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Abstract: Chronic obstructive pulmonary disease (COPD) is characterized by long-term airflow
limitation. Early-onset COPD in non-smoker subjects is≥60 years and in the elderly is often associated
with different comorbidities. Cognitive impairment is one of the most common feature in patients
with COPD, and is associated with COPD severity and comorbidities. Cognitive impairment in
COPD enhances the assistance requirement in different aspects of daily living, treatment adherence,
and effectual self-management.This review describes various bioactive compounds of natural marine
sources that modulate different targets shared by both COPD and cognitive impairment and
hypothesizes a possible link between these two syndromes.

Keywords: COPD; cognitive impairment; management strategy; marine bioactive compound;
systems approaches

1. Introduction

Chronic obstructive pulmonary disease (COPD) causes chronic airflow limitation, breathlessness,
exercise intolerance, cough, difficulty with daily activities, infections, and (re)hospitalization [1]. COPD
pharmacological therapies are merely symptomatic, and not effective in disease modification and
survival [1]. COPD is a multisystem disease, with effects beyond the lung and is associated with
symptom burden and prognosis [2]. Many people with COPD have multiple other disorders [2].
The incidence of COPD in the general population is still increasing, and with an ageing population,
this number is expected to increase further [3]. COPD is more prevalent in subjects older than
65 years of age. The onset of the disease is complex; multiple causes beyond smoking contribute to the
development of COPD, such as environmental exposure, age-related degenerative changes, and genetic
factors [4]. Thus, in elderly people, COPD is the result of different continuous gene–gene (G × G)
and gene–environment (G × E) interactions that happen in the course of the life of a single person.
COPD occurring at an earlier age than expected may result from the interaction of inherited factors and
environmental exposures [5]. A seminal prospective study, published on 2014, of individuals 70 years
and older, associates COPD with an increased risk of a-MCI or NA-MCI (mild cognitive impairement
(MCI); amnestic MCI (a-MCI), and nonamnestic MCI (NA-MCI)). Moreover, the greatest risk for a-MCI
and NA-MCI is among individuals with a duration of COPD longer than 5 years [6]. All of these data
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bring to light the importance of COPD as a risk factor for a-MCI and NA-MCI, highlighting the need
for early intervention, to prevent or delay MCI onset and/or progression.

2. Mild Cognitive Impairment

The concept of MCI is evolving overtime, from the first definition of Reisberg and collaborators
in the late 1980s [7–14], who considered MCI as an intermediate stage between normal ageing and
dementia, to the definition of the National Institute on Aging-Alzheimer’s Association (NIA-AA)
working group in 2011, who proposed new criteria for MCI [14]. The NIA-AA assumes that the decline
in multiple (cognitive) domains, and single non-memory domain subtypes, are greater than would
be expected considering the patient’s age, gender, and educational background [14]. The NIA-AA
suggests that biomarkers may be used in research settings to aid in the identification of MCI subtypes
(i.e., MCI due to AD or MCI that is unlikely due to AD). MCI matches to mild neurocognitive disorder
in the new Diagnostic and Statistical Manual of Mental Disorders, fifth edition, (DSM-5). DSM-5 is
the taxonomic and diagnostic tool published by the American Psychiatric Association (APA) that,
in the United States, serves as the principal authority for psychiatric diagnoses and neurological
disorders. [9]. A differentiation between MCI with amnestic MCI (a-MCI) or without impairments in
memory domain is assumed (NA-MCI, (e.g., executive control, language, or visuospatial abilities)).
Moreover, whereas a-MCI is presumed to have a high risk of converting to AD, subjects with NA-MCI
have a high risk of converting to non-Alzheimer’s dementia [10]. Longitudinal studies have shown
that MCI patients may return to a non-MCI diagnosis after some years [11,12]. These findings may
imply either that MCI is a high risk but transient phase, or that diagnosis and/or screening is still
unfocused. Indeed, different genetic and environmental factors may contribute to MCI [13].

Actually determining the primary underlying etiology of MCI is still a challenge, and is strictly
dependent to the patient’s history. Some neuroimaging, genetic, and neuropsychological assessment
may be considered as suggested by NIA-AA (see Table 1) [8,14–22].

Table 1. Biomarkers to assess mild cognitive impairement (MCI) according to National Institute on
Aging-Alzheimer’s Association (NIA-AA) [14].

Markers Methodology References

AD PATHOLOGY

Biomarkers of amyloid
(Aβ) deposition

-Cerebrospinal fluid (CSF) concentrations of Aβ42
(decreased CSF Aβ42 levels)
-Positron emission tomography (PET) amyloid
imaging

[14,15]

Biomarkers of neuronal injury

-CSF concentrations of /phosphorylated(increased
CSF/p levels)
-Hippocampal volume or medial temporal atrophy or
rate of brain atrophy measured by structural MRI
-Decreased glucose metabolism in temporoparietal
regions on fluorodeoxyglucose PET imaging

[15–17]

Presence of AD genetic risk factors Variation in apolipoprotein E
gene located on chromosome 19 [18,19]

LEWY BODY PATHOLOGY

-Visual hallucinations
-Parkinsonism
-Motor features (bradykinesia, rigidity)
-Rapid eye movement during sleep
-Abnormalities suggesting pathological
processes associated with dementia and
with Lewy bodies (DLB)

[20]
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Table 1. Cont.

Markers Methodology References

VASCULAR DISEASE

Multiple vascular risk factors
suggesting pathological processes
associated with vascular dementia

-Presence of extensive
cerebrovascular disease evident by structural MRI
-“Step-wise” decline

[21]

FRONTOTEMPORAL DEGENERATION

-Frontal lobe atrophy evident by structural MRI
-Decreased glucose metabolism in the frontal and
temporal lobes evident by PET
-Mutations in the microtubule-associatedprotein gene
on chromosome 17

[22]

Currently, there are no accepted pharmacologic treatments for MCI approved by the FDA (U.S.
Food and Drug Administration), the EMA (European Medicines Agency), or the Pharmaceuticals and
Medical Devices Agency in Japan. Table 2 reports the effect of different drug approaches on MCI,
according to the Agency for Healthcare Research and Quality (USA) [23].

Table 2. Overview of different interventions in adults with MCI.

Intervention Rationale Key Message References

Nutraceuticals

Targeted pathways include:
-reducing oxidative stress and chronic
inflammation
-improving vascular function
-supplementing macronutrients found in
brain tissue and used in brain function

Few studies examined the effects of
nutraceuticals on adults with MCI (i.e.,

omega-3, fatty acids, ginkgo biloba)
[24–26]

Hormone therapy Speculation of the relationship between
the pituitary endocrine axis and aging

-Low-strength evidence suggests that
estrogen therapy may slightly increase
the risk of probable MCI
-Low-strength evidence suggests that
faloxifene may decrease the risk of MCI
compared to placebo
-No effect of soybean-derived
phosphatidylserine
-Hormone therapy has been associated
with serious adverse events, including
increased risk of certain cancers and
cardiovascular disease

[27,28]

Vitamin(s)
In the case of B vitamins the targeted
pathway may involve lowering of
homocysteine levels

-Moderate-strength evidence shows no
benefit in cognitive performance for
vitamin E in women
-B vitamins show mixed findings
-Low-strength evidence shows no
benefit in cognitive performance for
multivitamins, vitamin C (in women),
vitamin D with calcium (in women), or
-carotene (in women)
-Low-strength evidence shows no
benefit in incident MCI for
multivitamins or vitamin D
with calcium
-In adults with MCI, low-strength
evidence shows no benefit for vitamin E

[29–33]
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Table 2. Cont.

Intervention Rationale Key Message References

Antihypertensive

Hypertension is thought to contribute to
risk of both vascular and AD dementia
through unclear vascular mechanisms.
Presumably hypertension is the cause or
result of vascular changes in the blood
supply to the brain that can adversely
affect its function.
It remains unclear whether this is a direct
effect or the result of other factors that
affect both the vasculature and the brain.

Generally, low-strength evidence shows
that 3 to 4.7 years of antihypertensive
treatment regimens versus placebo
appears to have no benefit on cognitive
test performance in adults MCI

[34–36]

Lipid lowering treatment Saturated fat intake is positively
associated with MCI, or cognitive decline.

Evidence was insufficient to assess the
effect of 5 years statin treatment on
preventing MCI

[37]

Non-steroidal
antiinflammatory drugs

(NSAIDs)

Numerous epidemiological studies have
shown an association between NSAID
use and a reduced prevalence of
dementia, specifically AD.
In vitro and animal models of
AD pathology show that NSAIDs reduce
plaque-related inflammation and improve
function, both at a cellular and
behavioral level

No evidence is available for the effect of
low-dose aspirin on MCI [38,39]

Anti-dementia

The acetylcholinesterase inhibitors
(AChEIs) have consistently demonstrated
a modest but positive benefit to cognition
in persons with mild through severe
stages. They may likewise provide benefit
to persons with age-related cognitive
decline or MCI through the same
mechanisms of action by increasing the
duration of action of acetylcholine in the
synapse through inhibition of its
breakdown by AChE. The drugs have
been approved by the FDA/EMA for
people with mild to moderate AD but not
for people with age-related cognitive
decline or MCI.

-Low-strength evidence shows AChEIs
do not reduce the incidence of AD in
persons with MCI for over 3 years
-Low-strength evidence shows AChEIs
for 3 years have no significant effect on
cognitive performance in adults
with MCI

[33,40]

Diabetes medication

Diabetes may increase risk of AD through:
-vascular mechanisms
-direct effects of elevated blood glucose
-insulin-resistance associated
inflammation, and/or a pathway in
which peripheral hyperinsulinemia
inhibits brain insulin production, which
then results in impaired brain Aclearance

No studies report on the effect of
diabetes treatment on the risk of
incident clinical diagnoses of MCI.

[41–43]

Other drugs Evidence was insufficient for lithium, or
for nicotine patch [44,45]

Adapted from reference 23.

None of the proposed interventions has indicated effectiveness and/or helpfulness in delaying
the progression from MCI to AD dementia [46–49]. Importantly, as highlighted recently by
Petersen et al. [49], there are no high-quality, long-term studies recognizing pharmacologic or
dietary drugs able to improve cognition and/or delay progression in patients with MCI. Moreover,
Petersen et al. [49] recommended that patients diagnosed with MCI should avoid acetylcholinesterase
inhibitors (AChEIs; authorized drugs for AD, i.e., donepezil, rivastigmine, galantamine), since these
drugs show no benefit on cognitive outcomes or reduction in progression from MCI to dementia,
and side effects, including gastrointestinal symptoms and cardiac concerns.

Thus, on the light of the heterogeneity of MCI, further studies testing different compounds in all
of its subtypes are necessary to draw clear conclusions.
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2.1. Association of Chronic Obstructive Pulmonary Disease with Mild Cognitive Impairment and Dementia

Starting in 2011, important studies [6,50,51], using standardized criteria, found that patients
with moderate to severe COPD are at high risk for MCI. The association between COPD and MCI
remains significant even after adjusting for cardiovascular comorbidities and other covariates (i.e.,
hypoxemia, hypercapnia). A recent systematic review and meta-analysis of observational studies,
including 23,116 subjects with COPD with a mean age of 66.3 years, found that the prevalence of
MCI is 25% [52]. These findings are in agreement with the most recent observations of Ouellette and
Lavoie [53]. The prevalence of MCI in the general population is 8.4% for people of 65–69 years [49].
These data may suggest that in the presence of severe COPD, the percentage of MCI is higher than in the
general population. Until now, no explanation has been proposed for this association. The underlying
mechanisms of cognitive impairments in COPD are debatable and poorly understood. It has been
hypothesized that serum clusterin (CLU) plays a role. In severe COPD patients, the levels of serum
CLU are very high, and the level of serum CLU is negatively correlated with cognitive ability [54].
The peripheral CLU concentration is associated with mini-mental state examination (MMSE) score
and brain atrophy in both MCI and AD patients [55,56]. Moreover, the CLU levels are higher in
MCI individuals who convert to dementia after one year, than to non-converters [57]. Secretory CLU,
also known as apolipoprotein J (apoJ), is a stress-activated ATP-independent molecular chaperone.
CLU is a highly glycosylated glycoprotein of 80 kDa, consisting of two polypeptide chains connected
by four to five disulfide bonds. CLU/ApoJ is involved in different transcriptional networks controlling
protein homeostasis/proteostasis, apoptosis/pro-survival signaling [58]. On the other hand, it has
been reported that, in human lung fibroblasts exposed to cigarette smoke, there is a high accumulation
of CLU/ApoJ protecting, presumably, lung fibroblasts against cigarette smoke-induced oxidative
stress [59].

It seems that the existing relationships between COPD and MCI are independent of the presence
of comorbidities (i.e., vascular risk factors and stroke) [6,51]. COPD is associated with premature
aging characterized by chronic inflammatory process [36], which may have a role in the cognitive
impairment. Indeed, COPD shows different hallmarks of aging [36,60] such as follows:

i. Abnormal microRNA pattern. MicroRNAs (miRNAs), a class of small non-coding RNAs,
are involved in post-transcriptional gene repression. Alterations in miRNA abundance occurs in
lung tissue, inflammatory cells, and freely circulating cells in blood, and are thought to function both
as drivers and modifiers of disease [61,62]. In COPD patients, -miR-124-3p, miR-34a, miR-124, miR-29c
and miR-126 are upregulated; -miR-181c, miR-21, miR-146a, miR-98-5bp are downregulated [61].
In MCI/AD, miRNAs (miR-124-3p, miR-34a, miR-124, miR-181c, miR-21, miR-146a, miR-98-5bp)
contribute to the development, differentiation, and synaptic plasticity of neuronal cells, and are
involved in many neurodegenerative diseases, including AD [62].

ii. Activation of PI3K-mTOR signaling. PI3K-AKT-mammalian target of rapamycin (mTOR) pathway
is critical for cellular senescence and aging. In parallel, mTOR is a negative regulator of autophagia.
There is evidence for PI3K activation in the lungs and cells of COPD patients, as shown by increased
expression of the downstream kinase phosphorylated Akt, which in turn activates mTOR [36]. mTOR
has a critical role during cognitive function and memory and affects genetic pathways that lead to
cognitive loss. An mTOR upstream signaling pathway, the PI3K/Akt axis, is observed in AD brain.
Persistent activation of neuronal mTOR signaling is found in MCI and AD brains [63].

iii. Altered autophagy. Refers to a pathway of cellular self-digestion controlling the degradation of
subcellular constituents, including misfolded proteins and damaged organelles. Increasing numbers
of autophagic vacuoles are observed in COPD lung tissues under electron microscopy, whereas low
vacuole formation is observed in control tissues. Autophagy and mitophagy play a complex role in the
lungs, and its related phenomena can have both protective and injurious effects on the progression of
COPD. Currently, there is no unifying explanation for the discrepancies between various studies [64].



Mar. Drugs 2018, 16, 313 6 of 20

Although the exact pathological role of autophagy in AD remains to be elucidated, autophagy inducers
might provide a new effective therapeutic strategy by degrading aggregates in the early stages of AD.
By contrast, the activation of autophagy might enhance disease severity during the late stages of AD,
by accelerating Aβ-amyloid production.The autophagy–lysosome pathway is unable to “keep up”
with the misfolded protein load that is built up, and becomes defective, causing the aggregation of
protein [65]. A mutation in sequestosome1 (SQSTM1), a marker for autophagy that binds cargoes,
is identified in patients with familial AD [66].

iv. Decreased anti-aging molecules. Many endogenous antiaging molecules counteract the mechanisms
of senescence, and a reduction in their expression may accelerate the aging process [36]. Sirtuins,
are recognized as antiaging molecules that regulate lifespan. Sirtuins are highly conserved
NAD+-dependent deacetylases enzymes that play a role in resistance to stress, genomic stability,
and energy metabolism. Defective sirtuins are proposed as a mechanism for accelerated lung aging in
COPD. SIRT1, 120 kDa (actual size), levels are decreased in patients with COPD, as a result of oxidative
stress [67]. SIRT1 decreases with increasing severity of lung emphysema and with a clinical history of
frequent COPD exacerbations. Over-expression of a miR-34a causes a significant reduction in both
mRNA and protein of SIRT1/-6 in COPD. The aging-suppressor gene, Klotho, is downregulated in
COPD [67].There is no direct proof of different levels of SIRT1 in human AD, but overexpression of
miR-34a decreases SIRT1 levels. Klotho protein is predominantly secreted by the choroid plexus of the
brain, and protects hippocampal neurons from amyloid and glutamate toxicity via the activation of
an antioxidant enzymatic system, suggesting Klotho is necessary for oligodendrocyte maturation and
myelin integrity.The Klotho KL-VS variant is associated with an increase in the incidence of dementia
in older men, in a dose-dependent fashion [68].

v. Defective DNA damage repair. Effective repair of DNA damage is essential for the survival
of cells, and most individual organisms and species. Ineffective repair can result in cell death,
cancer, and neurological disease. COPD and AD are associated with excessive DNA damage [69,70].
Several types of DNA damage are associated with neurodegeneration, including bulky adducts,
abasic sites, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), base mismatches,
insertions, and deletions. DNA repair inefficiency is common in COPD, and is correlated to progression.
Poly (ADP-ribose) polymerase (PARP) activation is associated with the progression of COPD [71].
BRCA1 (originally breast cancer 1; currently BRCA1) critically contributes to DSB repair in central
neurons and neuronal reductions [69]. BRCA1 causes increased persistence of DSBs, abnormal
chromatin remodeling, cellular dysfunction, and cognitive deficits. Depletion of BRCA1 is found in
brains of patients with MCI or AD. Depletion of BRCA1 is caused by the pathological accumulation
of Aβ, which may promote the proteasomal degradation of BRCA1 through overactivation of
extrasynaptic N-methyl-D-aspartate (NMDA) receptor [69].

vi. Cellular senescence. Senescence is a state of irreversible cell cycle arrest. Senescent cells accumulate
in the lung of COPD patients leading to persistent secretory phenotype (SASP) factors, and contributing
to increased tissue dysfunction and COPD severity [72]. p16 and p21 are upregulated in cells of COPD
patients. Compared with controls, p21 level is significantly decreased in lymphocytes of AD patients,
while p53 is increased [72].

vii. Epigenetic changes. They include DNA methylation, covalent modifications of histone proteins and
non-coding RNAs, and increases or decreases in gene transcription. In patients with COPD, there is
emerging evidence showing aberrant expression of epigenetic marks, such as DNA methylation,
histone modifications, and microRNAs in blood, sputum, and lung tissue [73]. AD entails dramatic
losses of histone H4 lysine 16 acetylated isoform (H4K16ac) in the proximity of genes linked to aging
and AD. A targeted proteomics approach in human brains showed reduction of histone H3 lysine18
acetylation (H3K18ac) and histone H3 lysine 23 acetylation (H3K23ac) in AD [74].
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viii. Immunosenescence. Immunosenescence affects both innate and adaptive immunity, leading to
a loss of function, and is implicated in chronic inflammatory diseases. In COPD, there is reduced
immunity, which results in a low-grade chronic inflammatory response. Cluster of differentiation
8 + 28 (CD8 + CD28) null cells from COPD patients have reduced histone deacetylase 2 (HDAC2)
expression and are corticosteroid resistant [36]. Patients with mild AD show decreased percentages of
naïve cells, elevated memory cells, and increased proportions of CD4+, but not CD8+ cells lacking the
important costimulatory receptor CD28 [75].

ix. Mitochondrial dysfunction. The key function of mitochondria is to produce ATP through the
coupling of oxidative phosphorylation with cellular respiration. Mitochondria play a crucial role in
the maintenance of intracellular Ca2+ homeostasis, because they can take up substantial amounts of
cytosolic Ca2+. COPD is linked to increased mitochondrial reactive oxygen species (ROS) production,
decreased intracellular antioxidants, and reduced numbers of mitochondria. The mitochondrial stress
markers Parkin and PTEN-induced protein kinase-1 (PINK1) are increased in COPD patients [36].
Mitochondrial deficiency has been suggested to be a hallmark of AD as the patients display early
metabolic changes prior to the emergence of any histopathological or clinical abnormalities, showing
reduced metabolism, disruption of Ca2+ homeostasis, increased levels of ROS, lipid peroxidation and
apoptosis, as well as hyperphosphorylation, aggregation, and damage of axonal transport leading to
abnormal mitochondrial distribution. These pathological features impair mitochondrial dynamics by
regulating mitochondrial fission/fusion proteins, causing mitochondrial dysfunction and neuronal
damage [76].

x. Stem cell exhaustion. Airway basal progenitor cells are crucial for lung health and resilience because
of their ability to repair injured airways. Basal progenitor count, self-renewal, and multipotentiality
are all reduced. COPD progenitors produce an epithelium with increased basal and mucous cells and
decreased ciliated cells, replicating the COPD phenotype [77].

xi. Telomere shortening. Studies analyzing leukocyte telomere length (LTL) at the population level
have provided ample evidence for the hypothesis that LTL shortening is associated with aging and
with age-related chronic diseases (cardiovascular and metabolic disease, cancer), although some
inconsistencies have been observed.The exact mechanisms leading to telomere shortening in association
with COPD are not yet understood [36]. Increased oxidative stress impairs telomerase activity and,
thus, may directly result in telomere shortening. Telomere shortening, in turn, leads to the activation of
p21, resulting in cellular senescence and the release of proinflammatory mediators, such as interleukin
(IL)-6 and chemokine CXCL8. The telomere length and its rate of shortening did not relate to clinical
and lung function parameters [36]. Intermediate values in the aMCI subjects, and the lowest values
in the AD patients, suggest a definite relationship between telomere reduction and AD development.
Association between APOE genotypes and LTL is observed [78].

All of these data are useful for finding new molecules able to act both in COPD and in MCI/AD.

2.2. Marine Bioactive Compounds and COPD and MCI/AD

Today, ocean habitats are the newest frontier in drug medical research. Thus, starting in 1969,
FDA/EMA approved eight drugs obtained by marine sources including important antineoplastic
(cytarabine, eribulin, trabectidin) and anti-pain (ziconotide) compounds [79]. The actualization of this
relatively new area of scientific exploration is based on continuous testimony of marine medicine that
comes from 2953 BC during emperor Fu His in China, as a tax for profits of fish-derived medicine [80].
Actually, we published several reviews on this topic [81–84]. In one, we described the most promising
agents from marine sources in the treatment of AD [84]. Here, Table 3 reports new marine bioactive
compounds acting against different targets shared by COPD and MCI/AD.
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Table 3. Marine bioactive compounds acting on different targets shared by COPD and MCI/AD.

Drug Mechanism References

COPD MCI/AD

Activation PI3K-mTOR

Fucoxanthin Inhibition of mice
bleomicyn-induced lung fibrosis Neuroprotective [85,86]

Austrasulfone NA Anti-apoptotic [87]
TMC-256C1 NA Activation of kinases [88]

1-O-(Myristoyl) glycerol (MG) NA Neurite outgrowth [89]
Sargaquinoic acid NA Enhancement of neuriteregeneration [90]

Altered autophagy

Bafilomycins,
coibamide A,

manzamine A and
papuamine

NA
Inhibits autophagy
Induces autophagy
Induces autophagy

[66]

Defective DNA damage repair

Apo-9′-fucoxanthinone
Decreases cigarette smoke

extract-induced
DNA damage

[91]

Cellular senescence

Antarctic krill oil (AKO) NA

-Protective effect against AD senescence
-Ameliorates learning and memory deficits
and eases the anxiety
-Reduces Aβ accumulation

[92]

Mitochondrial dysfunction

43 kD protein NA

-Attenuates neuronal cell death.
-Alleviates mitochondrial inactivation
-Recovers metallathionein-3 (MT-3)
-Decreases and inhibits β- and γ-secretase, as
well as Aβ accumulation

[93]

Gracilins NA

-Positive trend on learning and spatial
memory of treated mice. –Decreases Aβ42
and hyperphosphorylated levels
-Preserves neurons against oxidative damage

[94,95]

Drug activities and drug mechanisms of action are investigated on cellular and/or in mouse
model systems. Every marine bioactive compound is studied in a single disease (COPD or MCI/AD)
model [66,85–95].

Fucoxanthin (Fx) is a xanthophyll, with chemical formula C42H58O6 (Figure 1), isolated
from edible brown seaweeds firstly from Fucus, Dictyota, and Laminaria. In lung an
inhibition of TGF-β1-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK),
phosphatidylinositol 3-kinase (PI3K)/Akt, and Smad2/Smad3 (Smad2/3) after Fx treatment, has been
observed. Collagen contraction decreased significantly upon Fx treatment. Intraperitoneal injection
of Fx in mice inhibits bleomicyn-induced lung fibrosis [85]. Fx attenuates Aβ oligomer-induced
neurotoxicity on SH-SY5Y cells (isolated from a bone marrow biopsy of a neuroblastoma used
as “in vitro models” of neuronal function and differentiation) leading neuroprotective effects via
regulating PI3K/Akt and ERK pathways [86].
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Austrasulfone, with chemical formula C6H10O3S (Figure 2), from the soft coral Cladiella australis,
collected in Taiwan waters, shows anti-apoptotic activity on neuronal cells SH-SY5Y mediated through
the regulation of the Akt and heme oxygenase (HO)-1 signaling pathways [87].
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Bafilomycin(s), with chemical formula C35H58O9 (Figure 6), a family of toxic macrolide antibiotics
from marine Streptomyces griseus, inhibits autophagy by preventing fusion of autophagosomes with
lysosomes [66].Mar. Drugs 2018, 16, x FOR PEER REVIEW  11 of 20 
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Manzamine A, with chemical formula C36H44N4O (Figure 8), a β-carboline alkaloid isolated from
the marine sponge Xestospongiaashmorica that acts as a GSK-3β inhibitor and papuamine, with chemical
formula C25H40N2 (Figure 9), a pentacyclic alkaloid and antifungal agent, fromthe marine sponge
Halicona, induces autophagy by increasing levels of microtubule-associated protein 1 light chain 3
(LC3) [66].
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Figure 9. Papuamine.

Apo-9′-fucoxanthinone (ApoF9), with chemical formula C15H22O4 (Figure 10), from brown algae
Undariopsis peteseniana, decreases cigarette smoke extract-induced DNA damage in immortalized
human bronchial epithelial cells via reduction of ATM (atypical kinase of the PIKK family)
phosphorylation [91].
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Figure 10. Apo-9′-fucoxanthinone.

Antarctic krill oil (AKO), from Euphausia superb, is rich in polyunsaturated fatty acids,
and two of the most important components are omega-3 fatty acids similar to those in fish
oil (Alpha-linolenic acid (ALA) with chemical formula C18H30O2 (Figure 11a), docosahexaenoic
acid (DHA)with chemical formula C22H32O2 (Figure 11b), eicosapentaenoic acid (EPA) with
chemical formula C20H30O2 (Figure 11c)) and phospholipid-derived fatty acids (PLFA), mainly
phosphatidylcholine with chemical formula C46H84NO8P (Figure 12). A protective effect was observed
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against AD in senescence-accelerated prone mouse strain8 (SAMP8). AKO ameliorates learning and
memory deficits, and eases the anxiety by Morris water maze, Barnes maze, and open-field test.
AKO reduces Aβ accumulation in hippocampus by decreasing the contents of malondialdehyde and
7,8-dihydro-8-oxoguanine, by increasing superoxide dismutase and glutathione peroxidase activities
in the brain of SAMP8 mice [92].
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A 43 kD protein, isolated from atlantic oysters, attenuates neuronal cell death induced by 100 mM
D-galactose on human neurons-hippocampal (HN-h) cells in a dose-dependent manner. This protein
alleviates mitochondrial inactivation, decreasing mitochondrial membrane potential oxidative stress,
and fusion/fission state at non-cytotoxic concentrations of D-galactose-treated HN-h cells. The induced
recovery of metallathionein-3 (MT-3) decreases and inhibits β- and γ-secretase, as well as Aβ

accumulation in HN-h cells caused by D-galactose induction [93].
Gracilin(s), with chemical formula C15H20O3 (Figure 12), a family of diterpenoid compounds,

isolated from the sponge Spongionella, in 3xTg-AD mice (triple-transgenic mouse model of AD, the only
model that exhibits both Aand pathology characteristic of the human form), after chronicintraperitoneal
treatments, in preliminary behavioral test, points to a positive trend on learning and spatial memory
of treated mice. Gracilins decrease Aβ42 and hyperphosphorylated levels, inhibit ERK and β-secretase
enzyme1 (BACE1),and preserves neurons against oxidative damage [94,95].

3. Discussion

The majority of new marine bioactive compounds are investigated in the field of
neurodegeneration. COPD appears to be a neglected field of research. Nevertheless, according
to the US Burden of Disease Collaborators, in 2016 COPD was the third cause of death in the
United States, with an increasing trend in comparison with 2010 [96]. In Italy, COPD affects
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3.5 million people, accounting for 55% of deaths/year among respiratory disease (3rd cause of
death) [97]. COPD causes chronic airflow limitation, breathlessness, exercise intolerance, cough,
difficulty with daily activities, infections, and (re)hospitalization [1]. COPD pharmacological therapies
are merely symptomatic, and not effective in diseasemodification and survival [98]. Patients
experience exacerbations, which contribute to high rates of emergency department (ED) visits,
and in-patient admissions and readmissions, and high costs to the economy [99].The pattern of
care for people with moderate–very severe COPD involves regular lengthy hospital admissions and
rehospitalization for acute exacerbations (AECOPD), which result in high healthcare costs (Italy:
2723€/year/patient; 2617€/patient for ED) [99]. Costs increase with disease severity, presence
of comorbidity, and rehabilitation [99], with an undesirable effect on the quality of life patient
self-management. AECOPD accounts for 0.5% of ED visits, and are economically onerous [99]. Yet,
most healthcare resources are poured into managing acute exacerbations that are only temporarily
effective. AECOPD patients attending ED are old, affected by several comorbidities, and are burdened
by a high prevalence of adverse outcome [99].

The first report of an association between COPD and AD is recordedin 1982 [100]. Since then,
different studies, reporting this association, observed that either COPD worsens AD and increases the
rate of MCI [6,50,51,53,54] or that AD worsens the severity of COPD [101–103]. This is a “vicious circle”
that makes (self)-management difficult [103] especially for persons with neurocognitive impairments.
Self-management in COPDimplies the personal ability to monitor symptoms, adhere to therapy,
sustain an healthy lifestyle, and cope with the impact of diseases on daily functioning, emotions,
and relationships [103]. There is contrasting evidence as to whether cognitive impairment (based on
MMSE scores <24) is an independent predictor of poor-quality of spirometry [104,105]. Spirometry, a
measure of forced expiratory volume in 1 s (FEV1), is a gold standard for the diagnosis and assessment
of severity and follow-up of COPD [1].

Although, the present gold-standardrecommendations recognize comorbidities as important to
COPD prognosis and severity, in general, they suggest that the presence of comorbidities should
not alter COPD treatment, and “should be treated per usual standards regardless of the presence of
COPD” [1]. This approach reflects the concept of “comorbidity” or “multi-morbidity” as a simple sum
of single diseases. Actually, this concept appears misleading, possibly reflecting an oversimplification.
It is well known now that a disease phenotype, the presentation of a disease in a given individual,
reflects various pathobiological processes that interact in a complex network, involving genome,
transcriptome, proteome, metabolome, and environment. The coexistence of two or more diseases
in the same person raises the question of the presence of a possible common etiological pathway
determined either by common disease genes or by a co-regulated cellular pathway, the so called “shared
component hypothesis”. The shared component model, as proposed by Knorr-Held andBest [106],
represents an easy approach to the joint spatial analysis of two related diseases. The key idea of the
shared component model is to separate the underlying risk surface for each disease into a shared and
a disease-specific component. At the molecular level, a disease may be considered as a disorder of a
network of interactions, difficult to be considered as being independent of one to another [107,108].
Consecutively, a drug acting on a single target results in a phenotypic reaction caused by changes
in the multi-dimensional networks, rather than exclusively in the target action. The network may
be involved in (i) a unique disease pathway or (ii) belonging to multiple disease pathways. In this
scenario,precision pharmacology (PP), a new theoretical paradigm, has in mind to help in exploring
andpredicting the whole effect of a given drug at the systems level (molecular, cellular, tissue, organ,
organism, and population levels) [109].The long-term goals of PP are both (i) developing multi-target
therapeutic approaches for multifactorial diseases, such as COPD and AD; and (ii) finding frameworks
of therapeutic efficacy/adverse risks [108,110].

Marine bioactive compounds, by nature, are often structurally complex compounds with efficacy
relying on multitarget intervention via their multiple active components. Thus, they can be examined
for developing network-based multicomponent drugs. The example of bryostatin (Bry-1), a potent
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modulator of PKC, initially isolated from the extract of Bugulaneritina, is emblematic of marine
bioactive compounds’ potential, since Bry-1 is exploited in, according to the classic concept, different
non-correlated diseases, such as cancer, HIV, and neurodegenerative diseases [84].

In Table 3, it appears that similar patterns are involved both in COPD and in MCI/AD. The same
drug, such as fucoxanthin, is useful both against lung fibrosis and neurodegeneration [85,86].
Moreover, Fx may reverse scopolamine-induced impairments of cognition in mice, increasing
choline acetyltransferase (ChAT) activity and brain-derived neurotrophic factor (BDNF) expression,
and decreasing AChE activity in the brains. Moreover, Fx directly inhibits AChE in a non-competitive
manner in vitro, possibly interacting with the peripheral anionic site within AChE [111].
In scopolamine-induced cognitive impairments, oxidative stress plays an important role, thus, it may
be possible to speculate that Fx reverses impairments of cognition, reducing the oxidative stress
increase. Patients affected by COPD and MCI/AD may benefit from Fx administration. However,
additional experiments to address this shall be planned.

A recent paper revised the literature for the selection of cancer genes for the multitargeted use of
existing drugs and natural products [112]. The authors used network analysis and a search tool for
retrieval of interacting genes/proteins (STRING), to study the possible interactions to show the links
between antioxidants, antibiotics, anti-inflammatory and antimitotic agents and their targets, for their
possible use in cancer. After network analysis, they obtained a shortlist of 22 genes based on their
average shortest path length, connecting one node to all other nodes in a network [112]. The selected
genes were then analyzed with STRING for their protein–protein interactions. Accordingly, the authors
proposed the selected genes to be regarded as main targets, and used in finding marine bioactive
compounds as drug leads in cancer treatment.

We hereby suggest a screening of marine bioactive compounds having antioxidant,
anti-inflammatory, anti-mitochondrial dysfunction, and anti-accelerated aging activity on COPD
and MCI/AD models.
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