we studied statistical fine-mapping of GTEx v8 using the SuSiE 
method20,23. We focused on variants with posterior inclusion probability (PIP) 
in a credible causal set >0.9, which ranged from a minimum of 166 variants for 
substantia nigra to 2,740 for tibial nerve. We arranged a classification task to 
discriminate between these positive causal variants and a matched set of negative 
variants. When available, we chose a negative variant matched to each causal 
variant from the set with PIP < 0.01 but |Z-score| > 4 tested for the same gene. 
When unavailable for the same gene, we chose from the set with PIP < 0.01 and 
|Z-score| > 6 genome-wide.

To determine how informative different variant annotations are, we trained 
separate random forest classifiers for each tissue to distinguish causal from 
noncausal variants using eight-fold crossvalidation. We selected the default 
hyperparameters of the scikit-learn 0.22 implementation after finding negligible 
accuracy gains from modifying them44. However, owing to the large number 
of features derived from the training datasets, setting the maximum features 
considered per decision tree split to log2 of the total number of features greatly 
improved the computational efficiency. We fit 100 iterations of stochastic 
crossvalidation shuffling and random forest fitting to delineate a low-variance 
estimate of model accuracy. We performed statistical tests comparing two different 
model feature sets by comparing the 8 × 100 distinct test set auROCs.

For signed GTEx analysis, we benchmarked model predictions on the basis 
of their ability to discriminate causal variants that increase versus decrease gene 
expression. In this analysis, we removed variants that affect gene expression in 
opposite directions for different cis-genes. We manually matched FANTOM5 
CAGE sample descriptions to the GTEx tissues. We skipped cases with more than 
three possible matches. In cases with two or three possible matches, we chose 
the CAGE sample with the best average concordance between the Basenji2 and 
Enformer predictions. We computed auROC statistics by ranking causal variants 
by their signed prediction for that sample.

Benchmarking variant effect predictions on saturation mutagenesis data. We 
acquired training and test sets as well as the predictive accuracies of individual 
competition participants from the CAGI5 competition26 (M. Kircher, personal 
communication, https://genomeinterpretation.org/content/expression-variants). 
For each variant and locus, we evaluated its effect as the predicted difference 
between the reference and alternative allele summed in four flanking bins 
representing 512 bp, producing 5,313 features based on the human datasets. All 
CAGE features were log-transformed after adding a pseudocount of 1 prior to 
computing this difference. For each allele, we averaged predictions for the forward 
and reverse-complemented sequence. We scaled the features from the test set 
with scaling factors computed on the features from the training set, such that the 
training features had a mean of 0 and s.d. of 1. Following our previous work45, we 
then trained a lasso regression model for each locus using these features and the 
corresponding training set. The strength of the regularization was controlled by 
a single λ parameter, which was optimized using tenfold crossvalidation for each 
training set using the cv.glmnet function of the glmnet library in R.

For our training-free comparisons, we selected the subset of features 
corresponding to cell-type-matched and cell-type-agnostic predictions of 
changes in CAGE and DNase. For the cell-type-agnostic models, we used the 
subset of all 638 CAGE or 674 DNase features (Supplementary Table 2). For the 
cell-type-matched models, we additionally required the CAGE/DNase features 
to contain the following substrings: (1) ‘HepG2’ for F9, LDLR, and SORT1, (2) 
‘K562’ for GP1BB, HBB, HBG1, and PKLR, and (3) ‘HEK293’ for HNF4A, MSMB, 
TERT (performed in HEK293T cells), and MYCrs6983267. For several loci, a 
perfectly matched DNase or CAGE sample did not exist. We therefore selected the 
most closely matched feature based on the following substrings: (1) ‘pancreas’ for 
ZFAND3, (2) ‘glioblastoma’ for TERT (performed in GBM cells), (3) ‘keratinocyte’ 
for IRF6, and (4) ‘SK-MEL’ for IRF4. For each locus, we extracted the features 
matching the aforementioned substrings, and used the first principal component 
(PC) of the indicated features as our summary statistic, inverting the sign of the PC 
if it was negatively correlated to the mean of the features.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
Gene annotation was obtained from https://www.gencodegenes.org/ (v32). 
Basenji2 training, validation, and test data was obtained from https://console.cloud.
google.com/storage/browser/basenji_barnyard/data. Processed CRISPRi data for 
Fulco et al 201913 was obtained from supplementary material and for Gasperini 
et al 20199 from GEO accession GSE120861. H3K27ac ChIP–seq data in K562 
used for analysis in Fig. 2 was obtained from https://www.encodeproject.org/ with 
file accession ENCFF779QTH and DNase with file accessions ENCFF413AHU 
and ENCFF936BDN. TAD boundaries processed by Fudenberg et al 202032 were 
obtained from https://console.cloud.google.com/storage/browser/basenji_hic/
insulation. Fine-mapped eQTLs are available from the supplementary material 
of Wang et al 202122 and the negative set from https://console.cloud.google.com/
storage/browser/dm-enformer/data/gtex_fine. We acquired training and test 
sets as well as the predictive accuracies of individual competition participants 
from the CAGI5 competition26 (M. Kircher, personal communication, https://
genomeinterpretation.org/content/expression-variants). For comparison to 
ExPecto, we used the provided data from https://github.com/FunctionLab/
ExPecto/tree/master/resources.

Code availability
All components of our core algorithm, including the full model architecture 
and example code to train and evaluate the model are available under the open 
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source Apache 2.0 license at the following URL: https://github.com/deepmind/
deepmind-research/tree/master/enformer. The code is also archived at Zenodo 
https://doi.org/10.5281/zenodo.509837546. In addition, layer components of the 
model are now available in the existing Basenji repository for biological sequence 
deep learning at https://github.com/calico/basenji also under the open source 
Apache 2.0 license.
Pre-trained Enformer model is available on TF-Hub so that users can easily run it 
on new data: https://tfhub.dev/deepmind/enformer/1. We also plan to release it in 
the Kipoi model repository47. We provide code examples (enformer-usage.ipynb) 
on how to use that model to score genetic variants. Finally, we provide variant effect 
predictions for all frequent variants in the 1000 genomes cohort (MAF>0.5% in 
any population) here, with an open creative-commons CC-BY 4.0 license. To make 
these predictions more accessible, we distilled the 5,313 features into 20 highly 
informative variant scores using PCA (Methods) to keep the released file sizes 
manageable (<1 GB in total for 10 M variants, instead of 100 GB) while retaining 
high predictive accuracy (GTEx fine-mapping classification auROC of 0.743 
compared to 0.747 using all features).
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Extended Data Fig. 1 | Enformer model architecture and comparison to Basenji2. a) From left to right: Enformer model architecture, ‘dilated’ architecture 
used in ablation studies obtained by replacing the transformer part of the model with dilated convolutions, and Basenji22. Output shapes (without batch 
dimensions) are shown as tuples on the right side of the blocks. The number of trainable parameters for different parts of Enformer are shown on the left 
side of the blocks. The two main hyperparameters of the model are the number of transformer/dilated layers, L, and the number of channels, C. All models 
have the same two output heads as shown on the Enformer at the bottom. The number of channels in the convolutional tower Ci was increased by a 
constant multiplication factor to reach C channels starting from C/2 (or 0.375*C for Basenji2) in 6 layers. For dilated layers, we increased the dilation rate 
Di by a factor of 1.5 at every layer (rounded to the nearest integer). b) Definition of different network blocks in terms of basic neural network layers. MHA 
denotes multi-headed attention using relative positional encodings with kq representing the number of key/query size, v representing the value size and h 
the number of heads. Number of relative positional basis functions is equal to value size v.
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Extended Data Fig. 2 | Replicate level accuracy. a) Gene expression correlation (log(1+x) pearsonR) for each CAGE track across protein-coding genes 
comparing experimental-level accuracy computed in two ways (estimated and direct) to Enformer. For ‘Replicates direct’, CAGE replicate experiments 
were partitioned into two groups and compared against each other. For ‘Replicates estimated‘, a predictive model was used to impute CAGE values of a 
particular track from all other tracks.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Predictive performance for treated samples. a) Groups of CAGE experiments where the biological samples were perturbed in 
different ways. b) Observed and predicted gene expression matrices (log(1+x) transformed) for CD14+ monocytes and genes in the held-out test set. 
The most prominent change in gene expression due to the lipopolysaccharide treatment was also captured by the Enformer model. Observed matrix was 
hierarchically clustered for both rows and columns. Enformer predicted heatmap follows the same row and column ordering as the observed matrix. c) 
Predictive performance in the test set for CAGE gene expression fold change for all within-group pairs from a (y-axis) compared to the observed gene 
expression correlation between two pairs (x-axis). Fold change of highly correlated CAGE samples is more difficult to predict. d) Enformer shows higher 
fold-change predictive performance compared to Basenji2.
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Extended Data Fig. 4 | Enformer predicts mRNA-seq more accurately than ExPecto. a) Test set predictive performance comparison of a linear 
model trained on top of Enformer CAGE predictions from the major TSS (y-axis) and ExPecto (x-axis) computed either across genes (first column) or 
across tissues (second column). Gene expression matrix was normalized across genes to have zero mean and unit variance for each tissue. Enformer 
was re-trained only on the human genome using the same training chromosomes for this comparison (Methods). b) Same as a), but using Enformer 
predictions averaged across all TSS of the gene. c) Observed versus Enformer-predicted gene expression values for all 990 test genes in 6 RNA-seq 
samples.
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Extended Data Fig. 5 | Comparison to dilated convolutions. a) Enformer with original transformer layers (Extended Data Fig. 1a left) performs better 
than Enformer with dilated convolutions (Extended Data Fig. 1a center) across different model sizes and training dataset subsets as measured CAGE 
gene expression correlation in the validation set (same metric as in Fig. 1b across genes). At 15 dilated layers, the model starts to reach outside of the 
input sequence range (receptive field of 224,263 bp). Note that all the evaluations here are limited by TPU memory preventing you from using more 
layers or channels. b) Performance comparison to Basenji2 (left) and Enformer (right) to Enformer with the same receptive field (44 kb) as Basenji2 
by either allowing a fixed attention radius of 16 across all layers where query can attend to at most 16 positions away (Enformer 769: Fixed radius: 16) 
or by exponentially increasing the respective field in the same way as the dilation rate in Basenji2. Enformer768 was trained with the same number of 
768 channels and 131 kb input sequences as Basenji2, whereas Enformer uses two times more channels and 1.5 times longer sequence. Same evaluation 
metrics are shown as in Fig. 1.
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Extended Data Fig. 6 | Custom relative positional encoding functions are required for good predictive performance. a) Relative positional encoding 
basis function options for the transformer model. Sine/cosine basis functions are frequently used in the NLP literature for both absolute or relative 
positional encodings. Enformer uses a concatenation of exponential, gamma and central_mask relative positional encodings. For each basis function, a 
symmetric f(|x|) and asymmetric sign(x) * f(|x|) basis function will be used to introduce directionality and thereby inform the model of what is upstream 
or downstream of the TSS. Each basis function is visualized with a different color. b) Validation set performance as measured by CAGE gene expression 
correlation across protein coding genes (top; same metric as in Fig. 1b across genes) or across all positions (bottom; same metric as displayed in Fig. 1c 
CAGE) for models trained with different classes of positional encoding functions in the transformer. Custom relative positional encodings show better 
performance than using standard sin/cos basis functions or using absolute positional encodings, likely because they can better capture the decreasing 
importance of enhancers with increased distance. Also, symmetric only (f(|x|) version shows much lower performance than using both, symmetric and 
asymmetric versions. All models use the same 96 total number of basis functions. Each positional encoding configuration was trained with multiple 
different random seeds. Red points denote runs with lower performance than the y-axis limits.
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Extended Data Fig. 7 | Tissue-specific contribution scores are required for good enhancer-recall performance. a) Enhancer–gene ranking performance 
comparison of different ABC score versions, including the original score which uses DNase, H3K27ac, and Hi-C data. H3K27ac / distance is a good if not 
even slightly better proxy for the ABC score. The alternative versions use a fixed and 2 kb wide aggregation window whereas the original uses a dynamic 
peak width depending on the DNase peak width. b) Attention-based contribution score as a function of distance at all enhancer–gene pairs in both studied 
datasets. c) Contribution scores that are cell-type-specific (shown in green, achieved by computing the contribution scores w.r.t. cell-type-specific target 
variables) outperform cell-type agnostic contribution scores (shown in orange). Colored bars in a and c depict the median auPRC with error bars at the 
25th and 75th percentile obtained by sampling 80% of enhancer–gene pairs 100 times without replacement.
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Extended Data Fig. 8 | TF-MoDISco motifs at TAD boundaries. a,b) Motifs obtained by TF-MoDISco from gradient × input DNase (a) or CAGE (b) 
contribution scores at 1,500 TAD boundaries. Motif title contains: TF name of the closest motif match from HOCOMOCO v11 database, metacluster 
and pattern id returned by TF-MoDISco, number of seqlets supporting the motifs, and Tomtom q-value for the closest motif match (lower means better 
match). For each motif, the information content of the position frequency matrix (PFM) is visualized for the database motif in the top row and for the 
actual TF-MoDISco motif in the second row. Third row for each motif shows the contribution weight matrix (CWM)15,47 which can be negative. Shown 
are the top 6 motifs for each contribution score sign with sufficiently close match to a known motif (q-value<1e-5) and support from at least 200 seqlets. 
Interestingly, the CTCF motif was discovered for both CAGE and DNase in both contribution score signs, suggesting that it can influence them in a positive 
or negative manner.
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Extended Data Fig. 9 | Enformer achieves greater and more specific SLDP concordance to GTEx than DeepSEA. To compare Enformer and DeepSEA 
Beluga (convolutional neural network used in ExPecto) variant effect predictions, we manually matched DNase datasets that both models were trained on, 
finding 100 confident matches. We computed genome-wide statistical concordance between variant effect predictions for these DNase datasets and GTEx 
eQTL summary statistics using SLDP across all variants in the 1000 genomes dataset. a) We scatter plotted all DNase sample and GTEx tissue z-scores 
for the DeepSEA and Enformer predictions, observing that the Enformer scores are greater for 60.8%. Each point corresponds to (DNase sample, GTEx 
tissue) pair. Only some (DNase sample, GTEx tissue) pairs are biologically well-matched, while the majority are. b) Since many DNase samples profile 
fibroblasts we specifically plotted all DNase sample z-scores for the GTEx fibroblast summary statistics. We colored the DNase fibroblast samples in 
red, revealing that they are the highest scoring and most improved in the Enformer model relative to DeepSEA. This suggests that Enformer variant effect 
predictions are more tissue specific, since one would expect to obtain the highest Z-score for these matched samples shown in red.
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Extended Data Fig. 10 | Enformer outperforms Basenji2 on eQTL sign prediction. For each of the GTEx tissues, we manually matched FANTOM5 CAGE 
sample descriptions to choose a single matched dataset (Methods). We then arranged a classification task to discriminate between fine-mapped causal 
eQTLs in which the minor allele increases gene expression versus eQTLs in which the minor allele decreases gene expression. We computed auROC 
statistics by ranking causal variants by their signed prediction for the corresponding sample. To consider the influence of variant distance to TSS, we 
compute auROC in four bins of roughly equal size. Across tissues and TSS distances, Enformer predictions usually achieve more accurate classification of 
eQTL sign than Basenji2 predictions. We display six example tissues with large numbers of fine-mapped eQTLs and with clear correspondence between 
CAGE and GTEx tissues. Violin plots show the auROC distribution of 100 bootstrap samples from the full set of variants. (The white dot represents 
the median, the thick gray bar in the center represents the 25%-75% percentile range and the thin line represents the entire data range.) Dashed lines 
represent the mean auROC over all distances. Both models struggle with variants beyond the promoter (TSS distance > 1,000), highlighting an important 
problem for future research.
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