
Citation: Divya, S.; Oh, T.H. Polymer

Nanocomposite Membrane for

Wastewater Treatment: A Critical

Review. Polymers 2022, 14, 1732.

https://doi.org/10.3390/

polym14091732

Academic Editor: Alfredo Cassano

Received: 11 April 2022

Accepted: 21 April 2022

Published: 24 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Review

Polymer Nanocomposite Membrane for Wastewater Treatment:
A Critical Review
Sivasubramani Divya * and Tae Hwan Oh *

School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea
* Correspondence: divi.fysics@gmail.com or divi.fysics@yu.ac.kr (S.D.); taehwanoh@ynu.ac.kr (T.H.O.)

Abstract: With regard to global concerns, such as water scarcity and aquatic pollution from industries
and domestic activities, membrane-based filtration for wastewater treatment has shown promis-
ing results in terms of water purification. Filtration by polymeric membranes is highly efficient
in separating contaminants; however, such membranes have limited applications. Nanocomposite
membranes, which are formed by adding nanofillers to polymeric membrane matrices, can en-
hance the filtration process. Considerable attention has been given to nanofillers, which include
carbon-based nanoparticles and metal/metal oxide nanoparticles. In this review, we first examined
the current status of membrane technologies for water filtration, polymeric nanocomposite mem-
branes, and their applications. Additionally, we highlight the challenges faced in water treatment in
developing countries.
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1. Introduction

Water is the most precious resource for living organisms on Earth. In recent years,
water contamination has become a global environmental concern. The primary reason
is that population growth, industrialization, and climate change affect drinking water
resources, such as rivers and lakes [1–4]. According to the World Health Organization
(WHO), unsafe drinking water, sanitation, and hygiene are responsible for 10 million
deaths annually, mainly caused by infectious diarrhea [5]. To address this challenge, it is
important to reclaim water resources using wastewater treatment and water separation
technologies. In this context, several methods have been developed to serve different
wastewater technologies, such as conventional filtration, coagulation-flocculation, and
biological treatment [6].

Membrane technology holds great potential for wastewater treatment because of its
small size, low energy consumption, and low initial cost. A membrane is a barrier that
selectively allows desired materials to pass through, with undesired materials retained on
the membrane surface [6], such as polymeric and inorganic membranes. Metal- or ceramic-
based inorganic membranes provide high structural, mechanical, and thermal resistance.
Although they are highly selective, their low permeability makes them unsuitable for a
variety of applications. Contrarily, polymer membranes present good flexibility, chemical
stability, mechanical strength, easy fabrication, and are inexpensive materials. The chemical
species were selectively transferred. Materials used for the fabrication of polymeric mem-
branes include polyvinyl alcohol (PVA), polyether sulfone (PES), polyvinylidene fluoride
(PVDF), polyvinyl chloride (PVC), polypropylene (PP), polyacrylonitrile (PAN), polyamide
(PI), polyethylene (PE), polyamide (PA), and chitosan [7–9].

Several studies have investigated wastewater treatment using polymer membrane
technology. Nasreen et al., 2013 [10], studied PVDF and hydroxyethyl methacrylate (HEMA)
membranes with improved flux and antifouling properties for micro water filtration. Li
et al. [11] designed PVA and polypropylene (PP) electrospun membranes for microfiltration.
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The electrospun membrane exhibited a permeate flux of 32,346 L/m2 h and a pressure
of 0.24 bar. Elele et al. (2019) [12] observed microfiltration membranes of PES and PVDF
and tested the mechanical properties of stress, strain, amplitude oscillation, and bubble
point pressure. Ong et al., 2021 [13], discussed a polycarbonate membrane with enhanced
solvent resistance for microfiltration applications. Yan et al. [14] studied the use of PVDF
for ultrafiltration membranes and achieved improved surface roughness, permeability, and
antifouling properties. Orooji et al. [15] investigated tetraphenylethylene with polyether
sulfone for wastewater purification via ultrafiltration. The superior luminescence properties
of composite membranes make them an ideal choice for non-destructive and biofouling
monitoring. Johari et al. [16] studied PES blended with an iron-based metal-organic
framework for ultrafiltration membranes, which was suitable for industrial wastewater
treatment; this hybrid membrane showed remarkable rejection and high permeation flux
above 98.5% and 165.68 L/m2 h. Li et al. [17] examined nanofiltration membranes for
fouling and chemical cleaning using water quality control. Zhang et al. [18] studied
polyamide membrane for nanofiltration applications. A maximum selectivity of 246 for
sodium sulfate with sodium chloride, and 51 for magnesium chloride with sodium chloride,
indicated its excellent ability for solute-solute separation. Tang et al. [19] investigated the
removal of toxic substances from wastewater mixed with perfluorooctane sulfonate (PFOS)
using reverse osmosis (RO) and nanofiltration (NF) processes. The removal efficiency of
RO membranes was above 99% and that of nanofiltration was up to 99%. Tain et al. [20]
studied the treatment of brackish groundwater using a mixture of RO and reverse osmosis
technologies. Their results addressed flux, salt rejection, and energy consumption. Elazhar
et al., 2021 [21], removed and reduced the chloride and fouling rejection rates through the
NF-RO system.

Overall, this review article discusses a comprehensive collection of polymer nanocom-
posite membranes and their application in wastewater treatment. Moreover, our review
also focuses on water treatment in different countries.

2. Polymer Nanocomposite Membrane

Blend- and film-based nanocomposites are two types of polymer nanocomposite
membranes. Nanoparticles-encapsulated membranes or nanoparticles-mixed membranes
are terms used to refer to nanocomposite membranes. Nanoparticles and polymers are
dispersed in casting solutions in blended nanocomposite membranes, and their applications
are listed in Table 1. Behboudi et al. [22] prepared a blend membrane of PVC with PC
using a non-solvent-induced phase separation method. The pore radii of the blended
membranes ranged from 2 to 4 nm. The wettability test of the blend membranes confirmed
the hydrophilic nature of the membranes, and the water flux of the 70 wt.% PC membrane
was 1260 kg/m2 h (Figure 1). In addition, abrasion and stability tests confirmed the
stability and elongation of the blend membranes. Furthermore, the antifouling properties
of the membranes were obtained using fouling parameters, such as the total fouling ratio,
reversible fouling ratio, irreversible fouling ratio, and flux recovery [23]. Chen et al. [24]
studied biocomposite polymers made with rice husk fiber by melt extrusion or compression
molding, which was also treated with gamma radiation (25–150 kGy). The effect of gamma
radiation changed the tensile properties at different weight loadings. After irradiation, an
increase in the modulus and a decrease in the elongation at the break of the composite
membrane were observed (Figure 2).



Polymers 2022, 14, 1732 3 of 22
Polymers 2022, 14, x FOR PEER REVIEW 3 of 23 
 

 

 
Figure 1. Water flux of polymer blend membranes (reproduced with permission from [22] copyright 
2017, Elsevier). 

 

 

 

 

 

 

 

Figure 2. Tensile properties with applied gamma radiation. The symbols for gamma radiation * and 
# denotes 40 and 60 wt.% of rice husk fibers and unirradiated of 25 and 50 kGy are denoted by ◆ 
and ● (reproduced with permission from [24] copyright 2021, Elsevier). 

Figure 1. Water flux of polymer blend membranes (reproduced with permission from [22] copyright
2017, Elsevier).

Polymers 2022, 14, x FOR PEER REVIEW 3 of 23 
 

 

 
Figure 1. Water flux of polymer blend membranes (reproduced with permission from [22] copyright 
2017, Elsevier). 

 

 

 

 

 

 

 

Figure 2. Tensile properties with applied gamma radiation. The symbols for gamma radiation * and 
# denotes 40 and 60 wt.% of rice husk fibers and unirradiated of 25 and 50 kGy are denoted by ◆ 
and ● (reproduced with permission from [24] copyright 2021, Elsevier). 

Figure 2. Tensile properties with applied gamma radiation. The symbols for gamma radiation * and
# denotes 40 and 60 wt.% of rice husk fibers, for gamma radiation doses as compared to unirradiated,
25 and 50 kGy are are denoted by @, � and • (reproduced with permission from [24] copyright 2021,
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Table 1. Application of blended polymer nanocomposite.

Nanomaterials Blended Polymers Method Application Reference

Alumina Polycarbonate/
Polyurethane Phase separation Ultra-filtration [25]

Nitrogen doped porous
graphene oxide Polyethersulfone Non-solvent-induced

phase separation
Waste water treatment

(removal of dyes) [26]

Graphene oxide Polyethersulfone Phase separation
Waste water treatment

(removal of
industrial dyes)

[27]

Silica
Polylactic acid/Polybutylene/

Polypropylene carbon-
ate/Polyhydroxybutyrate

Phase separation Waste water treatment
(removal of oil) [28]

Silver/Fe3O4
Poly(vinyl alcohol)/
Poly(acrylic acid)/ Electrospinning Waste water treatment [29]

Graphene
oxide-sodium alginate

Polyethersulfone/
polyvinyl alcohol

Phase inversion
induced by immersion

precipitation
Waste water

treatment [30]

Ag-doped
ZnO@Fe3O4/MWCNTs

Poly acrylic acid (PAA)-modified
polyamide (PA)

Chemical
co-precipitation

Pharmaceutical Waste
water (removal of

Amoxicillin)
[31]

Magnetic starch Polyurethane/4,4-methylene
diphenyl diisocyanate In situ co-precipitation Wastewater treatment [32]

Nano diamond PVDF/PVP Phase inversion
Pharmaceutical

wastewater treatment
(removal of chemical

oxygen demand)
[33]

Aluminum silicate Chitosan/PVA Electrospinning Wastewater treatment
(removal of dye) [34]

In recent years, polymer thin-film nanocomposite membranes have attracted atten-
tion for water purification because of their hydrophilicity, thermal stability, selectivity,
permeability, and thermal resistance. Generally, nanofillers-based thin-film composite
membranes are metal-, metal oxide-, and carbon-based materials, and their applications
are listed in Table 2. Zhao et al. [35] synthesized a zeolitic imidazole framework-8 (ZIF-8)
incorporated in a polymer nanocomposite membrane for the desalination of brackish and
seawater. In terms of water permeation, imperfections in the ZIF-8 could prevent water
molecules from transporting resistance while they pass through the nanoparticles (pictorial
representation in Figure 3a). The separation performance with respect to the time is shown
in Figure 3b. The water flux value of the composite membrane is higher than that of the
pure thin-film composite membrane (TFN). Therefore, TFN membranes containing dZIF-8
can be used for long-term RO desalination without significantly degrading their perfor-
mance. Liu et al. [36] substituted Zr into a polyamide membrane for water desalination
applications. Ramokgopa et al. [37] investigated the permeate flux and rejection ratio of
carbon nanotubes in polymer nanocomposite films, which aid the removal of heavy metal
ions during acid drainage.
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nanocomposite films can potentially be used in food packaging with good gas barrier abil-
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Figure 3. (a) Illustration of water permeance, (b) membrane desalination studies with dZIF-8 concen-
trations in seawater (reproduced with permission from [35] copyright 2021, Elsevier).

Rafiei et al. [38] studied the mechanical, thermal, and fouling properties of PVDF
nanocomposite films via polymerization reactions. The figure shows that the addition
of metal oxide to PVDF increases the flux rate and improves the surface roughness and
thermal stability [39,40]. Lim et al. [41] studied the application of polyethylene terephtha-
late nanocomposite films in the food industry and discussed the structural, water vapor
permeability, and oxygen permeability of the films. The results showed that the addition
of montmorillonite improved the barrier properties of the film (Figure 4). Therefore, PET
nanocomposite films can potentially be used in food packaging with good gas barrier
abilities for oxygen-sensitive foods [42–44].
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Figure 4. Barrier properties of water vapor (a) and oxygen permeability of polymer nanocomposite.
(A) the polyacrylic acid (PAA)/montmorillonite (MMT) and (B) the polyethylene terephthalate (PET)
films coated with PAA/MMT nanocomposites (reproduced with permission from [41] copyright
2021, Wiley).
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Table 2. Application of thin-film polymer nanocomposite.

Nanomaterials Thin Film Polymers Method Application Reference

MgFe2O4 and ZnFe2O4 Polysulfone Sol-gel Wastewater treatment [45]

Graphene oxide Polyamide Interfacial
polymerization

Nanofiltration (removal
of heavy metals) [46]

Copper
1,4-benzenedicarboxylate Polyamide Layered

diffusion-mediated Forward osmosis [47]

Chitosan-wrapped
multiwalled carbon

nanotubes
Polyethersulfone Facile pouring Nanofiltration (removal

of dye) [48]

MOF-801 Polyacrylonitrile Solvothermal Ultrafiltration (heavy
metal removal) [49]

Copper Polyamide Interfacial
polymerization Reverse osmosis [50]

Zr-MOFs Polyvinylpyrrolidone Assisted in-situ growth Wastewater treatment
(removal of dye) [51]

Graphene oxide/MoS2 Polyamide Interfacial
polymerization Wastewater treatment [52]

Titania nanotubes and
magnetite oxide Polysulfone Coprecipitation

Forward osmosis
(removal of heavy

metals)
[53]

Silica Polydopamine Stober Nanofiltration [54]

Zwitterion-silver Polyethersulfone
Non-solvent

induced phase
separation

Forward osmosis [55]

TiO2 Polyamide/Polyethersulfone Interfacial
polymerization Nanofiltration [56]

TiO2 Polyamide Biphasic
solvothermal Reverse osmosis [57]

TiO2 Polyethersulfone/Polysulfone Immersion
precipitation

Wastewater treatment
(removal of humic acid) [58]

3. Application of Polymer Nanocomposite Membrane

Application for wastewater management is classified into two types: (1) qualitative
data and (2) quantitative data, such as flow diagrams, water consumption, water con-
taminants, and effective solutions for wastewater treatment. This section reviews water
usage in industries and proposes water-consumable management, sustainable production,
and environmental protection. Figure 5 shows a schematic of the application of the water
treatment.

3.1. Automotive Industry

With the development of modern science and technology, the automobile industry has
become an important sector that enhances productivity and high-quality vehicles to fulfill
people’s requirements. However, hazardous compounds are produced during the man-
ufacturing process, which has detrimental effects on the environment and human health.
Additionally, this sector consumes a large amount of water (nearly 182,000 L) [57,59,60].
The automobile manufacturing process is a complex process, as shown in Figure 6. High-
quality water is needed for all stages in the manufacturing process as it is used to mix
chemicals and cleaners, and must fulfill the manufacturer’s specifications to ensure that
the product quality does not suffer. The following stages of the automotive manufacturing
process consume the most water, as listed in Table 3.
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Table 3. Water usage in the manufacturing process.

Stage Water Quantity (Liters) Operation

Anticorrosion 60,000

Degreasing: Immersing the entire frame in a tub with detergent to remove
any remaining oil, organic and inorganic chemicals from the stamping and

jointing process. It is known as alkaline wash.
Zinc phosphate:

Frame is immersed in a chemical tub to cover a coating of zinc phosphate.
Rinsing: To remove unwanted elements

Priming and Top coat Large quantities Water based paints requires large quantities of water to dilute the paint and

Finishing Large quantities After the topcoat, the frame will be washed again with water to remove
any remaining paint and debris.

Machine shop Large quantities To remove grease

The recycling of water has been working in some countries; for example, Belgium
consumes 0.3% of the several million liters used widely in the carwash industry; Germany
and Austria utilize 80% of the water produced by the recycling process, and European
countries consume an average of 70 L per car [61]. Researchers have focused on water
consumption and wastewater management in the automobile industry using physical,
chemical, and biological methods, such as filtration, coagulation, flocculation, ozonation,
and aerobic and anaerobic processes. Table 4 summarizes the methods and removal
efficiency in the automobile industry.

Table 4. Wastewater treatment in the automobile industry.

Method Material Operating
Parameters Removal Efficiency Reference

Physical method-micro
and ultrafiltration

membrane
Polyetherimide Flux, turbidity, organic

and inorganic carbon

Flux—40 L/m2 h;
turbidity—98%;

organic—2.7 mg/L and
inorganic carbon—35.4 mg/L

[62]

Chemical
method-coagulation and

ozonation
Polyethersulfone

pH, suspended solid,
turbidity, chemical
oxygen demand,

phosphate

pH—8.5; SS—4200 µg/L;
turbidity—1000 NTU;

COD—433 mg/L;
NH4

+—2.2 mg/L;

[63]

Chemical method-
electrocoagulation Ti electrode

pH, chemical oxygen
demand, suspended
solids, chloride, oil

grease

pH—8; COD—500 mg/L;
SS—320 mg/L;

chloride—70 mg/L;
oil-grease—120 mg/L

[64]

Chemical method-
electrocoagulation Fe and Al-electrode

pH, chemical oxygen
demand, suspended
solid and oil grease

pH—8; COD—560 mg/L;
oil-grease—125 mg/L;

SS—2300 mg/L
[65]

Chemical method-
electrocoagulation

Fe–Fe, Al–Fe, and
Al–Al chemical oxygen demand COD—79% [66]

Physical
method-membrane

filtration

Polyethersulfone/
polyamide pH, COD, total solids pH—7; COD—314 mg/L;

SS—1054 mg/L [67]

3.2. Food Industry

The meat processing industry is one of the largest industries with an annual production
of 690 million chickens in the commercial boiler sector [68]. The global production of
chicken and sheep meat is expected to expand in lockstep with animal numbers, although
the output of pig meat, beef, veal, and milk will grow at a faster rate than the animal
population. In particular, poultry output in China and Latin America is expected to reach
nearly 40% of worldwide poultry meat expansion. In Europe, the rate of increase in poultry
meat production per animal has decreased in recent years, and production is likely to
remain stable in the following years. By 2028, beef and veal production is predicted to
increase by 9 MT. Latin America and the United States, the world’s two largest producing
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regions, will account for more than half of the worldwide increase of such outputs [69].
The meat industry uses a large quantity of water for cleaning and processing purposes, and
a schematic representation of meat processing is shown in Figure 7. In the meat industry,
the lairage, slaughter, and bleeding sections, as well as the dressing area, paunch handling
area, rendering unit, and processing and cleaning sections collectively produce waste. In
slaughterhouse plants, water consumption reaches 2.5–40 MT of meat produced. A large
percentage of the consumed water is discharged as wastewater that is severely polluted
with chemical oxygen demand (COD), biological oxygen demand (BOD), total phosphorous
(TP), total nitrogen (TN), and total organic carbon (TOC) [70]. Table 5 shows wastewater
treatment in the meat production industry. There are numerous methods to preserve
water during the meat manufacturing process, including: (1) physicochemical treatment,
such as dissolved air flotation, coagulation, flocculation, and electrocoagulation, which are
efficient in removing total suspended solids (TSS); (2) for slaughter wastewater treatment,
membrane technology is another method used for slaughter wastewater treatment; RO, NF,
UF, and MF processes remove particles, colloids, and macromolecules depending on the
membrane pore size; and finally, (3) biological treatment and aerobic and anerobic methods
for the removal of soluble organic compounds.
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Table 5. Wastewater treatment in meat production industries.

Method Parameter Removal Efficacy (%) Reference

Physicochemical treatment BOD
COD

70.3%
80.3% [71]

Aerobic treatment COD
BOD

2.8 kg/m3

1.8 m3 [72]

Electrochemical
coagulation COD 92.91% [73]

Isolation COD 11.8% [74]

Electrochemical
coagulation COD 93.22% [75]

Dynamic membrane
filtration COD 14.5% [76]

Anaerobic filter membrane
bioreactor

COD
BOD

97%
82% [77]

3.3. Beverage Industry

In the twentieth century, a major revolution was observed in brewery industries due
to increased consumer demand. The beverage industry is divided into two categories:
(1) alcoholic (wine and beer) and (2) non-alcoholic (fruit juices, tea, coffee, carbonated
soft drinks, and bottled water). Both types of beverages are widely consumed worldwide.
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America dominates the world’s soft drink market with the next leading countries being
China, Mexico, Asia, Mexico, and Brazil [78,79]. A large amount of water is used in beverage
industries for rinsing, soaking, cleaning, and washing, and nearly half of the wastewater is
discharged [80]. Hence, this has led to the depletion of natural water resources.

Tea is one of the most consumed beverages in the world. Turkey, Ireland, the United
Kingdom, Russia, and Morocco are the world’s largest tea drinkers, each consuming over
10 kg of tea per capita annually [81]. Tea manufacturing processes vary depending on the
type of tea being produced, such as green, yellow, oolong, black, and dark tea. A schematic
representation of the six types of tea production is shown in Figure 8. The water pollutants
from tea factories include turbidity, COD, BOD, TSS, TOC, and pH. Table 6 summarizes
recent research work focused on wastewater treatment.
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Table 6. Research work focused on wastewater treatment.

Method Material Removal Efficacy (%) Reference

Coagulation/flocculation Ferric chloride and polyelectrolyte 97%—TSS;TP—99%; COD—91% [82]
Coagulation/flocculation Polyelectrolyte 78%—COD; 74%—TSS;75%—TP [83]

Membrane bioreactor Polyelectrolyte 95%—COD and TSS [80]
Membrane ultrafiltration Polyethersulfone 96—COD [84]

Membrane filtration Activated carbon Phenol [85]
Membrane ultrafiltration Polyaluminum ferric chloride 99%—COD/TOC [86]
Membrane nanofiltration Polyamide 9%-lead [87]

Co-pyrolysis Tea waste 30%—cadmium [88]
Membrane Tea waste 7.2 mg/g cadmium [89]

Chemical co-precipitation Green tea extract 52%—fluoride [90]
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3.4. Pharmaceutical Industry

According to the World Health Organization (WHO), medical waste is generated from
hospitals, research, and laboratory centers. Such wastes include drugs, paper wipes, gloves,
masks, syringes, needles, bandages, and dressing cloths (Figure 9). Inadequate disposal
of infectious hospital waste and wastewater can endanger public health and the environ-
ment [91,92]. The rapidly growing population is the primary factor driving the increasing
usage of medical products in the developed world, and higher usage is causing a corre-
sponding increase in medical waste production. America alone produces nearly 3.5 million
tons of medical waste per year [93–95]. Pharmaceutical wastewater contains BOD, COD,
organic contaminants, nitrogen, and suspended solids. In the pharmaceutical manufactur-
ing industry, water is an important requirement for container sterilization, medical devices,
and injections. Wastewater is generated by different pharmaceutical units, including manu-
facturing, extraction, processing, purification, and packaging. However, pharmaceutical
waste is not the only contaminant in the environment. Aquatic and terrestrial species are
also exposed to pesticides, biocides, and waste from chemicals industries [96]. Table 7 lists
the pharmaceutical wastewater treatments reported in the literature.
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Table 7. Wastewater treatment in the pharmaceutical industry.

Treatment Pharmaceutical Waste Water Efficiency (%) Reference

Membrane bioreactor Chemical oxygen demand (COD), pH COD—5789 (mg/L); pH—7 [97]

Pharmaceutical industrial
Wastewater treatment

Dissolved organic carbon, total nitrogen
(TN), chemical oxygen demand (COD),

total phosphorous (TP)
Not reported [98]

Anaerobic treatment Sulfamethoxazole (SMX) SMX—40 (mg/L) [99]
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Table 7. Cont.

Treatment Pharmaceutical Waste Water Efficiency (%) Reference

Membrane bioreactor Total chemical oxygen demand (TCOD) COD—90% [100]

Pharmaceutical
industrial park wastewater

treatment plant

pH, total suspended solids (TSS), chemical
oxygen demand (COD), total nitrogen (TN),
ammonia (NH3) and total phosphorus (TP)

pH—7; TSS—120 (mg/L); TN—84
(mg/L); COD—328 (mg/L);

NH3— 37 (mg/L);
[101]

Membrane bioreactor Total dissolved solid (TDS), total chemical
oxygen demand (TCOD)

TDS—25,925 (mg/L);
TCOD—20% [102]

Solid-phase bioremediation Erythromycin, sulfamethoxazole (SMX),
tetracycline (TET)

ERY—1.2 (mg/L); SMX—11.5
(mg/L); TET—1.5 (mg/L) [103]

Membrane bioreactor Dissolved organic nitrogen (DON) DON—68%; [104]

Membrane bioreactor Chemical oxygen demand, Etodolac COD—90%; Etodolac—99% [105]

3.5. Wastewater Treatment

Contamination of water bodies occurs due to waste from industrial sectors, such as
organic pollutants (food, dyes, pesticides, herbicides, detergents, and pharmaceuticals),
inorganic pollutants (heavy metal ions and rare earth elements), and other pollutants
(oil, spill, grease, radioactive waste, etc.) [106–108]. As shown in Figure 10, different
technologies are used to remove contaminants present in wastewater. These techniques
are efficient for removing effluent from wastewater, while membrane-based techniques
separate the floating and dispersed solids, exhibiting high efficiency and low energy require-
ments [109,110]. Membrane bioreactors are sustainable water and wastewater treatment
technologies that unite biological reactors with filtration to overcome the disadvantages of
traditional membrane systems. However, membrane fouling is the major limitation that
prevents them from being used on a larger basis in the application of bioreactors [111].
Antifouling or self-cleaning or novel materials are one of the most common techniques for
dealing with membrane fouling. Recent studies on polymer nanocomposite membranes
have focused on enhancing their antifouling properties. Shahkaramipour studied the
antifouling performance of zwitterions modified with polydopamine and sulfobetaine
methacrylate using an ultrafiltration membrane. The results showed that the flux efficiency
was higher than that of an uncoated membrane [112]. Incorporation of a hydrophobic
epoxy polymer into a hydrophilic poly(N-isopropylacrylamide) polymer coated with silver
nanoparticles enhances the antifouling properties [113]. Moreover, the coated samples were
tested in a marine field for 45 days (Figure 11A), and the temperature, oxygen, and pH
level of seawater were maintained (Figure 11B). Iron oxide nanoparticles were added to
poly(2-dimethylamino)ethyl methacrylate and meso-2, 3-dimercaptosuccinic acid with a
poly(methacrylic acid) nanocomposite membrane by the phase separation method. The
results indicated that hydrophobic and hydrophilic membranes enhanced the permeate
flux by applying a magnetic field and fouling properties without a magnetic field [114].
Phin et al. [115] fabricated zinc oxide and carbon nanotubes coated with polysulfone
nanocomposite membranes using the phase-inversion method. The results showed that the
antifouling strength improved with the addition of nanoparticles. The fouling ratio (Rir)
indicates the irreversibility of foulants that are strongly attached to the membrane surface
and inside the membrane pore. Heidari et al. [116] synthesized polyethersulfone (PES),
sulfonated PES (SPES), and phosphotungstic acid with cesium hydrogen salt (CsPW/SPES)
of a hybrid membrane using a phase-inversion method for nanofiltration applications.
The results revealed a high filtrate volume of CsPW/SPES of 0.035 m3/m2 compared to
pure PES and SPES. The permeability rate increased with the addition of nanoparticles
compared to that of pure PES. Hydrophilicity influences the membrane permeation rate
through the contact between water molecules and membrane pore walls. Castro et al. [117]
coated graphene oxide on a polymer using a phase-inversion method for the removal of
phytopathogenic fungi in water. Zhang et al. [118] reported the removal of dye with the
inclusion of graphene oxide in polyacrylonitrile by interfacial polymerization (Figure 11C).
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The results show that the water flux of the nanocomposite membrane increases at 0.2
MPa in the range of 15–23 L/m2h greater than the bare membrane, and dye rejection was
achieved [118].
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Figure 11. (A) Picture of samples submerged in seawater till 45 days; (B) temperature, oxygen, and pH
level of seawater (reproduced with permission from [113] copyright 2021, Elsevier); (C) preparation
(a) and mechanism (b) of graphene oxide nanocomposite membrane (reproduced with permission
from [118] copyright 2021, ACS).
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4. Water Treatment in Different Countries
4.1. Technology Used for Wastewater Treatment

Due to their high population, many developing countries are struggling to provide
clean water to their populations. With limited government resources, ensuring that all areas
in developing countries have access to clean water is a difficult undertaking [119,120]. To
meet their daily freshwater demand, rural villagers in economically developing countries,
such as Kenya, have turned to alternative rainwater harvesting systems [121]. However, in
South Africa, borehole water has been found to have significant levels of nitrate-nitrogen
and pH, making it unsafe to drink [122]. A conventional water treatment system is still
cost-effective, but water resources are heavily contaminated by industrial wastewater [123].
Other dangerous dissolved contaminants could not be eliminated using these techniques.
Membrane filtration systems have higher removal efficiencies, particularly when UF and
RO membranes are combined. For instance, membrane systems have even been utilized in
developed countries, such as Singapore, to recycle sewage water into high-grade treated
water from industrial wastewater [124] and for the past few decades, China’s rapid industri-
alization has proposed research and development (R&D) on massive UF membrane water
treatment plants [125]. Detailed information on the water treatment in different countries is
listed in Table 8. To date, commercial-level membrane technology has been used to produce
drinkable water from brackish water or seawater. Pretreatment methods are recommended
in most studies to ensure that the feed water remains suitable for the membrane system.
This method helps to improve membrane efficiency and life duration by reducing fouling.

Table 8. Water treatment usage in different countries.

Country Water source Water Treatment Result Reference

Australia Ground water UF and RO Removal of TC, TOC [126]

Brazil Brackish water RO-desalination Removal of sulfate, total
suspended solids and fluoride [127]

China Reservoir Hollow fiber UF Removal of metals, coliform
bacteria [128]

China Songhuajiang river Ultrafiltration Removal of COD, DOC [120]

Egypt Black water MF Removal of TSS, BOD, COD [129]

Germany Industry MBR Removal of COD [130]

India Pesticide contaminated
surface water NF and RO Removal of microbial content [131]

Indonesia Arsenic contaminated
surface water NF Removal of TDS and arsenate

ions [132]

Malaysia Surface water and
ground water UF

Removal of heavy metals such as
chromium, cadmium, zinc,

copper, nickel and lead
[133]

Netherland Surface water UF and MF Removal of suspended solids,
COD and bacteria [134]

South Africa Ground water Gravity driven UF Removal of E.coli [135]

Sri Lanka Ground water NF Removal of DOC, TDS [136]

Thailand Freshwater NF Removal of divalent cations,
DOC, TDS [137]

Turkey Sea water RO and
NF-desalination Removal of coliform [138]

Vietnam Sea water Air gap membrane
distillation

Removal of TDS, TOC, arsenic,
mercury [139]

4.2. Reuse of Wastewater in Irrigation

Generally, all effluents of wastewater are from households, institutions, hospitals,
industries, and other sources, such as surface runoff, urban runoff, agriculture, horticulture,
aquaculture, and cattle breeding. Pathogens, heavy metals, residual medications, organic
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chemicals, pharmaceuticals, and health care items are among the contaminants found
in many types of wastewater [140–142]. Therefore, it is important to treat wastewater
before use. Different technologies, techniques, and preparations for wastewater treatment
are discussed in the previous section. Treated wastewater (TWW) has been used for
agricultural, industrial, and alternative activities in the developed world. Below are some
examples of how other countries have used treated wastewater for irrigation. Tunisia has
recently begun to use TWW for irrigation. Mahjoub et al. discussed reusing TWW in the
agricultural sector in Tunisia [143]. In 1965, wastewater was used to irrigate 1200 ha of
orchards. In the years from 1965 to 1989, the reuse of TWW in the agriculture sector was
supported by government sectors [144,145]. During this period, intense research has been
conducted on the reuse of TWW in the agricultural sector as a result of its environmental
impact. By 2020, half of the wastewater had been targeted for irrigation. In many regions
of Lebanon, most wastewater is used for irrigation. The domestic and industrial sectors
produce approximately 310 million m3 of wastewater, of which approximately 4 million
m3 was processed and used to irrigate farm fields in 2006 [146]. The massive increase
in Kuwait’s population, along with increasing industrialization and water demand for
agriculture, has led to a sharp decline in surface and groundwater. Considering the
water shortage, the Kuwait government developed more than one wastewater treatment
plant that produces 76 gallons of treated effluents per day [147]. Some Syrian cities, such
as Damascus, Aleppo, Homs, Hama, and Salamiyeh, have treated wastewater used for
irrigation using enhanced surface irrigation systems [148]. Due to natural and technological
limitations, Palestine (the West Bank and Gaza Strip) is one of the Middle East’s most water-
scarce countries. Poor sanitation, insufficient wastewater treatment, unsafe disposal of
untreated or partially treated water, and the use of untreated wastewater to irrigate edible
crops characterize the wastewater sector in the West Bank and Gaza (WBG). The occupied
Palestinian territory (OPT) now contains eight main urban WWTPs, with around 300 on-site
treatment units [149]. Previously, wastewater and effluent were dumped in rural areas,
river beds, and small towns, as well as in the Arabian Sea. To meet water demand, the Saudi
Arabia government has planned to treat 100% of wastewaters by 2025 [150,151]. Saudi
Arabia has already surpassed the United States and China as the world’s third-largest
water reuse market [152]. Riyadh has successfully irrigated nearly 9000 hectares of date
palms and forage crops. In Oman, wastewater treatment includes more than 400 plants.
Municipalities use most TWW for landscape irrigation. All wastewater networks and
treatment plants across the country have received a USD 2.8 billion investment for creation,
management, operation, and maintenance [153,154].

5. Conclusions and Outlook

This review focuses on the use of membrane technologies to address the challenges of
water purification. Improvements in the properties of the membrane, such as hydrophilicity,
thermal stability, selectivity, and permeability, have been achieved in recent decades, and
may be further taken forward by fabricating polymer nanocomposite membranes. Even
though impressive progress has been made in the filtration process, more research is still
needed to overcome existing challenges. The inclusion of nanomaterials in the polymer
matrix has been demonstrated to enhance the chemical, mechanical, and thermal properties.
However, they may be the cause of some drawbacks, such as: (1) the water flow pathway
may be blocked by the addition of nanomaterials; (2) defects and non-selective porosity may
form as a result of inadequate interaction between the polymer and nanoparticles, lowering
selectivity and decreasing the polymer chain packing; and (3) poor filler dispersion in the
polymer matrix may increase the risk of nanoparticle aggregation and agglomeration on the
membrane surface or inner membrane surface, resulting in poor separation performance.
To overcome these problems, proper pore tuning to obtain adequate pore size distributions
at the membrane surface and other factors should be optimized to improve the chemical
stability, mechanical stability, and long-term stability. This study intends to demonstrate
the resumption of industrial wastewater in developing countries. Wastewater treatment
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is a major concern in many countries because high levels of unwanted or unidentified
pollution are extremely hazardous to humans and the environment. Countries such as
Tunisia, Lebanon, Palestine, Kuwait, Syria, and Saudi Arabia use wastewater treatment
in the agricultural sector. It helps ensure the long-term viability of water supplies, the
environment, agriculture, and human existence around the world.
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