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Time-reversal symmetry breaking in the
chemosensory array reveals a
generalmechanism for dissipation-enhanced
cooperative sensing

David Hathcock 1,3, Qiwei Yu 1,2,3 & Yuhai Tu 1

The Escherichia coli chemoreceptors form an extensive array that achieves
cooperative and adaptive sensing of extracellular signals. The receptors con-
trol the activity of histidine kinase CheA, which drives a nonequilibrium
phosphorylation-dephosphorylation reaction cycle for response regulator
CheY. Cooperativity and dissipation are both important aspects of chemotaxis
signaling, yet their consequences have only been studied separately. Recent
single-cell FRET measurements revealed that kinase activity of the array
spontaneously switches between active and inactive states, with asymmetric
switching times that signify time-reversal symmetry breaking in the underlying
dynamics. Here, we present a nonequilibrium lattice model of the chemo-
sensory array, which demonstrates that the observed asymmetric switching
dynamics can only be explained by an interplay between the dissipative
reactions within individual core units and the cooperative coupling between
neighboring units. Microscopically, the switching time asymmetry originates
from irreversible transition paths. The model shows that strong dissipation
enables sensitive and rapid signaling response by relieving the speed-
sensitivity trade-off, which can be tested by future single-cell experiments.
Overall, our model provides a general framework for studying biological
complexes composed of coupled subunits that are individually driven by
dissipative cycles and the rich nonequilibrium physics within.

Cellular sensing is resource intensive: signaling networksmust be built
to overcome the large fluctuations and small number statistics typi-
cally present in chemical signals. To deal with this noise, cells integrate
repeated measurements, which are made using a large number of
receptors on the cell surface1,2. The mechanisms for averaging and
copying signals to intracellular carriers often involve burning fuel
molecules, for example, phosphorylation cycles powered by ATP
hydrolysis3–7. The relationships between cell resources (receptors,
signaling proteins, energy) and sensing fidelity have been studied

extensively5–11. In general, increasing the energy input raises the opti-
mal speed and accuracyof cellular sensing. The receptors, however, do
not sense independently: in Escherichia coli, for example, CryoEM
imaging12–15 shows that chemoreceptors and the associated histidine
kinase couple together in a hexagonal lattice and the downstream
signal shows considerable cooperativity16–19. Little is known about how
the signaling response is impactedby the interplaybetweendissipative
chemical cycles, driven out-of-equilibrium by ATP hydrolysis, and the
collective behavior of the receptor lattice.
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We address this question in the context of the E. coli chemotaxis
signaling pathway, where recent single-cell studies provided a new
view into the nonequilibrium dynamics of chemoreceptor lattices19,20.
In the absence of extracellular ligands and adaptationmachinery, cells
spontaneously switch between active and inactive states, which nor-
mally correspond respectively to no-ligand and large ligand con-
centration responses16–19. This behavior is reminiscent of switching
between metastable magnetized states in a finite-size Ising lattice
except for one feature: the time to execute a switch from the active to
inactive states is longer than the reverse process. Asymmetric
switching breaks time-reversal symmetry, indicating that the collective
dynamics of the chemoreceptor lattice are driven by a dissipative
process. However, a quantitative description of the nonequilibrium
dynamics at the receptor cluster level remains missing.

We introduce amodel of the chemoreceptor array that combines,
for the first time, the non-equilibrium properties of individual
receptor-kinase core units with unit-to-unit coupling in an extended
lattice structure. Incorporating these two key features reveals collec-
tive nonequilibrium effects in dynamics and sensing response that are
fundamentally different from equilibrium (e.g., Ising-like) models20–22.

The nonequilibrium lattice displays a rich array of dynamics not
possible in equilibrium: we show that dissipative driving is a funda-
mental requirement for the asymmetric switching observed in
experiments. This result, along with the magnitude of the measured
dwell times between switching events, indicates that the chemosen-
sory array operates near a highly nonequilibrium critical point.
Microscopically, asymmetric switching arises because the lattice fol-
lowsdifferent paths through state-space dependingon the directionof
the switch: inactive to active or vice versa, another tell-tale con-
sequence of time-reversal symmetry breaking in the underlying sys-
tem. Beyond switching dynamics, our study shows that operating out
of equilibrium enhances both the amplitude and the speed of the
sensing response, thus allowing the chemosensory array to respond

swiftly and sharply to changes in the ligand concentration. This high-
fidelity sensing behavior sharply contrasts the response of equilibrium
lattices: fueled by energy dissipation, the chemosensory array can
ease, or even reverse, speed-sensitivity trade-offs that are fundamental
to equilibrium mechanisms9,23,24. More broadly, our model establishes
a framework for describing a variety of biophysical systems compris-
ing coupled subsystems, each driven out of equilibrium.

Results
Nonequilibrium lattice model of the chemoreceptor cluster
Our nonequilibrium lattice model is inspired by the chemoreceptor
arrays found in E. coli, whose core functional unit comprises two tri-
mers of chemoreceptor dimers, one histidine kinase CheA dimer, and
two coupling proteins CheW25. The binding of external signals
(ligands) to the chemoreceptors controls the kinase activity of CheA,
i.e., its ability to phosphorylate the response regulator CheY. The
phosphorylation-dephosphorylation (PdP) cycle is completed by CheZ
catalyzing the dephosphorylation of CheY-P. The core units form an
extended hexagonal lattice on the plasma membrane12–15. The kinase
activity of the core unit depends on both the occupancy of ligands
and the methylation level of the receptors. Recent experimental
evidence17,26,27 favors a nonequilibrium allosteric model10, which
explicitly includes the PdP cycle driven by ATP hydrolysis. None-
quilibrium driving is necessary to explain the disproportionate
shifts in ligand binding and kinase response due to receptor
methylation10,17,26,27. Here, we generalize this model to an extended
lattice by incorporating the PdP cycle of individual kinase with the
cooperative interactions between neighboring core units.

We use aminimal three-statemodel to describe the kinase activity
of core unit-i: ai = 0, −1, and 1 represent the unbound kinase Ai, the
kinase bound to unphosphorylated CheY (AiY), and the kinase bound
to CheY-P (AiYP), respectively. In reality, there are more sub-steps in
the phosphorylation cycle, including CheA autophosphorylation and

Fig. 1 | Nonequilibrium lattice model of the chemoreceptor cluster.
A Illustration of the nonequilibrium receptor cluster model. The kinases form a
square lattice (right panel)with nearest neighbor coupling J. Each kinase is in one of
the three states (blue box) with transition rates indicated on the arrows. The rates
are controlled by three effects: dissipation, coupling, and signal input, described in
the gray box—see main text for details. B Typical trajectory of the total activity

(upper) and the corresponding snapshots (lower). C Activity trajectories (left) and
histograms (right) for different barrier heights ΔEB. D Dwell time distributions for
both active and inactive states are exponential. E Switching time distributions are
asymmetric: switching to the inactive state takes longer. Vertical dashed lines show
themeans of each distribution. Parameters for (C–E): k3= 0.5, J = 1.18, ϵ = e�ΔG=3 =0.
Lattice size: N = 6 × 6.
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phosphotransfer to CheY. Here, we opt for the simplest none-
quilibriummodel with a coarse-grained three-state cycle. As illustrated
in Fig. 1A, for each of the N core units in the lattice, the kinase activity
dynamics can be described by the following reaction cycle,

Binding : Ai +Y"
k3

k�3

AiY,

Phosphorylation : AiY+ATP"
k1

k�1

AiYP +ADP,

Unbinding : AiYP "
k2

k�2

Ai +YP,

ð1Þ

where Ai, Y, and YP represent CheA, CheY, and CheY-P, respectively,
and i = 1, 2,…N labels the core units. The transition rates k±i (i = 1, 2, 3)
are controlled by three effects: energy dissipation, coupling (coop-
erativity) between neighboring signaling units, and allosteric signaling
due to ligand binding and receptor methylation (gray box in Fig. 1A),
which we describe in the following paragraphs.

Energy dissipation due to ATP hydrolysis drives each core unit out
of equilibrium. Completing the PdP cycle consumes one ATPmolecule
with free energy dissipation

ΔGATP =ΔG+ΔGz = ln
k1k2k3

k�1k�2k�3
+ ln

kz

k�z
, ð2Þ

withΔG andΔGzbeing the contributions from the kinase reaction cycle
of the core unit and the dephosphorylation by CheZ, respectively. For
studying the dependence of lattice dynamics on dissipation, we
assume the reverse transition rates scale identically: k−i = kie−ΔG/3 ≡ kiϵ.

The core units in the chemosensory array sense cooperatively,
which is captured by nearest neighbor coupling with strength
J (Fig. 1A). We use a square lattice for simplicity, but the switching
behavior is robust to lattice structure and size (see Supplementary
Information (SI), section II). The effective field due to nearest neighbor
kinase hi = J∑jaj scales the forward phosphorylation rate for kinase i:
k1 ! k1e

hi . To maintain thermodynamic consistency in the PdP cycle,
k−2 and k−3 are also scaled by ehi=2. We set k2 = 1 to fix the unit of time.
CheY-P is dephosphorylated in solution at rate kz with the reverse
rate k−z.

The kinase activity of CheA is controlled allosterically by ligand
occupancy and methylation state of the receptors. A recently pro-
posed nonequilibrium allosteric model10 suggests that ligand binding
and receptor methylation affect kinase activity in different ways:
binding to the receptors acts as an ON/OFF switch for the kinase, while
methylation shifts the energy barrier for the phosphorylation reaction
in the ON state. Together these effects can be captured by an effective
barrier shift ΔEB that scales the forward and reverse phosphorylation
rates: k ± 1 = k

0
± 1 expð�ΔEBÞ, where k0

± 1 are the rates correspond to
equal occupancy of the active and inactive states. If the relation
between receptor conformation and occupancy is described by the
Monod-Wyman-Changeux (MWC) model10,28, the effective barrier
shift is

ΔEBðm, ½L�Þ=n αðm�m0Þ+ ln
1 + ½L�=Ki

1 + ½L�=Ka

� �� �
: ð3Þ

The first term corresponds to the direct barrier shift due to methyla-
tion m, with slope α and intercept m0. The second term describes the
effective barrier shift due to the fraction of bound receptors: [L] is
the ligand concentration, and Ki (Ka) is the dissociation constant for
the inactive (active) receptor.Both contributions areproportional ton,
the effective receptor cluster size felt by the kinase within a core unit.
In analogy to the Isingmodel,ΔEBplays the role of an externalfield that
modulates the activity of the entire lattice. In this study, we isolate the

lattice response properties by directly tuning ΔEB, which can describe
the response to both [L] and m. Measurements of core-unit
response29,30 will be useful for determining the phenomenological
MWCparameters in Eq. (3) or amore precisemicroscopicmodel of the
core unit in future work (see Discussion).

The dynamics of the lattice are simulated using the Gillespie
algorithm31. We focus on the kinase states and do not simulate the
dephosphorylation step explicitly; instead, the intracellular con-
centrations of CheY, CheY-P, ATP, and ADP are held constant and
absorbed into pseudo-first-order reaction rates. With a sufficiently
strong coupling (J > Jc), the system undergoes two-state switching
similar to the measured activity switching in E. coli20. As shown in
Fig. 1B, the two-state switching behavior can be readily detected in the
time trace of the order parameter (lattice activity) ah i=N�1P

iai, along
with snapshots of the lattice at various times. Following the notation
from the experimental work20, we define dwell times t± to be the time
spent in the active and inactive states, respectively, and the switching
times τ± as the duration of transitionbetween these twostates (Fig. 1B).
The average activity can be controlled by modulating the effective
barrier ΔEB (via ligand concentration and/or receptor methylation):
lowering the energy barrier enhances activity (Fig. 1C). Consistent with
experiments, the dwell times are exponentially distributed (Fig. 1D),
while the switching time distributions are peaked, right skewed, and
asymmetric (Fig. 1E).

Chemoreceptor array operates near a highly nonequilibrium
critical point
The nonequilibrium lattice model lets us identify the key ingredients
that lead to the asymmetric two-state switching observed in E. coli
chemoreceptor arrays20. In mutants containing only serine-binding
receptors (Tsr) or aspartate receptors (Tar) and for cells without
activity bias (i.e., equal dwell times in the active and inactive states), the
measurements found a switching-to-dwell-time ratio of 0.08−0.12 and
a switching time asymmetry of 25−35%20. As illustrated below, the large
asymmetry implies that the system operates far from equilibrium,
while the switching-to-dwell-time ratio evidences proximity to
criticality.

The observed switching time asymmetry requires strong dissipa-
tion. The switching time distribution is determined by the ensemble of
transition paths: trajectories that go from one state (e.g., inactive) to
the other (active) without returning to the source32. For equilibrium
systems, time-reversal symmetry establishes a one-to-one correspon-
dence between forward andbackward trajectories. Thus, the transition
path ensembles are equivalent, resulting in identical switching time
distributions. This symmetry has been shown explicitly in specific
cases33. Therefore, the disparity between forward and backward
switching time distributions in the E. coli measurements20 and in our
model (Fig. 1) is a clear signature of the underlying dissipative driving
breaking time-reversal symmetry. Here, the driving is provided by ATP
hydrolysis through ΔG: indeed, reducing dissipation reduces the
switching time asymmetry (Fig. 2A).

Varying both dissipation and coupling strength (Fig. 2C) reveals
that the switching time asymmetry depends only weakly on coupling
strength J, while strong dissipation (ϵ= expð�ΔG=3Þ≪1) is always
required. In the large dissipation limit and for lattice size N = 36, the
model produces a 20% asymmetry; see the discussion below regarding
the N-dependence of the switching asymmetry. The remaining asym-
metry observed in the experiments may be accounted for by con-
sidering the dephosphorylation reaction, neglected in our simulations.
Switching asymmetry resulting from the difference between the
timescales for dephosphorylation and phosphorylation (and other
possible asymmetries in the FRET reporter kinetics) can be estimated
by comparing responses to saturating attractant and repellent signals.
The difference in response timescales is approximately 0.5 s34,
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accounting for about 10% additional asymmetry20. Furthermore, the
asymmetry in ourmodelmay be anunderestimate because the coarse-
grained three-state reaction cycle used here neglects intermediate
chemical reactions. Coarse-graining is known to lower the dissipation
rate in chemical networks35,36 and, hence, may also decrease switching
asymmetry.

The observed switching-to-dwell-time ratio indicates proximity to
criticality. Two-state switching only emerges when the coupling is
above a critical strength (J > Jc). This critical coupling depends both on
the dissipation level and the competition of timescales determined by
kinetic rates. As we show in the mean-field limit (see SI, section I), the
critical coupling Jc, in general, varies non-monotonically with the
dissipation.

In equilibrium barrier crossing problems, the dwell time grows
exponentially with the energy barrier37 while the transition time grows
much slower38,39. Here, we find similar relations: as the coupling
strength increases away from the critical point, the dwell times grow
exponentially while the switching times are saturated for large J
(Fig. 2B). The switching-to-dwell-time ratio shrinks exponentially away
from the critical point (inset). Therefore, the measured ratio between
switching and dwell times provides an indirect measure of how
strongly the chemoreceptors are coupled.

Varying both dissipation and coupling reveals that the switching-
to-dwell-time ratio depends primarily on the distance of the coupling
strength from its critical value Jc(ϵ) and decays exponentially as J grows
(Fig. 2D). To observe spontaneous switching on an experimental
timescale, the cells must therefore operate in reasonable proximity to
the critical point: otherwise, dwell times become exponentially long
compared to the switching time and can not explain the observed
switching-to-dwell-time ratios, τ ±

� �
= t ±
� � � 0:10.

Finite-size scaling of switching timescales. The qualitative features
of the asymmetric two-state switching described in this section are
preserved for larger lattice models, across the range of the size of
native chemoreceptor arrays. Specifically, there is always a parameter
range inwhich the lattice exhibits two-state switchingwith asymmetric
switching times, though the magnitude of the asymmetry decreases
with lattice size. Further, the qualitative dependence of switching
timescales on dissipation and coupling (Fig. 2C, D) is preserved in
larger lattices (Supplementary Fig. S6). In particular, the switching
asymmetry vanishes in the equilibrium limit (Δτ∣ΔG=0 =0, see Fig. 2A)
regardless of lattice size. Therefore, significant energy dissipation is
necessary for qualitatively explaining the observed asymmetry in
switching times, regardless of kinetic details and lattice size, which can
affect the asymmetry quantitatively.

For fixed parameters, we find that the relative switching
asymmetry decreases with lattice size N (Fig. 2E), roughly following
a power law (inset). Similar scaling is seen in the mean-field theory
with the switching/dwell time ratio fixed (see SI section II C-D for
additional results). The magnitude and scaling with N depend on
kinetic features (e.g., the number of intermediate enzyme states and
the kinetic rates) and connectivity (lattice model versus mean-field
limit). It is, therefore, likely that generalizations of our model that
incorporate more details of the kinetic network and biological
structure could quantitatively explain the experimentally observed
switching statistics even in large lattices (see Discussion). Since
multiple adjacent core signaling units can act concertedly, the
effective lattice size may also be much smaller than the total num-
ber of core signaling units, as previously suggested by Keegstra
et al.20. It is also possible that the two-state switching cells in this
experiment tend to have fewer core units than the population
average since they were observed to only form a single cluster.

Fig. 2 | Time statistics of two-state switching. A Switching times τ± and switching
asymmetryΔτ= τh i (inset) as a function of dissipationΔG.B Switching (τ±) and dwell
times (t±) and the switching/dwell time ratio ( τ ±

� �
= t ±
� �

, inset) as a function of
lattice coupling J. The shaded region in the inset shows the range of experimentally
measured switching/dwell time ratio20. C, D Switching time asymmetry (C) and
switching/dwell time ratio (D) as functions of J and ϵ = e−ΔG/3. Thewhite bins lie below
the critical coupling Jc(ϵ) with no two-state switching. Contours show constant
asymmetry (black) and switching/dwell ratio (white). Experimentally measured

switching statistics require large dissipation (ϵ ≈ 0) and proximity to the critical
point (J ≳ Jc). Parameters: (A) J = 1.1, k3= 1.0; (B) ϵ =0.01, k3= 0.5; (C, D) k3= 0.5;
(A–D) lattice size N = 6 × 6. E Switching time asymmetry and (F) switching/dwell
time ratio versus the lattice size N. These results are in the infinite dissipation limit
(ϵ→0),withfixed k3 and J as indicated by legends. The inset of (E) shows asymmetry
versus N in the log-log scale. See Supplementary Information section II subsec-
tions C–D for additional results onN-dependenceof switching timescales (in lattice
and mean-field models).
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Again such questions can be probed in future studies via structure-
based modeling.

Surprisingly, the switching/dwell time ratio increases with N
(Fig. 2F). The increase is due to the critical coupling Jc increasing with
lattice size N. While proximity to criticality is essential for observing
switching, we find that the coupling strength J can still vary within a
reasonably relaxed range near the critical point (see SI section II C-D)
to explain the experimentally observed switching-to-dwell-time ratio
(0.08–0.12).

Microscopic origin of asymmetric switching
Our model provides insight into the microscopic origin of the
switching time asymmetry: depending on the direction of switching,
transitions take distinct paths through the lattice state space. This can
be illustrated by projecting the average transition paths onto a plane
spanned by the fraction of core units in the AYP (N1/N) and AY (N−1/N)
states, respectively. In the irreversible limit (Fig. 3, lower triangle),
trajectories toward the inactive state (red) tend to take paths through
the lower left region of state space (where the number of a = 0 core-
units, N0 =N − N−1 − N1 is large), whereas trajectories toward the active
state (white) run closer to the diagonal. This behavior is intuitive
because, in the underlying three-state cycle (Fig. 1A), the core unit
moves through the0-state on theway to the −1 inactive state,while the
transition from −1 to 1 is direct. The difference in switching trajectories
is discernible from snapshots of the lattice simulations (Fig. 1B): when
switching to inactive, a considerable fraction of the kinase occupies
the 0-state compared to the forward switches to the active state.

Keegstra et al. found switching-time distributions were well
described by gamma distributions, Gamma(α, β)20, which is the dis-
tribution of times to execute an α-step process with rate β for each
step. Thus, α can be used as a proxy for the number of independent
timescales underlying the switching process. The larger fit α for
switching to the inactive state versus switching to the active state (2.45
versus 1.72 for Tsr and 2.74 versus 1.87 for Tar20) reflects the presence

of more mixed timescales in the backward switch, consistent with
our model.

In the absence of dissipative driving, the state-space trajec-
tories during switching are identical (Fig. 3, upper triangle), a con-
sequence of time-reversal symmetry. In this case, the microscopic
cycles are symmetric (Fig. 1A): the core units are equally likely to
transition clockwise or counter-clockwise regardless of the direc-
tion of switching.

Dissipation enhances the sensing response properties of the
chemosensory array
The spontaneous asymmetric switching considered above was
observed in cells without extracellular ligands and adaptation
machinery20. Howdoes the nonequilibriummechanismunderlying the
asymmetry affect the sensing properties of the receptor cluster?
Recent studies10,17,26,27 provide strong evidence that the receptor
complex acts as an enzyme exerting kinetic control: both ligand con-
centration and receptor methylation affect the kinase activity by
modulating the effective phosphorylation energy barrier (Eq. (3)).
Thus, the signal input is a shift in the effective barrier ΔEB induced by
changes in the extracellular ligand concentration [L]. The output is the
intracellular CheY-P concentration, which is proportional to the frac-
tion of active kinase. Herewe focus on the response on amuch shorter
timescale than adaptation feedback.

In our model, ΔEB controls the overall lattice activity ah i with a
sigmoidal response curve (Fig. 4A) reminiscent of E. coli’s activity
response to varying ligand concentration16,17,19. The response functions
for other order parameters, e.g., N1=N

� �
or N�1=N

� �
have nearly

identical behaviors to all results in this section (see SI, section II).
Consistent with previous work10, the response amplitude increases
with dissipation and vanishes in the equilibrium limit, where the steady
state is unaffected by the kinetic barrier shift. The zero-field suscept-

ibility χ = � ∂hai
∂ΔEB

∣
ΔEB =0

also increases monotonically with dissipation

(Fig. 4A, inset). The sharp response in the large dissipation limit is
reminiscent of a nonequilibrium ultrasensitivity mechanism proposed
for the E. coli flagellar motor switch40. In the following sections, we
demonstrate that dissipation enhances response both in the linear
(small ΔEB) and nonlinear (large ΔEB) regimes.

Linear regime: dissipation improves the speed-sensitivity trade-off.
Small signals (ΔEB≪ 1) induce changes in activity proportional to ΔEB,
with susceptibility χ defined above. The sensitivity to changes in ligand
concentration can be quantified by an effective Hill coefficient
H = 2d log ~a

� �
=d log½L�, with ~a

� �
= ðamax � ah iÞ=ðamax � aminÞ being the

normalized activity. Using Eq. (3), the maximum sensitivity is (Sup-
plementary Information, section 1, B),

Hmax = 4A
�1nχ, ð4Þ

where A=amax � amin is the total response range. The response speed
is defined as τ−1, with the relaxation time τ obtained by fitting the
activity to an exponential relaxation process.

Tuning the coupling J leads to a trade-off between speed and
sensitivity (Fig. 4B). At strong coupling, a large response amplitude
arises fromflipping the entire systemaltogether (e.g., fromall-active to
all-inactive). However, this comes at the cost of slow speed since the
dwell time in each state increases exponentiallywith coupling (Fig. 2B).
IncreasingdissipationΔG improves the trade-off, pushing the curves to
the upper right and allowing for higher sensitivity at a fixed response
speed (and vice versa). Moreover, dissipation also decreases the slope
of the trade-off curves so that increasing sensitivity has a smaller cost
in speed.

Fig. 3 | Irreversible switching paths underlie the switching time asymmetry.
Mean forward (white) and backward (red) switching trajectories from lattice
simulations projected onto the (N1, N−1)-plane. The lower triangle shows the fully
irreversible limit (ΔG → ∞) with asymmetric switching paths, and the upper triangle
shows the reversible limit (ΔG =0)with symmetric paths. Thebackground contours
show the steady-state probability distribution. Active and inactive regions of state
space are defined using fixed activity thresholds with constant 〈a〉 = (N1 − N−1)/N
(gray dashed lines). Trajectories, the mean-field limit, for which the state-space is
exactly the (N1, N−1)-plane, are qualitatively identical (see SI).
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Varying dissipation at fixed coupling leads to another speed-
sensitivity trade-off (Fig. 4C): increasing dissipation amplifies the
response amplitude (solid lines) at the cost of slower response speed
(dashed lines). Therefore, improving the trade-off in Fig. 4B requires
simultaneously varying J and ΔG: for example, enhancing sensitivity at
a fixed response speed requires increasing dissipation ΔG while redu-
cing coupling J to compensate for the loss in speed. Beyonddissipation
and coupling, tuning the relative timescales in the phosphorylation
cycle (e.g., by modulating k3) can also improve the speed-sensitivity
trade-off (see SI, section II).

Nonlinear regime: dissipationenables sensitive and rapid response.
In the nonlinear regime, with sufficiently large ΔEB, the barrier in the
effective energy landscape disappears. This leads to an even more
favorable situation in which dissipation not only increases the
response amplitude Δ ah i but also speed τ−1 (Fig. 5A). Indeed, sweeping
across a wide range of dissipation and barrier shifts (Fig. 5B) reveals
that dissipation enables a significant speed-up in response in the
nonlinear regime.

The speed enhancement in the nonlinear regime can be under-
stood analytically by using mean-field theory. As shown in the (J, ΔEB)-
plane (Fig. 5C), for a givenΔG, the systemexhibits two stable stateswhen
the coupling strength is larger than some threshold Jth: J > Jth(ΔEB, ΔG)
(black line). The threshold coupling Jth is determined by the onset of a
saddle-node bifurcation that eliminates the energy barrier between the
two states (see SI, section I). For J> Jth, a large signal can cause the system
to cross the phase boundary and transition to a fully active or inactive
state rapidly since the energy barrier is eliminated. As ΔG increases
(from yellow to blue), Jth increases, thereby reducing the signal (ΔEB)
required to cross the phase boundary and trigger a rapid response.

It is, however, not always possible to cross the phase boundary.
The phase boundaries for finite ΔG have finite asymptotes
Jc± ≡ Jth(ΔEB → ±∞) (see SI, section I). Above Jc±, the kinase active or
inactive states become super stable: they cannot bedestabilizedby any
external ligand signal. In this case, the response, even to very strong
signals, is slow because it is limited by the dwell times of the two stable
states.

The two limiting thresholds Jc+ and Jc−(< Jc+), along with
Jc ≡ Jth(ΔEB → 0), divide the parameter space into four regions (Fig. 5D).
The ultra-switchable region J ∈ (Jc, Jc−) (shaded) is the most desirable
since it offers rapid cooperative response to both activating or inhi-
biting signals. Conversely, systems in the region J ∈ (Jc−, Jc+) respond
slowly to activating signals, while beyond Jc+, the response is slow in

both directions. Increasing dissipation opens up the ultra-switchable
region, enabling a rapid response that is robust to perturbations in the
coupling strength.

Discussion
Energy dissipation eases trade-offs betweenbiological functions
Our results show that the dynamics and response properties of
nonequilibrium lattices are fundamentally different from those of
equilibrium lattices: dissipation enables time-reversal symmetry
breaking in fluctuation-driven spontaneous switching and enhances
sensing fidelity. In particular, the nonequilibrium lattice model
explains the observed asymmetric spontaneous activity switching in
E. coli19,20. The dissipation underlying these dynamics improves the
speed-sensitivity trade-off in chemotaxis signaling. Our work, there-
fore, supports an emerging general principle: operating out of equili-
brium as a mechanism for relieving trade-offs between important
biological functions. On its own, energy dissipation is responsible for
enabling ultrasensitivity in many biological systems40. Optimizing
sensitivity, however, often comes with a trade-off for other functional
goals such as noise suppression23,24 and collective motion41. By break-
ing the fluctuation-dissipation theorem23,42, dissipation has been
shown to ease these trade-offs, thereby enabling high sensitivity and
low noise in biochemical oscillators24, as well as high sensitivity and
speed in flocking41.

The speed-sensitivity trade-off predicted by our model can be
experimentally tested by correlating single-cell kinase response mea-
surements (amplitude and speed) with two-state switching measure-
ments. For cells exhibiting unbiased switching in the absence of
ligands20, the ratiobetween switching anddwell times is a proxy for the
coupling strength J. We expect this coupling is negatively correlated
with response speedbut positively correlatedwith sensitivity as shown
in Fig. 4B.

Another non-trivial prediction from our model is the speed-up in
response to larger dosages of chemoattractants, a counterintuitive
phenomenon analogous to the Mpemba effect43. This could similarly
be tested by measuring time-dependent kinase response to different
dosages of chemoattractants or repellents. It will be interesting to see
whether the observed speed-ups follow the roughly quadratic shape
shown in Fig. 5B. For large systems, the quadratic coefficient diverges
as the coupling approaches the critical point; therefore, this mea-
surement may provide an alternative characterization of whether
E. coli operates near criticality.

Fig. 4 | The activity response functions of the nonequilibrium chemosensory
array to external signals [L], transmitted via modulating the effective phos-
phorylation energy barrier ΔEB([L]). A The change in activity ah i due to an
external signal ΔEB([L]) for various dissipation levels ΔG. The inset shows the sus-
ceptibility χ = � ∂hai

∂ΔEB
∣
ΔEB =0

.B Linear response speed τ−1 versus susceptibility χ. Each
line represents a fixed dissipation level ΔG (see inset legend) with different

couplings J. Large dissipation improves the speed-amplitude trade-off. C At fixed
coupling J and in the linear regime (ΔEB≪ 1), increasing dissipation ΔG enhances
susceptibility (solid lines) at the cost of response speed (dashed lines). For (B, C),
susceptibility is computed by χ = � Δ ah i

ΔEB
with a small applied field ΔEB = −0.1; τ is

obtained by fitting the exponential relaxation of the activity
ah iðtÞ= ah i1 +Δ ah ie�t=τ . We use k3 = 2.5 in all panels.
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Further, it may be interesting to search for superstable states by
comparing response or switching dynamics in the presence of attrac-
tants and repellents. This measurement would be most interesting
when combined with partial ATP depletion (e.g., using NaCN44) since
the superstable states are more prominent in the low dissipation
regime (Fig. 5D). These quantitative measurements would provide key
new insights into how dissipation and array structure affect chemo-
taxis response.

Incorporating microscopic structure for high-fidelity models of
the chemosensory array
Looking forward, our model serves as a starting point for developing
high-fidelity models of the chemosensory system, both in E. coli and
similar bacteria, based on the detailed structural information from
CryoEM imaging12–15. Incorporating these details should not generally
impact the qualitative behavior of the model: the underlying none-
quilibrium cycles still break time-reversal symmetry, and this dissipa-
tion will enhance signaling performance. However, such models will
reveal the quantitative impact of biological structure on signaling
function: in particular, the resulting cooperativity, response speed,

adaptation accuracy, and the influence of dissipation on each of these
key properties.

To this end, a number of recent experiments provide quantitative
data that will constrain parameters (such as the coupling strengths
between different components of the array) in structure-based mod-
els. Structural details can be incorporated at multiple levels: both
within the core unit (which we have taken as the nodes in our lattice
model) and in the coupling between core units. For the former, the
response of mixed receptor (Tar and Tsr) core complexes to both
serine and aspartate have beenmeasured for all possible compositions
of trimers of dimers29. These measurements should clarify how dif-
ferent combinations of receptors impact the effective barrier shift
[Eq. (3)] that propagates ligand and methylation signals to the kinase.

The kinase-baseplate can assemble in multiple ways: most com-
monly observed is the canonical p6-symmetric hexagonal lattice
structure, but various bacteria (including E. coli) also exhibit arrays
with p2 symmetry45,46. While we have shown here that lattice structure
does not qualitatively impact the dynamics of the system, it may play
an important role in determining the level of cooperativity in signaling
response. In particular, in p2 arrays, core units combine with a single

Fig. 5 | Nonlinear response and phase diagrams. A Response amplitude Δ ah i
(solid lines) and response speed τ−1 (dashed lines) as functions of dissipation ΔG at
large external signals ΔEB([L]). B The response speed as a function of the barrier
shift ΔEB([L]) for different dissipation levels.CHeatmapof the phase boundaries in
the (ΔEB, J)-plane for different dissipation levels. The black line indicates the
boundary Jth(ΔEB) for ϵ =0.5. The insets illustrate the effective free energy land-
scape F = � ln P: above the phase boundary, the system exhibits two-state
switching (two minima), while below it has a single state (one minimum) with

activity depending on the barrier shift ΔEB. For ϵ >0 (ΔG finite), the boundary has a
finite asymptote Jth(ΔEB) → Jc± as ΔEB → ±∞. D Phase boundaries (blue) in the (ϵ, J)-
plane for two-state switching Jc and super-stable states Jc± (k3 ≫ 1 limit). Operating
out of equilibrium (ΔG≫ 1) gives the largest range of coupling where the system is
ultra-switchable: with bistability that can be eliminated by a barrier shift in either
direction. Tuning the balance of timescales (e.g., via k3) shifts the boundaries, but
the ultra-switchable region still expands with increasing dissipation (see SI,
section I).
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ring structure via CheA-CheW interactions, while p6 arrays have an
additional six-membered CheW ring, whose presence enhances
cooperativity and sensitivity47. The CheW hexamer, therefore, intro-
duces a secondary coupling between core units, which could easily be
added to our model to study its signaling implications. Because the
CheW ring interacts with a specific receptor in the trimer of dimers,
this secondary coupling could also be incorporated alongside the
detailed core-unit model described above.

The role of CheW in chemosensory array dynamics is not fully
understood. It has been established, for example, that lowering CheW
expression levels leads to disorder in the cluster structure, which in
turn lowers the downstream kinase response48. There is evidence that
similar changes in structure can be actively induced by the signaling
state: long duration of sustained ligand stimuli causes the arrays to
locally fall apart, due to disruption of the interface II coupling between
CheWandCheA30,49. This effect could be introduced into ourmodel by
adding a weak state dependence to the coupling strength. Feedback in
the coupling may have interesting interactions with the dissipative
driving from the phosphorylation-dephosphorylation cycle, which will
be an exciting topic for future study. Whether these array dynamics
play a functional role in signal processing remains an intriguing open
question. Finally, modification of coupling constants impacts the
activity bias in our model, which may provide an indirect mechanism
for sensing non-conventional ligands that do not bind to receptors.

Besides the physical structure of the array, there is also an
opportunity to incorporate increasingly detailed models of the
underlying chemical reaction cycles. Specifically, the phosphorylation
pathway involves a more intricate set of reactions than the three-state
cycle considered here, including auto-phosphorylation of CheA and
phosphotransfer to CheY, which occur on different domains of
CheA50,51. These details introduce additional sources of irreversibility
into the dynamics, which may explain the larger switching asymmetry
observed in experiments compared to our simplified model. Incor-
porating the full reaction cycle into a lattice model will also shed new
light on how specific components of the phosphorylation pathway are
modified by ligand binding and methylation.

Nonequilibrium lattices for modeling biological function and
critical phenomena
Beyond chemotaxis, our nonequilibrium lattice model provides a
novel framework for studying the dynamics and response properties
of biological complexes composed of interacting subunits that are
individually driven out of equilibrium by a dissipative cycle. In parti-
cular, the connectivity structure and kinetic network can be adapted
for modeling a variety of biophysical systems. Potential applications
include a broader range of signal transduction networks involving
receptor clustering, such as EGF-receptors52 or G-protein coupled
receptors53, critical cell membrane dynamics54, actomyosin cortex55,
and large protein complexes such as the cytoplasmic ring in bacterial
flagellar motor56, the cooperative KaiC hexamer57 in circadian clock of
Cyanobacteria and other ATPase58.

By introducing a minimal model for an extended lattice with
coupled dissipative units, this work provides a platform for addressing
crucial theoretical questions. For example, how does the subunit dis-
sipative cycle affect the emergent dynamics and signaling capabilities
of the entire lattice? Would it be possible to employ a nonequilibrium
renormalization group approach59,60 to characterize the critical points
and identify universality classes? The answer to these questions may
generate important insights into nonequilibrium phase transitions
driven by microscopic dissipative cycles.

Data availability
The data presented in this study are available in the paper and its
Supplementary Information as well as the GitHub repository61: https://
github.com/qiweiyuu/NoneqLatticeChemotaxis.

Code availability
The code for simulating the nonequilibrium lattice model using Gille-
spie algorithm is available in the GitHub repository61: https://github.
com/qiweiyuu/NoneqLatticeChemotaxis.
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