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Abstract

Coding variants in both myocilin (MYOC) and optineurin (OPTN) are reported risk factors for 

primary open-angle glaucoma (POAG) in many populations. This study investigated the 

contribution of MYOC and OPTN coding variants in Hispanics of Mexican descent with and 

without POAG. We conducted a case/control study of unrelated POAG cases and non-

glaucomatous controls in a population of Hispanics of Mexican descent. Ascertainment criteria for 

POAG included the presence of glaucomatous optic neuropathy with associated visual field loss 

and the absence of secondary causes of glaucoma. Controls had normal optic nerves, visual fields, 

and IOP. All coding exons of MYOC and OPTN were sequenced. The dataset consisted of 88 

POAG cases and 93 controls. A novel nonsynonymous coding variant (R7H) in the first exon of 

MYOC was identified. Other identified variants in MYOC and OPTN have been previously 

described and do not appear to contribute to POAG risk. This is the first comprehensive study of 

MYOC and OPTN in Hispanics of Mexican descent with POAG. Neither MYOC nor OPTN 

sequence variants appear to play a major role in the etiology of POAG in this population.
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Introduction

Glaucoma is defined as the progressive, irreversible loss of retinal ganglion cells. Primary 

open angle glaucoma (POAG) is the most common form of glaucoma. POAG is a complex 

disorder with known genetic contributions that is often associated with elevated intraocular 

pressure (IOP).1 POAG is responsible for more than half of all of the cases of glaucoma in 

the world and the blindness of more than 3.3 million people.2,3 The number of people who 

are affected by POAG is steadily continuing to increase, and it is expected to be the cause of 

blindness for more than 4.4 million people globally by the year 2020.4,5
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Individuals of Hispanic descent are at a high risk of developing POAG. Two major 

population-based studies focusing on ophthalmic disease and vision loss of Hispanics in the 

Southwestern United States found that POAG is highly prevalent in Hispanics.6,7 These 

studies reported that the prevalence of POAG in Hispanics over age 40 exceeded 4% and 

over age 80 approached 20%, which is even higher than the reported prevalence in African 

Americans.2 The clinical phenotype also differed between Hispanics and other U.S. 

populations. Approximately 80% of Hispanics with POAG were found to have normal IOP 

on initial screening as opposed to Caucasian and African American POAG patients, of 

whom the majority has elevated IOP.2,6,7 The high frequency of normal IOP on initial 

screening in the Hispanic populations is shared by the Japanese population and may 

represent underlying genetic and environmental differences between populations.8

Variants in myocilin (MYOC) and optineurin (OPTN) have been associated with risk for 

developing POAG.9-12 MYOC variants are found in 3-5% of POAG patients and are 

associated with an early-onset, high tension form of open angle glaucoma.11,13-15 OPTN 

variants appear to be associated in patients with POAG and normal intraocular pressure.

12,16 Little is known about the genetic etiology of POAG in the Hispanic population. 

Although MYOC and OPTN have been sequenced in the Brazilian and Spanish populations 

the role of these genes in POAG in Hispanics of the Southwestern United States has not 

been reported to date.17-19 Herein we report the contribution of MYOC and OPTN coding 

variants to POAG risk in a dataset of Hispanics of Mexican descent.

Materials and Methods

Subject Ascertainment

This study adhered to the tenets of the Declaration of Helsinki. Informed consent was 

obtained from all participating individuals after explanation of the nature and risks of the 

study. The research project was reviewed and approved by the institutional review board of 

Duke University Medical Center (Durham, NC). Subjects for this study were recruited from 

eye clinics located in Sonora, Mexico and Nogales, Arizona, and described themselves as 

being of Hispanic descent with both parents of Mexican ancestry. These individuals are 

sometimes termed Mestizos (individuals of mixed European and North American 

indigenous ancestry). Study subjects include individuals diagnosed with POAG as well as 

unaffected spouses and other unaffected individuals.

POAG cases were unrelated and met the following inclusion criteria: (1) glaucomatous optic 

nerve damage in both eyes and (2) glaucomatous visual field defects in at least one eye. 

Glaucomatous optic nerve damage was defined as present when two or more of the 

following criteria were identified: (a) vertical or horizontal cup/disc ratio ≥ 0.7; (b) superior 

or inferior neuroretinal rim cup/disc ratio ≤ 0.1; (c) focal notching of the superior or inferior 

neuroretinal rim; (d) asymmetry of the cup/disc ratio ≥ 0.2 without asymmetric refraction; 

and/or (e) optic disc hemorrhage. IOP was recorded but was not used as an inclusion 

criterion. Visual fields were performed using standard automated perimetry 4. Additionally, 

all cases had open angles by gonioscopy. IOP measurements (mmHg) were taken by 

applanation tonometry. The highest IOP measurements used were those obtained by the 

ophthalmologists at exam. The patients were in many cases indigent and were seen on one 
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occasion by the study ophthalmologists; no past medical history was obtained for these 

individuals due to the potential for variability in the manner in which IOP measurements 

were taken at other locations. However, for those individuals who were regular patients of 

the study ophthalmologists, the highest IOP measurement was the highest IOP seen by the 

coauthors over time. IOP measurements were not taken for patients who had ocular surgery 

prior to exam.

Exclusion criteria included other identifiable forms of glaucoma due to or associated with 

exfoliation syndrome, pigmentary dispersion syndrome, or traumatic glaucoma. The controls 

used for this study were well matched to cases by ethnicity, and met the following criteria: 

(1) intraocular pressure without treatment less than 22 mmHg; (2) no evidence of 

glaucomatous optic nerve disease; and (3) normal automated visual field testing (Humphrey 

SITA Standard or equivalent). All examiners are board certified ophthalmologists. All 

clinical data, including visual field tests and optic nerve photos, were reviewed by a board-

certified glaucoma fellowship-trained ophthalmologist (RRA). Blood samples for DNA 

extraction were obtained from a total of 88 POAG cases and 93 POAG controls and were 

processed and stored at the DNA repository at the Center for Human Genetics, Duke 

University Medical Center. Mean IOP for cases was calculated by averaging the highest 

recorded IOP of both eyes where available then averaging all cases. Mean IOP for controls 

was calculated by averaging the IOP of both eyes at ascertainment then averaging all 

controls.

DNA Analysis

Genomic DNA was extracted from peripheral blood by standard techniques (Gentra, 

Minneapolis, MN). Primers flanking each exon, (1-3) in MYOC and (1-16) in OPTN, were 

designed with Primer3 software and are listed in Table 1.20 All sequencing was performed 

using conditions that were previously described.21 All suspected variations were confirmed 

by bidirectional sequencing. Sequencing was initially performed using cases only. 

Amplicons containing any non-synonymous coding changes or variants of uncertain 

pathogenicity in cases were then sequenced in the control dataset.

Statistical Analysis

Sequencing data were examined using Sequencher 4.9 software (Gene Codes Corporation, 

Ann Arbor, MI) and were analyzed as described previously.22 Briefly, allele frequencies for 

each coding and intronic variant in POAG cases and controls were compared using a two-

sided Fisher’s exact test using SAS/Genetics version 9.1 (SAS Institute Inc., Cary, NC). A 

p-value of less than 0.05 was considered statistically significant. The 176 POAG case 

chromosomes sequenced in this study are sufficient to detect over 99.9% of SNPs with a 

minimum allele frequency of 5%.23

Results

The mean age of onset for 88 POAG cases and age of exam for 93 controls were 62.4 (SD 

±11.2) and 62.7 (SD ±8.3) years, respectively. 52% of POAG cases were female and 66% of 

POAG controls were female. The mean highest recorded IOPs for controls was 
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13.8±2.7mmHg, while that of cases was significantly higher at 19.0±6.5mmHg (p<0.0001). 

Of the POAG cases for which highest IOP measurements had been obtained for both eyes, a 

majority, 59%, had IOPs below 22mmHg.

Sequencing results

MYOC—A single novel non-synonymous coding variant, R7H, was identified in MYOC. 

This variant was identified in one allele of a single affected individual with an age at onset 

of 52 years. Five additional coding variants were identified: three synonymous (G122G, 

T285T, and Y347Y) and two non-synonymous (R76K and K398R) (Table 2). None of these 

variants had allele frequencies that differed significantly between cases and controls 

(p>0.05).

OPTN—Four variants were identified in the optineurin gene (OPTN): two intronic (c.

374-194_374-193insACAC and c.553-5T>C), one synonymous (T34T), and one 

nonsynonymous (M98K). None of these variants were significantly associated with POAG 

in this population (p>0.05).

Discussion

Two previous studies examining eye disease in Hispanics in the Southwestern United states 

found that POAG is highly prevalent in Hispanics. Disease-associated MYOC variants have 

been reported in 3-5% of POAG cases from many different populations,11,13-15 including 

the Brazilian and Spanish populations.17,19 This study was undertaken to determine the role 

of MYOC and OPTN variants in POAG in the Hispanic population of Mexican descent. 

Sequence analysis of 88 POAG patients revealed six MYOC and four OPTN sequence 

variants. Of the six MYOC variants, five (G122G, T285T, Y347Y, R76K, and K398R) have 

previously been reported as neutral variants.13,24,25 Our results also indicate that these 

variants are neutral since they are not found at significantly different frequencies in cases 

and controls. It is unclear whether the novel MYOC variant, R7H in exon 1, is a disease-

associated variant because it was found as a heterozygous change in only one individual. 

The individual with the R7H variant had an age of onset of POAG at 52 years and a highest 

recorded IOP of 38mmHg which would be consistent with the phenotype of a myocilin-

associated form of POAG where IOP is almost always significantly elevated.

However, the majority of disease-associated variants in myocilin are found in exon 3, 

although disease-associated variants have been reported in exon one.26 A study of Brazilian 

patients by Povoa et al. found the MYOC variant Cys433Arg in 3.1% of POAG patients and 

in 5.2% of POAG patients with a family history of the disease.17 In a similar study on 110 

Spanish subjects with POAG, Lopez-Martinez and co-workers found that 2.7% had 

causative MYOC variants including Gln368Stop, Ala445Val, and Tyr479His.19 We did not 

find these variants from either study in our study. Although MYOC mutations are 

consistently found in a low percentage of subjects with POAG in populations worldwide, we 

found no documented pathologic mutations in this Hispanic population of Mexican descent.

Variants in OPTN were originally identified in families with normal tension glaucoma.12 

Two population-based studies found that 80% of POAG cases had normal intraocular 
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pressures on ascertainment.6,7 Despite this phenotypic characteristic, we were unable to 

find evidence that OPTN variants play a contributory role in POAG in this population. We 

found 4 sequence variants in OPTN. Two variants, T34T and c.553-5T>C, have previously 

been reported to be neutral polymorphisms.12,18,21,27,28 The M98K variant was initially 

reported to be associated with POAG risk, but the results of subsequent studies are 

conflicting.1,12,16,19,21,29-33 c.374-194_374-193insACAC has not been reported in the 

context of previous glaucoma studies but is listed in dbSNP (http://www.ncbi.nlm.nih.gov/

projects/SNP/). None of these OPTN variants, including M98K, were significantly 

associated with POAG in this population. Studies of other Hispanic populations also show a 

low prevalence of OPTN variants that cause POAG. Lopez-Martinez et al. failed to find 

OPTN variants that were significantly associated with POAG in an analysis of OPTN 

sequence variants in Spanish POAG patients.19 Similarly, a study conducted by Caixeta-

Umbelino et al., which examined the role of the multiple OPTN variants in the development 

of POAG in a Brazilian population, did not find any association between the evaluated 

variants and POAG risk.18 Our findings also support the findings of these studies regarding 

the role of OPTN in POAG in populations of Hispanic descent.

This study is the first reported survey of MYOC and OPTN sequence variants in a Hispanic 

population of Mexican descent. Our results suggest that the contribution of these genes to 

the high prevalence of POAG in this population is small. These results should be confirmed 

with a larger sample size of this population.
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Table 1
PCR primers for sequencinggenomic DNA

Exon PCR Forward primer sequence PCR Reverse primer sequence PCR product size (bp)

MYOC 1a ATCTTGCTGGCAGCGTGAA TCTCTGGTTTGGGTTTCC 614

1b GACAGCTCAGCTCAGGAAGG GAAGGTGAT CGCTGTGCTTT 663

2 AGCAAAGACAGGGTTTCACC AGGGCTTTGTTAGGGAAAGG 555

3a TGCGATAACTGAGGCGTAGA GCCTCATCGGTGCTGTAAAT 663

3b GTCCAGAACTGTCATAAGA CGCCCTCAGACTACAATTCC 679

3c GCCTGGGACAACTTGAACAT CAGGCACAAGCCTCTCAGTT 719

OPTN 1 CGGACAGCGAGGGTGGGTA CAGGACCCGCCGAGGCTT 554

2 AAGCAGAGTGGGGATTTACTCA TTCCCATGCAAATCTTCAAA 500

3 CCCCATTTCCCAAATCCTTA GAGGCAGCTGAGAGGTTGAT 633

4 TAAGTATTAGCAATCGCCAA AGTGCAAAGGGATGGCATTT 340

5 CATCAGATCAAGTCCACTTT GGAGTCTAGACACGTAAGAT 340

6 ATGGTGCCCAGCCTTAGTTT CAATCCTTGGCTTGTGTTGA 340

7 CATCTGAATGTTTGGAAGCT TATTCTGGAAAGATCCTGGT 340

8 ATACTGAACAGGGCATTGTC GTGGTTGCACAATCCTGGAA 300

9 GATCCTTTATC CCAATTGTA TTGAATTCAGTTGCTGGACT 282

10 TTGATTCACCAGCCAGTCTT GCTCACACATTAACTGGAAC 400

11 TGCATTCATAAACCCTACAG TAGGACTCCTTCAGATAAGT 400

12 TTGAGAGTAAGAAATGCTAG GATTTAGTGAAGGATTCATG 340

13 ATGTTGCCCAGGCTTGTCTC CACCATTGCTTTCCAATGCG 420

14 GGATACAGCACTACCTCCTC TCAGGAACGTCTTTGGACAG 300

15 GCTCAGTGTTGTCATGTTTC GGAATCCATTGTAGAGAATG 240

16 TCGCCATCTGTTCTTCAAGT AAAAGCACAACTCTTGGAGG 269

MYOC= myocilin; OPTN = optineurin
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