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SUMMARY

MicroRNAs (miRNAs) are short double-stranded noncoding RNAs (19-23 nucleotides) that regulate

gene expression by suppressing mRNAs through RNA interference. Targeting is determined by the

seed sequence (position 2-7/8) of the mature miRNA. A minimal G-rich seed of just six nucleotides

is highly toxic to cells by targeting genes essential for cell survival. A screen of 215 miRNAs encoded

by 17 human pathogenic viruses (v-miRNAs) now suggests that a number of v-miRNAs can kill cells

through a G-rich 6mer sequence embedded in their seed. Specifically, we demonstrate that miR-

K12-6-5p, an oncoviral mimic of the tumor suppressive miR-15/16 family encoded by human Kaposi

sarcoma-associated herpes virus, harbors a noncanonical toxic 6mer seed (position 3-8) and that

v-miRNAs are more likely than cellular miRNAs to utilize a noncanonical 6mer seed. Our data suggest

that during evolution viruses evolved to use 6mer seed toxicity to kill cells.

INTRODUCTION

We recently identified a code embedded in the genome that is based on RNA interference (RNAi) and al-

lows for the effective killing of cells (Gao et al., 2018). RNAi is a form of post-transcriptional regulation ex-

erted by 19- to 23-nucleotide-long double-stranded RNAs that negatively regulate gene expression at the

mRNA level. For a microRNA (miRNA), the RNAi pathway begins in the nucleus with transcription of a pri-

mary miRNA precursor (pri-miRNA) (Lee et al., 2004). Pri-miRNAs are first processed by the Drosha/DGCR8

microprocessor complex into pre-miRNAs (Han et al., 2004), which are then exported from the nucleus to

the cytoplasm (Yi et al., 2003). Once in the cytoplasm, Dicer processes them further (Bernstein et al., 2001;

Hutvagner et al., 2001), and these mature dsRNA duplexes are then loaded into Argonaute (Ago) proteins

to form the RNA-induced silencing complex (RISC) (Wang et al., 2008). Translational silencing by miRNAs

can be initiated with as little as six nucleotide base-pairing between a guide RNA’s seed sequence (position

2-7) and fully complementary seedmatches in the target RNA (Lai, 2002; Lewis et al., 2003). This seed-based

targeting most often occurs in the 30 untranslated region (UTR) of a target mRNA (Baek et al., 2008; Selbach

et al., 2008).

Although effective targeting by many miRNAs requires a seed of at least 7 nucleotides and also involves

pairing beyond the seed region (Broughton et al., 2016), we previously discovered a group of short inter-

fering RNAs (siRNAs) and short hairpin RNAs (shRNAs) that kill all cancer cells through miRNA-like minimal

targeting between the 6mer seed and hundreds of essential genes critical for cell survival (Putzbach et al.,

2017). The downregulation of essential survival genes was likely the cause of cell death rather than an effect

of it because it preceded the initiation of cell death by 3 days and targeting the most highly downregulated

survival genes directly using very low concentrations of SmartPool siRNAs against these genes also killed

the cells (Putzbach et al., 2017). We called this form of cell death DISE, for death induced by survival gene

elimination (Putzbach et al., 2018a). Based on the observation that only six nucleotides of complementarity

between the siRNA/shRNA and the 30 UTR of mRNAs was required for targeting, we screened all 4,096

possible six-nucleotide permutations in a neutral 19mer siRNA backbone to determine which seed se-

quences were the most toxic to cells. This screen was performed in two human and two murine cancer

cell lines derived from lung, liver, and ovarian cancer (Gao et al., 2018). Regardless of the species or tissue

of origin, the most toxic seed sequences showed an enrichment for Gs in the seed sequence, with an asym-

metrical preference for Gs at the 50 end of the seed. Complementary C-rich seed matches to the most toxic

seeds were identified predominantly located at the beginning of the 30 UTR of many essential survival

genes (Gao et al., 2018). By analyzing all human miRNAs we found that certain tumor suppressive miRNAs

contain G-rich 6mer sequences in the first six positions of their seed (e.g., miR-34a-5p) and can kill cells

through what we have called ‘‘6mer seed toxicity.’’ In fact, our data suggest that 6mer seed toxicity shaped

the miRNA repertoire over at least the last 800 million years. miRNAs are generated from a hairpin that has

two arms. Usually only one arm of a mammalian miRNA is expressed; the other one is degraded. Almost all
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Figure 1. 6mer Seed Toxicity in the Tumor Suppressive miR-15/16-5p miRNA Family

(A) Top: The sequences of hsa-miR-15a-5p and hsa-miR-16-5p each aligned with the AGCAGC 6mer seed siRNA used in

the previous screen with the extended seed identity highlighted (10 nucleotides for miR-15a-5p and 8 for miR-16-5p). The

6mer seed sequence is shown in red. Bottom: Alignment of miR-15a-5p and miR-16-5p with the AGCAGC 6mer seed

siRNA modified to limit seed identity to 6 nucleotides.

(B) Viability of HeyA8 cells 96 h after transfection with 10 nM of either the indicated tumor-suppressive miRNAs, siRNA

backbone controls, or twomiRNA non-targeting controls. Data are representative of two independent experiments. Each

data point represents mean + SD of 5 replicates. ***p < 0.0001 determined by Student’s t test each compared with the

respective control.

(C) Overlap of RNAs detected by RNA-seq downregulated in HeyA8 cells (>1.5-fold) 48 h after transfection with either

miR-15a-5p or miR-16-5p when compared with non-targeting miR-Ctr.

(D) Right: Overlap of RNAs detected by RNA-seq downregulated in HeyA8 cells (>1.5-fold) 48 h after transfection with

either miR-15a-5p or si15a/16-5p6Seed compared with non-targetingmiR-Ctr andmodified siNT1 (siCtr), respectively. Left:

Results of a GOrilla gene ontology analysis of the genes downregulated in cells transfected with miR-15a-5p or si15a/16-

5p6Seed (significance of enrichment <10�8).

(E) Left: Overlap of RNAs detected by RNA-seq downregulated in HeyA8 cells (>1.5-fold) 48 h after transfection with either

miR-16-5p or si15a/16-5p6Seed when compared with non-targeting miR-Ctr and siCtr, respectively. Right: Results of a

GOrilla gene ontology analysis of the genes downregulated in cells transfected with miR-16-5p or si15a/16-5p6Seed

(significance of enrichment <10�8).

(F) Gene set enrichment analysis for a group of 1,846 survival genes (top three panels) and 416 non-survival genes (bottom

three panels) after transfecting HeyA8 cells with miR-15a-5p, miR-16-5p, or si15a/16-5p6Seed. siCtr and a non-targeting
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Figure 1. Continued

miR-Ctr served as controls, respectively. p values indicate the significance of enrichment, and the enrichment score

(ES) is given.

(G) Sylamer plots for the list of 30 UTRs of mRNAs in cells treated with miR-15a-5p, miR-16-5p, or si15a/16-5p6Seed sorted

from down- to upregulated. For each plot the three most highly enriched seed matches are labeled in red, yellow, and

green. Bonferroni-adjusted p values are shown.
the highly conserved and therefore older miRNAs do not contain G-rich 6mer sequences in the seed region

of their expressed arm. This selection likely occurs to avoid the inclusion of miRNA seed matches in the 30

UTR of housekeeping genes, an observation that was described previously (Stark et al., 2005). In contrast,

many youngermiRNAs (<10million years) and a small number of very old tumor suppressivemiRNAs carry a

highly toxic 6mer seed in their predominant arm (Gao et al., 2018).

Viruses have coevolved with all cellular functions by either adapting to or by hijacking them for their own life

cycle (Koonin et al., 2015). We therefore hypothesized that many viruses either avoid triggering cell death

(e.g., by being AU-rich) or utilize this mechanism to affect cell fate (e.g., through viral miRNAs [v-miRNAs]

carrying toxic 6mer seeds). Recently, the Kaposi sarcoma-associated herpes virus (KSHV) miRNA, miR-K12-

6-5p, was identified as an oncoviral mimic of the human tumor suppressive miRNA family miR-15/16 (Mor-

rison et al., 2019). KSHV is a human tumor virus that causes Kaposi sarcoma and primary effusion lymphoma,

as well as the B cell proliferative disorder multicentric Castleman disease (Cesarman et al., 1995; Nador

et al., 1996; Soulier et al., 1995). KSHV shows extensive ‘‘molecular piracy’’ of cellular factors and pathways

(Moore and Chang, 1998) and of miRNAs. The virus encodes 20 miRNAs that are part of the viral latency

program (Cai et al., 2005; Grundhoff et al., 2006; Pfeffer et al., 2005; Samols et al., 2005). kshv-miR-K11

shares a canonical 2-7mer seed with miR-155 and many of the same targets as miR-155 (Gottwein et al.,

2007; Skalsky et al., 2007). In addition, the viral miR-K10a miRNA shares at least a subset of its targets

with cellular miR-142-3p miRNA (Gottwein et al., 2007). Finally, miR-K12-6-5p was identified as a potential

tumor suppressive miRNA mimicking miR-15/16 and has been posited to allow KSHV to buffer viral onco-

gene expression and avoid severe pathogenesis in the healthy host.

We now provide evidence that bothmiR-15/16 miRNAs andmiR-K12-6-5p are toxic to cells in part based on

the first six nucleotides of their seed sequences. In miR-K12-6-5p the toxic 6mer seed is offset by one nucle-

otide, starting at position 3 of the mature miRNA. To determine whether this activity is found throughout

the space of all miRNAs that are encoded by viruses pathogenic to humans, we performed a toxicity screen

of 215 v-miRNAs coded for by 17 human viruses and compared the toxicity and the targeting to a matching

set of siRNAs carrying the same 6mer seed in a neutral backbone. We provide evidence that many v-miR-

NAs have a seed that contains a 6mer sequence that is toxic through G-richness and provide evidence that

noncanonical 6mer seeds (positions 3-8) contribute to this activity. The data not only validate the 6mer seed

toxicity concept but also suggest that certain viruses evolved to use this mechanism to kill cells.

RESULTS

The miR-15a/b-5p/16-5p Family Kills Cells in Part through 6mer Seed Toxicity

We recently provided evidence that the master tumor suppressor miR-34a-5p kills cancer cells in large part

through a G-rich 6mer sequence at the beginning of its seed (Gao et al., 2018). Transfecting cells with full-

length miR-34a-5p or just the miR-34a-5p 6mer seed in a neutral siRNA backbone was equally toxic to cells,

resulting in almost 80% overlap in downregulated genes containing the same number of essential survival

genes, and the downregulated genes were similarly enriched in genes carrying an miR-34a-5p 6mer seed

match in their 30 UTR. The 6mer seed toxicity screen also identified a toxic 6mer seed that is shared by

another established tumor suppressive miRNA family, the miR-15a/b-5p/miR-16-5p family (miR-15/16-5p

for simplicity), which were the first miRNAs identified as tumor suppressors (Calin et al., 2002). Consistent

with its lower predicted seed toxicity, it inhibited cell growth of HeyA8 cells less aggressively than miR-

34a-5p (Gao et al., 2018). We set out to test how much of its toxicity stemmed from its embedded 6mer

seed. By comparing the sequence of miR-15a-5p or miR-16-5p with that of the corresponding 6mer seed

in the backbone used in the screen, we noticed that miR-15a-5p shared 10 nucleotides and miR-16-5p

shared 8 nucleotides of extended seed identity with the oligonucleotide scaffold (Figure 1A, top). To

test the contribution of only the first six nucleotides of the seed to the activity of the miRNAs, we modified

the scaffold in the four positions that follow the 6mer seed by swapping the two complementary nucleo-

tides to maintain the nucleotide composition in the duplex while eliminating the sequence identity with
iScience 23, 100737, February 21, 2020 3



miR-15a-5p/16-5p (Figure 1A, bottom). When transfected into HeyA8 cells, the twomiRNAs, the 6mer seed

embedded in the original backbone (miR-15a-5p10Seed/16-5p8Seed), and the 6mer seed of these two

miRNAs embedded in the modified backbone (miR-15a-5p/16-5p6Seed) all strongly reduced cell viability

(Figure 1B). To determine how many genes were co-downregulated by the three reagents, we performed

RNA sequencing (RNA-seq) analysis of the cells 48 h after transfection. Consistent with the fact that miR-

15a-5p and miR-16-5p share an 8mer seed sequence >78% of genes that were significantly downregulated

(>1.5-fold, adjusted p < 0.05) in cells transfected with miR-15a-5p were also downregulated in cells treated

with miR-16-5p (Figure 1C). To determine the contribution of the first six nucleotides of the seed of each

miRNA to its toxicity, we compared the downregulated genes in cells treated with either miR-15a-5p or

miR-16-5p to the downregulated genes in cells treated with the siRNA sharing only the same 6mer seed.

We found that 61% and >55%, respectively, of the genes that were downregulated in cells transfected

with only the 6mer seed were also downregulated in the cells treated with the full miRNAs (Figures 1D

and 1E). A gene ontology analysis revealed that the genes that were most downregulated grouped into

GO terms that are consistent with cells dying from 6mer seed toxicity/DISE including mitosis, cell division,

cell cycle regulation, and DNA replication (Gao et al., 2018; Putzbach et al., 2017, 2018b) (Figures 1D and

1E). A gene set enrichment analysis confirmed that in all cases essential survival genes, but not a control

set of nonsurvival genes (as previously defined, Putzbach et al., 2017), were downregulated with similar

significance and enrichment scores (Figure 1F). Finally, a Sylamer analysis to identify the seed matches

most enriched in the 30 UTR of the downregulated genes demonstrated that in all three cases the same

6mer seed match was most highly enriched (Figure 1G). This analysis suggests a significant contribution

of the first six nucleotides of the miRNA seed to the toxicity of the miR-15/16-5p family, supporting

our interpretation that a number of tumor suppressive miRNAs are toxic to cancer cells through 6mer

seed toxicity.
kshv-miR-K12-6-5p Kills Cells in Part through 6mer Seed Toxicity

Given the apparent conservation of the 6mer seed toxicity mechanism during evolution we wondered

whether human viruses would code for miRNAs that might be toxic to cells at least in part through this

mechanism. There are currently 216 mature v-miRNAs coded by 17 human pathogenic viruses listed in

miRBase v.22.1 (Table S1). We searched this list of v-miRNAs for a miRNA that contains a position 2-7

seed that we determined to be toxic in our screen of 4,096 6mer seeds and that was part of a major tumor

suppressive miRNA family. Although there was no v-miRNA with the same 6mer seed as miR-34a-5p, we

found a v-miRNA that shared the same 2-7 nucleotides present in the predominant 5p arm of the miR-

15/16-5p miRNA family. kshv-miR-K12-6-5p (miR-K12-6-5p) contains a GC-rich trinucleotide repeat seed

sequence that is found in three miRNA families with ample published evidence for having tumor suppres-

sive activities: miR-15/16-5p (Bonci et al., 2008; Calin et al., 2002, 2008; Han et al., 2017; Hu et al., 2018;

Huang et al., 2015; Ke et al., 2013; Klein et al., 2010; Lovat et al., 2015, 2018; Maximov et al., 2019; Pekarsky

and Croce, 2015; Rahman et al., 2014; Yang et al., 2014), miR-214-3p (Cagle et al., 2019; Fan et al., 2017;

Huang et al., 2014; Liu et al., 2016; Long et al., 2015; Pang et al., 2018; Phatak et al., 2016; Wang et al.,

2012; Yang et al., 2015, 2018b; Zhang et al., 2017), and miR-103/107-3p (Datta et al., 2012; Feng et al.,

2012; Fu et al., 2019; Gao et al., 2017; Piao et al., 2012; Sharma et al., 2017; Song et al., 2015; Yamakuchi

et al., 2010; Yang et al., 2018a; Zhang et al., 2019) (Figure 2A). miR-K12-6-5p shares an 8mer seed sequence

with miR-15a-5p, miR-15b-5p, and miR-16-5p and a 6-, 7-, or 8mer seed with other members of this

family (Figure 2A). However, the seed identity with miR-15/16-5p only occurs when the seed is counted

from position 3 of the guide strand. A canonical 6mer seed identity can be found with the predominant

arm in miRNAs related to miR-214, and a seed similarity with the predominant arm of the miR-103/107

family (miR-103a-3p/107) only exists when the seed is further offset so that it starts at position 4 in the

v-miRNA.

To determine whether miR-K12-6-5p could exert toxicity in cells similar to the toxicity observed with these

three miRNA families, we transfected miR-15a-5p, miR-16-5p, miR-214-3p, miR-103-3p, or miR-K12-6-5p

into HeyA8 cells (Figures 2B and 2C). All miRNAs substantially reduced cell growth and cell viability in these

cells with both miR-15a-5p and miR-16-5p being most toxic closely followed by miR-K12-6-5p. miR-103-3p

was least toxic. No toxicity of any of the miRNAs was seen when Ago2 knockout HeLa cells were treated

(data not shown), confirming that the effects were dependent on the activity of the RISC. To determine

which of the three miRNA families miR-K12-6-5p was most similar to in its toxic activity, we compared

the significantly downregulated genes in cells treated with the various miRNAs through an RNA-seq anal-

ysis (Figure 2D). In agreement with a recent report (Morrison et al., 2019) the highest degree of overlap of
4 iScience 23, 1–15, February 21, 2020



Figure 2. miR-K12-6-5p Is Most Similar to the miR-15/16-5p Family in Its Effects on Cell Survival

(A) Alignment of miR-K12-6-5p with three families of tumor suppressive miRNAs it shares seed sequences with. Identical seed sequences are highlighted.

(B) Percent cell confluence over time of HeyA8 cells transfected with 10 nM of the indicated miRNAs or two miRNA non-targeting controls. Each data point

represents mean G SE of three replicates.

(C) Change in viability of HeyA8 cells 96 h after transfection with the indicated miRNAs. ***p < 0.0001, **p < 0.001, *p < 0.05 determined by Student’s t test

each compared with the respective control.

(D) Overlap of RNAs detected by RNA-seq downregulated in HeyA8 cells (>1.5-fold) 48 h after transfection with kshv-miR-K12-6-5p and cells transfected with

miR-15a-5p, miR-16-5p, miR-214-3p, or mR-103-3p, each compared with non-targeting miR-Ctr.
downregulated genes caused by miR-K12-6-5p expression was found with miR-16-5p (76.3%) closely fol-

lowed by miR-15a-5p (76.3%). A lower number of downregulated genes were shared with miR-214-3p

(41.8%). miR-103-3p showed the fewest co-downregulated genes (33.4% overlap). The extent of shared

downregulated genes by each miRNA correlated with the level of its toxicity, suggesting that the targeted

genes could be involved in cell survival.

miR-K12-6-5p Predominantly Targets Essential Survival Genes through a Noncanonical 3-8

6mer Seed

Not only overexpression of miR-15a-5p/16-5p caused a substantial downregulation of essential survival

genes (see Figure 1F) but also miR-K12-6-5p, miR-103-3p, and miR-214-3p resulted in downregulation of

such genes (Figure 3A). Interestingly, with both miR-16-5p and miR-K12-6-5p we also detected a significant

inverse enrichment of nonsurvival genes in the downregulated genes (Figures 1F and 3A) confirming that

these two miRNAs were most similar in their activity.

To determine to what extent miR-K12-6-5p affects cell growth through 6mer seed toxicity, we performed a

Metascape analysis comparing the gene ontologies of the enriched gene sets downregulated by miR-K12-

6-5p with a number of stimuli we recently reported to kill cells in part through 6mer seed toxicity, including a
iScience 23, 100737, February 21, 2020 5



Figure 3. miR-K12-6-5p Kills Cells in Part through DISE Similar to miR-15/16-5p

(A) Gene set enrichment analysis for a group of 1,846 survival genes (top three panels) and 416 non-survival genes (bottom

three panels) after transfecting HeyA8 cells with miR-103-3p, miR-214-3p, or miR-K12-6-5p. siCtr and a non-targeting

miR-Ctr served as controls, respectively. p values indicate the significance of enrichment, and the enrichment score (ES) is

given.
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Figure 3. Continued

(B) Metascape gene ontology analysis comparing the downregulated genes in cells treated with miR-K12-6-5p, miR-15a-

5p, miR-16-5p, siL3 (see Putzbach et al., 2017), si34a-5p6Seed, miR-34a-5p, or the three genotoxic chemotherapeutic drugs

(see Gao et al., 2018). GO terms shared by all treatments are boxed.

(C) Sylamer plots for the list of either ORF or 30 UTRs of mRNAs in cells treated with either K12-6-5p (6mer seed: AGCAGC),

miR-214-3p (6mer seed: CAGCAG), or miR-103-3p (6mer seed: GCAGCA) sorted from down- to upregulated. For each

plot the 10 most highly enriched seed matches are shown. The three most highly enriched ones corresponding to an

expected seed match are labeled in red, blue, and green, respectively. Bonferroni-adjusted p values are given.

(D) Location of the putative GCUGCU 6mer seed matches in the 30 UTRs of the five tested genes (shown at scale).

(E) Real-time PCR quantification of the five genes in (D) in the samples of cells transfected with either miR-K12-6-5p or miR-

16-5p as submitted for RNA-seq analysis. Expression levels are normalized to miR-Ctr#1-transfected cells (stippled line).

Data are shown with variance between duplicate biological replicates.

(F) Real-time PCR quantification kinetics of the same five genes in RNA samples isolated fromHeyA8 cells transfected with

either 10 nM miR-K12-6-5p or miR-16-5p. Expression levels at each time are normalized to miR-Ctr#1-transfected cells.

Samples are shown with SD of three biological replicates.
CD95L-derived toxic siRNA (Putzbach et al., 2017), miR-34a-5p (Gao et al., 2018), miR-34a-5p6seed (Gao

et al., 2018), and the three genotoxic chemotherapeutic reagents doxorubicin, etoposide, and carboplatin

(Gao et al., 2018) (Figure 3B). The genes that were downregulated in response to all these treatments had

widely overlapping gene ontologies that were consistent with cells dying of 6mer seed toxicity (Gao et al.,

2018; Putzbach et al., 2017, 2018b). These data suggest that miR-K12-6-5p engages a cell death mechanism

that is similar to the ones triggered by the other DISE-inducing reagents.

To determine which seedmatches in the 30 UTRs are potentially being targeted by the v-miRNA, compared

with cellular miRNAs, we performed another Sylamer analysis (Figure 3C). The most highly and most signif-

icantly enriched seed matches found in the 30 UTR of the genes downregulated in cells treated with miR-

K12-6-5p was GCTGCT, the canonical 6mer seed match of miR-15a-5p/16-5p (see Figure 1D). However,

this suggests that miR-K12-6-5p uses a noncanonical 6mer seed starting at position 3. The most highly en-

riched seed matches in the 30 UTR of downregulated genes in cells transfected with either miR-214-3p or

miR-103-3p also corresponded to their canonical and predicted 6mer seed starting at position 2 of the

miRNA. Notably, there was no enrichment for miRNA targets in the open reading frames of the same

mRNAs analyzed in Figure 3C (data not shown). These results suggest that whereas the four tested cellular

miRNAs target mRNAs using a canonical 6mer seed, the viral miR-K12-6-5p seems to utilize a noncanonical

seed located at position 3-8 consistent with a recent study (Morrison et al., 2019).

As shown in Figure 2B growth of cells started to slow down around 40 h after transfection with either miR-

K12-6-5p or miR-16-5p. To determine whether the targeting of a set of essential survival genes by these

miRNAs could be causing this, we identified the five most highly expressed genes that contain at least

two putative GCUGCU seed matches in their 30 UTR and that were downregulated in cells transfected

either with K12-6-5p or with miR-16-5p. Three of these genes are established cell cycle regulators

(CDC6,CDC25A,CDCA5), one is involved in DNA repair (FANCA), and one codes for an antiapoptotic pro-

tein (BIRC5) (Figure 3D). First, we validated by qPCR that they were downregulated in the RNA subjected to

the RNA-seq analysis (Figure 3E). Then we performed kinetics starting with very early time points of 6 and

12 h to determine how long before any detectable cell death these mRNAs were downregulated. The ma-

jority of the genes showed clear signs of silencing very early after miRNA transfection, and they were again

all efficiently silenced at 48 h (Figure 3F), a time point at which no dying cells could be seen (Videos S1, S2,

and S3). This analysis suggests that the knockdown of these genes is the cause of the death of the cells

rather than the result of dying cells.

Many v-miRNAs Can Regulate Cell Fate through 6mer Seed Toxicity Using a Noncanonical

6mer Seed

Our data suggest that the v-miRNA miR-K12-6-5p negatively regulates cell growth at least in part through

6mer seed toxicity similar to the endogenous miRNAs of the miR-15/16-5p family. We had identified the

most toxic 6mer seeds by screening the two human cancer cell lines HeyA8 (ovarian cancer) and H460

(lung cancer) (6merdb.org) (Gao et al., 2018). To test whether other v-miRNAs would be cytotoxic to cells

through 6mer seed toxicity and to test whether they also used noncanonical seeds, we transfected 215

mature v-miRNAs coded for by 17 human pathogenic viruses listed in miRBase at a concentration of

25 nM into the two cell lines and quantified cell death using a cell viability assay (Table S2). We chose

the same two cell lines we had used in our previous screen to directly compare the results and also to isolate
iScience 23, 100737, February 21, 2020 7
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Figure 4. Evidence for 6mer Seed Toxicity across 215 v-miRNAs Encoded by 17 Human Pathogenic Viruses

(A) Results of the 215 v-miRNA screen in two human cell lines. Cells were reverse transfected in triplicates in 384 well plates

with 25 nM of individual v-miRNAs. The cell viability of each 6mer seed duplex was determined by quantifying cellular ATP

content 96 h after transfection. The v-miRNAs are ranked by the average effect on cell viability of the two cell lines from the

most toxic (left) to the least toxic (right).

(B) Regression analysis showing correlation between the toxicity observed in the human lung cancer cell line HeyA8 (left)

and the human ovarian cancer cell line H460 (right) 96 h after transfection with either 25 nM 215 v-miRNAs or 25 nM 6mer

seed siRNAs carrying matching the 6mer seeds in a neutral backbone. p values were calculated using Pearson correlation

analysis.
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Figure 4. Continued

(C) Nucleotide composition at each of the first nine nucleotide positions in the top 10 most toxic v-miRNAs transfected

into HeyA8 (top) or H460 (bottom) cells. The canonical 6mer seed (position 2-7) and the noncanonical 6mer seed (position

3-8) are boxed in gray and black, respectively.

(D) Regression analysis showing correlation between the toxicity observed in HeyA8 (top) and H460 (bottom) cells 96 h

after transfection with either 25 nM 215 v-miRNAs or 10 nM siRNAs carrying matching 6mer seeds (position 3-8) tested

previously (Gao et al., 2018). p values were calculated using Pearson correlation analysis.

(E) Percent use of the noncanonical 6mer seed (position 3-8) by either cellular miRNAs or v-miRNAs that were identified to

be part of CLASH hybrids in an analysis of endothelial cells uninfected or infected with KHSV (Gay et al., 2018). SD is given

based on triplicate datasets. Significance was calculated using two-sample Student’s t test. ns, not significant.

(F) All hybrids detected in the three triplicates of the CLASH analysis of KHSV-infected cells that contain a kshv-miRNA

with full complementarity between either its canonical 6mer seed (position 2-7) or its noncanonical seed with a piece of

mRNA (position 3-8).

See also Figures S1–S4.
the tissue/host cell independent activities of each miRNA. We ranked the 215 v-miRNAs according to the

average toxicity in the two cell lines (Figure 4A). The congruence between the results of the two cell lines

was as high as the one we reported for the toxicity of the 4,096 seed-containing siRNAs (Figure S1A; r = 0.64

and Figure 1c in Gao et al., 2018 0.68, respectively) suggesting that the v-miRNAs were toxic through a

mechanism independent of host cell specific viral functions.

To assess the contribution of just the 6mer seed to the activity of each v-miRNA, we performed a screen

with siRNAs each carrying one of the 196 different 6mer seeds present in the 215 v-miRNAs in a neutral

backbone (Table S3). Cells were transfected with 25 nM siRNA. The data on the 196 siRNAs of this screen

correlated well, especially in the HeyA8 cells, with the 196 siRNAs that were part of the previous screen of

the 4,096 6mer seed siRNAs transfected at 10 nM (Gao et al., 2018) (Figure S1B, Table S4). Most importantly,

regression analysis showed a strong correlation in both cell lines between the toxicity observed with either

25 nM 215 v-miRNAs or 25 nM 6mer seed siRNAs carrying the same 6mer seed in a neutral backbone (Fig-

ure 4B), suggesting that the first 6 nucleotides of the seed present in the v-miRNAs were important to the

exertion of toxicity in the cells.

Themost toxic 6mer seeds are rich in Gs with a preferential enrichment for Gs at the 50 end of the 6mer seed

(Gao et al., 2018). To determine the nucleotide composition of the most toxic seeds in the v-miRNAs, we

plotted the relative abundance of the four nucleotides in each of the first 9 positions (the extended seed

region) of the 10 most toxic v-miRNAs (�5% of all tested v-miRNAs) in the screen in both cell lines (Fig-

ure 4C). Although v-miRNAs in general were found to have a slightly elevated G content in the 6mer

seed region (Figure S2A), similar to the 4,096 6mer seed screen, the most toxic v-miRNAs were strongly

enriched in Gs (Figure 4C, gray box). Curiously, however, G was not the most abundant nucleotide in

the first position of this 6mer sequence. Based on our analysis and the recent report on miR-K12-6-5p

and its potential of using a noncanonical 6mer seed starting at position 3 (Morrison et al., 2019), we realized

that the optimal seed composition for the most toxic 6mer seeds we had reported could be achieved by

shifting the seed by one nucleotide to start at position 3 (black box in Figure 4C). In fact, for the HeyA8 cells

this shift resulted in a seed composition remarkably similar to the one we had reported for the 200 (�5%)

most toxic seeds in the 4,096 seed siRNA screen (Figure S2B) (Gao et al., 2018). Our data suggest, first, that

many v-miRNAs indeed have the capacity to affect cell fate through 6mer seed toxicity, and second, that

similar to miR-K12-6-5p, many v-miRNAs may use a noncanonical toxic 6mer seed that starts at position

3 of the mature miRNA. To test this assumption, we plotted the toxicities of the 215 v-miRNAs versus those

of the 6mer seed siRNAs tested in our previous screen that matched positions 3-8 in the v-miRNAs (repre-

senting 197 different 6mer seeds, Table S5) (Figure 4D). The correlation was stronger and more significant

than when compared with the original screen results of the seed containing siRNAs that matched the 196

canonical seeds (Figure S1C). The data suggest that many v-miRNAs can kill cells through use of a nonca-

nonical 6mer seed.

To explore to what degree the canonical versus a noncanonical 6mer seed sequence contributes to the toxicity

of v-miRNAs across both cell lines, we compared the screen data of two groups of v-miRNAs for correlations

between sequence identity and functional toxicity in cells. Among the 215 tested v-miRNAswe found 6 pairs of

v-miRNAs that are identical in sequence, 13 pairs of v-miRNAs (including one triplet) that share the same 2-7

6mer seed, and 10 pairs (including two triplets) that share the same 3-8 6mer seed, both with diverging se-

quences outside the seed sequence (Table S3). When plotting every pair and triplet of v-miRNAs against
iScience 23, 100737, February 21, 2020 9



Figure 5. Canonical and Noncanonical 6mer Seed Usage in the Context of miRNA Seeds

(A) Alignment of K12-6-5p (second line) with the canonical (top line) or the noncanonical (third line) K12-6-5p seed

embedded in the original backbone of siRNAs used in the screen of 4,096 6mer seeds (Gao et al., 2018). Below this

alignment K12-6-5p is shown with its noncanonical seed aligned with the modified backbone shown in Figure 1A. Note,

between these two sequences there is no identity outside the 6mer seed box including in the supplementary pairing

region (suppl.).

(B) Location of the 6mer seeds relative to the longer seed boxes usually found in miRNAs (shown is miR-16-5p). The 6mer

seed sequences can be part of longer seed boxes. Longer seeds allowmore selective andmore profound targeting but an

embedded 6mer seed when G rich (either canonical or offset) can target essential survival genes with low efficiency but to

a degree enough to be toxic to cells. This figure was modified after Riffo-Campos et al. (2016).
each other as expected, the v-miRNAs with complete sequence identity affected cell viability in a very similar

way (Figure S1D, top left panel). When plotting the v-miRNA pairs that only shared a canonical 6mer seed, we

still found a significant correlation in viability (r = 0.48 in Figure S1D, top right panel). However, this correlation

was more pronounced and more significant when the v-miRNA pairs that shared a noncanonical 6mer seed

were analyzed (r = 0.56 in Figure S1D, bottom left panel).

Many studies have shown a compensatory role of nucleotides beyond the canonical seed through supple-

mentary pairing (Broughton et al., 2016; McGeary et al., 2019). One such supplementary pairing region

involves position 13-16 of the miRNA (Figure 5A) (Sheu-Gruttadauria et al., 2019). An involvement of sup-

plementary seed pairing in the toxicity of K12-6-5p was unlikely as the sequence of K12-6-5p shared no

identity with the modified backbone carrying the AGCAGC 6mer seed that corresponded to the 3-8

seed in K12-6-5p (bottom two sequences in Figure 5A). This modified siRNA was as toxic as K12-6-5p itself

(compare Figures 1B and 2C). However, to address a possible contribution of this supplementary pairing

region directly, we separated the data of all v-miRNAs in the screen into a group that while sharing an iden-

tical 6mer seed either shared the same sequence or differed in the supplementary region. Interestingly, the

correlation of the miRNAs that carry the same 6mer seed but differ in position 13-18 was greater and more

significant than the correlation of the miRNA pairs that share position 13-16 (Figure S1D, bottom right

panel). This supports our conclusion that it is predominantly the 6mer seed that determines toxicity with

little contribution of supplementary seed pairing to this phenomenon. These analyses confirm that

although the entire length of the v-miRNAs can have an effect on cell growth, a substantial part of this

toxicity is dictated by only the six nucleotides in the 6mer seed, and this is more pronounced when the non-

canonical 6mer seed is considered.

To determine whether the 3-8 noncanonical toxic 6mer seed was predominantly used bymiRNAs of specific

viruses, we separated the data into individual viruses and correlated the toxicity associated with canonical
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and non-canonical seed of the v-miRNAwith activity of the canonical seed in the corresponding siRNA (Fig-

ures S3 and S4). We found two groups of viruses that showed a significant change in correlation in both cell

lines between the 2-7 and the 3-8 toxic 6mer seed use. A combined group of viruses that each code for two

or less miRNAs (BKV, BPCV1, BPCV2, JCV, SV40, and TTV) seems to prefer the canonical 2-7 seed (green

boxes in Figures S3 and S4). In contrast, the miRNAs encoded by KSHV showed a significantly increased

correlation in HeyA8 cells and a correlation almost reaching significance in H460 cells when plotting the

noncanonical 3-8 seed (red boxes in Figures S3 and S4).

Finally, to validate our results with data on cells infected with a relevant virus that carries multiple miRNAs,

and to break down the use of the 3-8 seed in the KSHV miRNAs, we analyzed a dataset on KSHV-infected

endothelial cells generated by using a modified Cross-linking, Ligation, and Sequencing of Hybrids

(CLASH) method (Gay et al., 2018). CLASH allows for the unambiguous identification of miRNAs and their

targets by ligating the two species while bound to the RISC. We extracted the CLASH hybrid data from two

triplicate samples that had been generated using either uninfected cells or cells infected with KSHV. Only

two types of hybrids were counted: the ones that showed complete complementarity between the seed

match in the target and positions 2-7 of the miRNA (the canonical 6mer seed) and the ones that had this

region of complementarity shifted to position 3-8 (the noncanonical 6mer seed). In each case the nucleo-

tides preceding the seed and the nucleotide following the seed had to bemismatched to focus the analysis

on the two types of 6mer seeds. We then plotted the occurrence of a noncanonical 6mer seed in percent of

total (Figure 4E). When analyzing the cellular miRNAs in the uninfected cells, about 20% of the detected

seed interactions were noncanonical (Figure 4E, first column). A similar proportion was found in the cellular

miRNAs in the virus-infected cells (Figure 4E, second column). However, the hybrids involving v-miRNAs in

the virus-infected cells showed a significantly higher use of the noncanonical 3-8 6mer seed (Figure 4E, third

column). Of the 25 mature miRNAs coded for by KSHV, 17 were detected in CLASH hybrids. To determine

the 6mer seed use of individual KHSV miRNAs, we analyzed all hybrids obtained from virus-infected cells

(Figure 4F). K12-6-3p showed no evidence of noncanonical 6mer seed use, whereas other miRNAs

including miR-K12-3 and miR-K12-6-5p showed a substantial use of the 3-8 6mer seed. Three miRNAs

(miR-K12-8-5p, miR-K12-9-5p, and miR-K12-10a) were found in hybrids that predominantly made use of

the 3-8 6mer seed. In summary, we provide first evidence that v-miRNAs can engage the 6mer seed toxicity

mechanism and that many of them do this through the noncanonical use of the 6mer seed.
DISCUSSION

We recently identified RNAi-based 6mer seed toxicity as an ancient kill code embedded in the genome

(Gao et al., 2018). It can kill cells independent of the tissue of origin and species. This mechanism is based

on only a 6mer seed sequence, and the most toxic seeds were found to be G-rich targeting C-rich seed

matches in the 30 UTR of essential survival genes. We also provided evidence that this mechanism may

be at least 800 million years old. Based on these findings we predicted that viruses coevolved with this

fundamental mechanism and either avoid G-rich seeds in small RNAs such as miRNAs or use them to kill

cells.

After reporting data to suggest that about 80% of the toxic activity of the master tumor suppressive miRNA

miR-34a-5p is based on the first six nucleotides of its seed (Gao et al., 2018), we now tested another major

tumor suppressive miRNA family, miR-15/16-5p, and found that 6mer seed toxicity also significantly con-

tributes to its toxic activity. Although one of the most prominent targets for miR-15/16 is the antiapoptotic

protein Bcl-2 (Cimmino et al., 2005), many of its targets are cell cycle regulators (Calin et al., 2008; Linsley

et al., 2007; Liu et al., 2008), and a recent analysis showed that miR-16-downregulated genes are generally

involved in proliferation (Morrison et al., 2019). This type of targeting is consistent with miR-15/16 affecting

cell growth and viability through 6mer seed toxicity. Consistently, we found that >55% of the toxic activity of

miR-15/16-5p comes from its 6mer seed. This is quite high considering that a substantial number of targets

of miR15b/16 are actually targeted through complementarity between the 30 UTR and the 30 end of the

miRNA (Helwak et al., 2013).

Because it was recently shown that the v-miRNA kshv-miR-K12-6-5p is an oncomimetic of miR-15/16-5p, we

were wondering whether v-miRNAs such as miR-K12-6-5p could use the 6mer seed kill code to affect cell

fate. Our analysis of the activity of miR-K12-6-5p compared with its related cellular miRNAs miR-15/16-5p,

miR-214-3p, and miR-103a-3p/107, all of which share sequence identities in their seed sequences with

miR-K12-6-5p, confirmed and extended the recent finding that miR-K12-6-5p functionally is most similar
iScience 23, 100737, February 21, 2020 11



to miR-15/16-5p (Morrison et al., 2019) by demonstrating that much of the toxicity of both miR-15/16-5p

and miR-K12-6-5p relies on only six nucleotides in their seed sequences. Indeed, Morrison et al. (2019) re-

ported in the context of KSHV-infected tumor cells that miR-K6-5p targets cell cycle regulators and genes

involved in cell proliferation consistent with our data that this miRNA negatively regulates proliferation or

survival through 6mer seed toxicity.

When testing all 4,096 possible 6mer seed combinations in our previous screen, for practical reasons we

had to design an artificial backbone of an siRNA duplex in which to test all seeds. None of these siRNAs

therefore represented actual miRNAs found in cells. Another caveat was that the ‘‘neutral’’ backbone we

had designedmay have obscured the results by biasing the targeting of certain genes that carry sequences

complementary to backbone regions. The new screen with 215 viral miRNAs now allowed us to test the

6mer seed toxicity concept using a set of miRNAs carrying different 6mer seeds all in their physiologically

relevant andmostly different backbones. Considering that v-miRNAs in particular were shown before to not

only target by using canonical 50 seed sequences but also by using 30 seeds, or sequences located in the

center of the miRNA (Gay et al., 2018), our findings of a substantial correlation (20%–38%) between the

toxicity of the tested v-miRNAs and the toxicity of the matching siRNAs just containing the same 6mer

seed sequence points at 6mer seed toxicity as a robust cellular mechanism to regulate cell fate by miRNAs.

This level of correlation is remarkable when one considers that not all v-miRNAs (or any miRNA) will be toxic

to cells through only 6mer seed toxicity. Many miRNAs will likely be toxic through conventional seed tar-

geting of individual genes involving seeds longer than six nucleotides and sequences outside the 50

seed box.

By studying the miR-15/16-5p mimic miR-K12-6-5p we and others (Morrison et al., 2019) noted that

although miR-K12-6-5p is functionally most similar to the miR-15/16-5p family, the seed most likely used

by miR-K12-6-5p is shifted by one nucleotide starting at position 3. A noncanonical seed usage beginning

at position 3 was first described for the miRNA bantam in Drosophila (Nahvi et al., 2009). Interestingly, by

testing the toxicity and 6mer seed composition of the 215 v-miRNAs we now provide evidence to suggest

that the use of such a noncanonical 6mer seed by v-miRNAs is more frequent than by cellular miRNAs. A

substantial use of a noncanonical 6mer seed was seen for miR-K3. miR-K3 shares a perfect offset 7mer

seed with miR-23 (Manzano et al., 2013). Despite the offset seed, both miR-K3 and miR-23 target similar

genes just as K12-6-5p shares many targets with miR-15/16-5p. Although miR-K3 has a few unique targets

that are not shared by miR-23 (Grosswendt et al., 2014; Manzano et al., 2013), it was recently reported that

the noncanonical seed may not be functionally relevant (Grosswendt et al., 2014). The authors selected five

noncanonical miR-K3 interactions for further examination of their regulatory potential in reporter assays but

did not detect reporter repression mediated by any of these sites (Grosswendt et al., 2014). Our data now

suggest that the noncanonical 6mer seed may be regulating cell survival in many of these v-miRNAs

through DISE. This type of targeting is different from canonical miRNA targeting that relies on seed se-

quences in the miRNAs that are longer than 6 nucleotides and additional sequences outside the seed (Fig-

ure 5B) (Broughton et al., 2016). The more nucleotides are involved in pairing with the mRNA target, the

more selective and more profound will the downregulation be. In contrast, targeting by a short seed of

only six nucleotides decreases the selectivity of targeting and likely results in the downregulation of a larger

number of genes each to a lower extent. It is likely that targeting hundreds of essential survival genes simul-

taneously when the 6mer seed is G-rich (each of which is defined to be an essential gene individually; Putz-

bach et al., 2017) at a relative low level is highly toxic to cells.

Remarkably, the nucleotide composition of the noncanonical 6mer seed of the 5% most toxic v-miRNAs

was almost identical to the 5%most toxic canonical seeds identified in the 4,096 6mer seed screen. In addi-

tion, the toxicity of the tested v-miRNAs when considering the noncanonical 3-8 6mer seed correlated

much better with the results of the 4096 siRNA screen than when considering the canonical 2-7 6mer

seed. Our data suggest that during evolution certain v-miRNAs evolved to use 6mer seed toxicity to regu-

late cell growth, cell cycle, and survival of their host cells. It has been proposed that seed shifting is a mech-

anism of miRNA adaptation during evolution to allow acquisition of divergent function (Berezikov, 2011;

Bofill-De Ros et al., 2019). The small but significant increased use of a noncanonical seed by v-miRNAs

may be a reflection of an ongoing evolutionary process that was conserved in the v-miRNAs at the time

the miRNAs were acquired from the host cells. Future studies will be aimed at elucidating the mechanism

of the alternative processing and/or seed usage of viral miRNAs and at determining whether v-miRNAs and

other small virus-encoded RNAs affect cell fate through 6mer seed toxicity in infected cells.
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Limitations of the Study

The viruses that code for the miRNAs tested in our screen infect cell types different from the ones repre-

sented by the cell lines used in this study and they have complex life cycles. However, our results will likely

be relevant to the study of the function of viral miRNAs because the rules that govern 6mer seed toxicity are

tissue independent. Furthermore, the specificity of the effects of a virus on cells is often determined by the

entry mechanism rather than by differential effects of the viral genes on specific host cells. Examples are the

studies that utilized VSVg pseudotyped HIV-1 to explore general mechanisms of viral replication and re-

sponses of CD4-negative cells to HIV-1 infection (Aiken, 1997; Akari et al., 1999; Hulme et al., 2011). To

test 215 miRNAs encoded by 17 different human viruses each in a virus-relevant cellular context (proper

host cells and models or lytic versus latency cycle) would not have been feasible. We therefore decided

to perform the screen in the same two human cancer cell lines that we had used to determine the toxicity

of all 4,096 6mer seeds (Gao et al., 2018). As a result, the screen of viral miRNAs also allowed us to further

validate the 6mer seed concept.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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data are available upon request.
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Figure S1. Correlation between toxicity exerted by v-miRNAs and their 6mer seeds, Related to Figure 4. 
(A) Regression analysis showing correlation between the toxicity observed in H460 and HeyA8 cells 96 hours 
after transfection with 215 v-miRNAs at 25 nM. (B) Regression analysis showing the correlation in cell viability 
between the 196 siRNAs that carry the same 6mer seed as the 215 human v-miRNAs of the original screen (at 
10 nM, x-axis) and the new screen (at 25 nM, y-axis). (C) Regression analysis showing the correlation between 
the toxicity observed in HeyA8 and H460 cells 96 hours after transfection with either 25 nM of the 215 v-
miRNAs or 10 nM of the siRNAs carrying matching 6mer seeds (position 2-7) tested previously (Gao et al., 
2018). (D) Regression analysis showing pairwise comparison of two v-miRNAs in a group of v-miRNAs 
identical in sequences over the entire length (top left), a group of v-miRNAs only sharing a canonical 6mer 
seed (position 2-7, top right), and a group of v-miRNAs sharing a noncanonical 6mer seed (position 3-8, 
bottom left). Bottom right: Regression analysis showing pairwise comparison of two v-miRNAs in a group of v-
miRNAs with an identical noncanonical 6mer seed and either different (red circles) or identical sequences (blue 
circles) in the supplementary pairing region position 13-16. p-values were calculated using Pearson correlation 
analysis. 
  



	

 
Figure S2: The composition of the noncanonical 6mer seed of the most toxic v-miRNAs is very similar 
to the most toxic 2-7 6mer seeds, Related to Figure 4. 
(A) Average nucleotide composition at each of the first 9 nucleotide positions in all 215 v-miRNAs. (B) Average 
nucleotide composition at each of the 6 seed positions of the noncanonical 6mer seed in the ten most toxic v-
miRNAs and the 200 most toxic seeds for the two human cell lines in the 4096 seed siRNA screen (Gao et al., 
2018). 
  



	

 
Figure S3. Correlation between toxicity exerted by v-miRNAs in HeyA8 cells and their 6mer seeds in 
individual viruses, Related to Figure 4. 
Regression analysis showing correlation between the toxicity observed in HeyA8 cells 96 hours after 
transfection with either 25 nM of the 215 v-miRNAs, or 10 nM of the siRNAs carrying matching 6mer seeds 
(position 2-7, top) or 10 nM of the siRNAs carrying matching 6mer seeds (position 3-8, bottom) as tested 
previously (Gao et al., 2018). The data are broken down into individual viruses that code for at least 4 different 
miRNAs. The viruses with less than 4 miRNAs were combined into one analysis (second plot). Green box: 
viruses that show a significantly better correlation when the 2-7 6mer seed is considered. Red box: viruses that 
show a significantly better correlation when the 3-8 6mer seed is considered. p-values were calculated using 
Pearson correlation analysis. The viruses that are part of the analysis are: BK virus (BKV), bandicoot 
papillomatosis carcinomatosis virus type 1 and 2 (BPCV1/2), John Cunningham virus (JCV), simian virus 40 
(SV40), Torque teno virus (TTV), Epstein-barr virus (EBV), hepatitis B virus (HBV), human cytomegalovirus 
(HCMV), human herpes virus 6b (HHV6b), human immune deficiency virus 1 (HIV-1), Kaposi sarcoma 
associated herpes virus (KSHV), Merkel cell polyomavirus (MCPV), herpes simplex virus 1 and 2 (HSV1/2), 
pseudorabies virus (PRV), and Semliki Forest virus (SFV).  



	

 
Figure S4. Correlation between toxicity exerted by v-miRNAs in H460 cells and their 6mer seeds in 
individual viruses, Related to Figure 4. 
Regression analysis showing the correlation between the toxicity observed in H460 cells 96 hours after 
transfection with either 25 nM of the 215 v-miRNAs or 10 nM of the siRNAs carrying matching 6mer seeds 
(position 2-7, top) or 10 nM of the siRNAs carrying matching 6mer seeds (position 3-8, bottom) as tested 
previously (Gao et al., 2018). The data are broken down into individual viruses that code for at least 4 different 
miRNAs. The viruses with less than 4 miRNAs were combined into one analysis (second plot). Green box: 
viruses that show a significantly better correlation when the 2-7 6mer seed is considered. Red box: viruses that 
show a significantly better correlation when the 3-8 6mer seed is considered. p-values were calculated using 
Pearson correlation analysis. For virus abbreviations see Figure S3. 
  



	
Transparent Methods 
 
Reagents, cell lines and antibodies 
HeyA8 (RRID:CVCL_8878) and H460 (ATCC HTB-177) cells were cultured in RPMI1640 medium (Cellgro 
Cat#10-040) supplemented with 10% FBS (Sigma Cat#14009C), 1% penicillin/streptomycin (Mediatech Inc.), 
and 1% L-Glutamine (Corning Cat#25-005). Cell lines were authenticated by STR profiling.  
 
siRNA and v-miRNA screens  
Analysis of v-miRNAs deposited at miRbase 22.1 identified 216 different v-miRNAs encoded by 17 different 
viruses that can be pathogenic to humans (Table S1). 215 of them were synthesized into one 384 plate 
(MIRNA MIMIC 2.0, LIB, 0.25nmol, ThermoFisher). The library of 4096 6mer seed siRNAs were previously 
described (Gao et al., 2018). 196 siRNAs containing the 6mer seeds that are part of the 215 v-miRNAs were 
retested on HeyA8 and H460 cells. All RNA duplexes were screened in 384 well plates as described with one 
modification: they were reverse transfected at a final concentration of 25 nM. All data were normalized to lipid 
only on each plate.  
 
Transfection with short oligonucleotides 
50 µl transfection mix with 0.15 µl RNAiMAX and 10 nM siRNAs or miRNAs were plated. Then cells were 
added in 200 µl antibiotic free medium in a 96 well plate at 1000 cells/well. Custom siRNA oligonucleotides 
were ordered from integrated DNA technologies (IDT) and annealed according to the manufacturer’s 
instructions. In addition to the 4096 siRNAs of the screen the following siRNA sequences were used:  
siNT1modified sense (siCtr): mUmGrGrUrUrUrArCrUrArCrArCrGrArCrUrArUTT; 
siNT1modified antisense (siCtr) : rArUrArGrUrCrGrUrGrUrArGrUrArArArCrCrAAA; 
miR-15a/16-5p6Seed sense: mUmGrGrUrUrUrArCrUrArCrArGrCrUrGrCrUrUTT; 
miR-15a/16-5p6Seed antisense: rArArGrCrArGrCrUrGrUrArGrUrArArArCrCrAAA; 
The following miRNAs and negative controls were used: hsa-miR-15a-5p (Ambion, Cat. No# AM17100, Part 
number PM10235), hsa-miR-16-5p (mirVana® miRNA mimic, Ambion, Cat. No# AM17100, Part Number 
MC10339); hsa-miR-214-3p (Ambion, Cat. No# AM17100, Part Number PM12124); miR-103-3p (Ambion, Cat. 
No# AM17100, Part Number PM10632); kshv-miR-K12-6-5p (Ambion, Cat. No# 4464066; Assay ID MC10307), 
and negative controls and miR-control#1 (mirVana™ miRNA Mimic, Negative Control #1, Ambion Cat. No# 
4464058), and miR-control#2 (miRNA precursor negative controls #1, Ambion, Cat. No# AM17110). 
 
Monitoring cell growth by IncuCyte and cell death assays 
Cells were seeded in a 96-well plate in triplicates. The plate was then scanned using the IncuCyte ZOOM live-
cell imaging system (Essen BioScience). Images were captured every four hours using a 10× objective. Cell 
confluence was calculated using the IncuCyte ZOOM software (version 2015A). To assess cell viability, treated 
cells were subjected to a quantification of nuclear fragmentation or ATP content. To measure the cellular ATP 
content, cells were reverse transfected with siRNAs in a 96 well plate at 1000 cells per well. 96 hours after 
transfection, media in each well was replaced with 70 µl of fresh media and 70 µl of CellTiter‐Glo cell viability 
reagent (Promega). The plates were shaken for 5 min and incubated at room temperature for 15 min. 
Luminescence was then read on the BioTek Cytation 5. 
 
RNA-Seq analysis 
For RNA-Seq data 50,000 HeyA8 cells/well were reverse transfected in duplicate in 6-well plates with 10 nM of 
siRNAs or miRNAs. Cells were lysed 48 hours after transfection using Qiazol. Total RNA was isolated using 
the miRNeasy Mini Kit (Qiagen, Cat.No# 74004) following the manufacturer’s instructions. An on-column 
digestion step using the RNAse-free DNAse Set (Qiagen, Cat.No# 79254) was included for all RNA-Seq 
samples. RNA libraries were generated and sequenced (Genomics Core Facility at the University of Chicago). 
The quality and quantity of the RNA samples were checked using an Agilent bio-analyzer. Paired end RNA-
SEQ libraries were generated using Illumina TruSEQ TotalRNA kits using the Illumina provided protocol 
(including a RiboZero rRNA removal step). The libraries were sequenced on an Illumina HiSEQ4000 using 
Illumina provided reagents and protocols. Adaptor sequences were removed from sequenced reads using 
TrimGalore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore), The trimmed reads were aligned 
to the hg38 version of the human genome, using STAR v2.5.2. Aligned reads were associated with genes 



	
using HTSeq v0.6.1, and the UCSC hg38 transcriptome annotation from iGenomes. Differentially expressed 
genes were identified using the edgeR R package. 
 
Quantitative real-time PCR. Total RNA extraction, RNA quantification and cDNA preparation were done as 
previously described (Qadir et al., 2017). 200 ng of RNA in 20 µl of cDNA reaction volume was used to 
generate cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). The 
expression of CDC25A (Hs00947994_m1), BIRC5 (Hs04194392_s1), CDC6 (Hs00154374_m1), FANCA 
(Hs01116668_m1), and CDCA5 (Hs00969392_g1) was quantified using specific primers from Life technologies. 
The expression levels of target genes were normalized to the reference housekeeping gene, GAPDH 
(Hs00266705_g1). Fold differences were then calculated for each treatment group using normalized CT values 
for the control. The qPCR was run in 96 well qPCR plates with 20 µl of reaction mixtures in AB 7500 Fast Real-
Time system in QuantStudio Real-Time PCR System from Applied Biosystems. 
 
Data analyses 
GSEA was performed using the GSEA software version 3.0 from the Broad Institute downloaded from 
https://software.broadinstitute.org/gsea/. A ranked list was generated by sorting genes according the Log10(fold 
downregulation). The Pre-ranked function was used to perform GSEA using the ranked list. 1000 permutations 
were used. Default settings were used. The ~1800 survival genes and ~420 non-survival genes defined 
previously (Putzbach et al., 2017) were used as custom gene sets. Default settings were used. 
Sylamer analysis (van Dongen et al., 2008) was used to find enrichment of small word motifs in the 3’UTRs of 
genes enriched in those that are most downregulated. 3'UTRs or ORFs were used from Ensembl, version 76. 
For each gene the longest transcript was used as described previously (Putzbach et al., 2017). As required by 
Sylamer, they were cleaned of low-complexity sequences and repetitive fragments using respectively Dust 
(Morgulis et al., 2006) with default parameters and the RSAT interface (Medina-Rivera et al., 2015) to the 
Vmatch program, also run with default parameters. Sylamer (version 12–342) was run with the Markov 
correction parameter set to four. Bonferroni adjusted p-values were calculated by multiplying the unadjusted p-
values by the number of permutations for each length of word searched for.  
The GO enrichment analyses shown in Figure 1D and 1E were performed using the GOrilla GO analysis tool at 
http://cbl-gorilla.cs.technion.ac.il using default setting using different p-value cut-offs for each analysis. GO 
analyses across multiple data sets (Figure 3B) were performed using the software available at 
www.Metascape.org and default running parameters. 
Venn diagrams were generated using http://bioinformatics.psb.ugent.be/webtools/Venn/ using default settings. 
Density plots showing the contribution of the four nucleotides G, C, A and U at each of the 6mer seed positions 
were generated using the Weblogo tool at http://weblogo.berkeley.edu/logo.cgi using the frequency plot setting. 
Analysis of qCLASH data. Data sets on qCLASH analysis of endothelial cells uninfected or infected with KHSV 
were downloaded at GSE101978.The structures of miRNA/target interactions were predicted from CLASH 
hybrid sequences using the program RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi) 
with default parameters.  The resulting Vienna diagrams were sorted into those with a mismatch in the first 
position followed by 6 exact matches, encoded as .((((((. and those with two mismatches followed by 6 exact 
matches, encoded as ..((((((. , henceforth referred to as a 2-7 or 3-8 seed match, respectively. In both cases, a 
trailing mismatch was required at the 3' end. To determine the proportion of noncanonical seed 6mer use, the 
ratio of the number of hybrids containing a canonical or a noncanonical seed was calculated.  
 
Statistical analyses 
Continuous data were summarized as means standard errors and dichotomous data as proportions. 
Continuous data were compared using t-tests for two independent groups. Comparisons of single proportions 
to hypothesized null values were evaluated using binomial tests. Pearson correlation coefficients (r) and p - 
values were calculated using StatPlus (v. 6.8.1).  
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