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Abstract

Nontypeable Haemophilus influenzae (NTHi) is a significant pathogen in respiratory disease

and otitis media. Important for NTHi survival, colonization and persistence in vivo is the Sap

(sensitivity to antimicrobial peptides) ABC transporter system. Current models propose a

direct role for Sap in heme and antimicrobial peptide (AMP) transport. Here, the crystal

structure of SapA, the periplasmic component of Sap, in a closed, ligand bound conforma-

tion, is presented. Phylogenetic and cavity volume analysis predicts that the small, hydro-

phobic SapA central ligand binding cavity is most likely occupied by a hydrophobic di- or tri-

peptide. The cavity is of insufficient volume to accommodate heme or folded AMPs. Crystal

structures of SapA have identified surface interactions with heme and dsRNA. Heme binds

SapA weakly (Kd 282 μM) through a surface exposed histidine, while the dsRNA is coordi-

nated via residues which constitute part of a conserved motif (estimated Kd 4.4 μM). The

RNA affinity falls within the range observed for characterized RNA/protein complexes. Over-

all, we describe in molecular-detail the interactions of SapA with heme and dsRNA and pro-

pose a role for SapA in the transport of di- or tri-peptides.

Introduction

Respiratory illness currently ranks as the third leading cause of death globally [1], with rates

peaking for the very young and the elderly [2, 3]. High incidence of the gram-negative bacte-

rium nontypeable Haemophilus influenzae (NTHi) in these illnesses makes it a strategic target

for biochemical investigation. Following triggers that are not yet fully understood, NTHi can

transition from a commensal into a pathogen, leading to opportunistic respiratory tract
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infections such as in chronic obstructive pulmonary disease (COPD) [4], pneumonia and

exacerbations of cystic fibrosis. Outside of the respiratory context, NTHi is also a major patho-

gen in meningitis and otitis media (OM), with the latter being a leading cause of specifically

treated disease in children both in the UK and worldwide [5, 6]. Taken together the costs of

NTHi related diseases represent a major economic and social burden.

While antibiotic resistance in NTHi is primarily effected through β-lactamase, the bacte-

rium is also gaining resistance to other antibiotic classes [7, 8]. Even without this additional

threat, ampicillin resistant strains now exceed 30% in some countries, which has inevitably led

to higher rates of treatment failure, increased costs, and decreased availability for severely or

chronically ill patients. The extracellular capsule targeted by the now routine Hi type b (Hib)

vaccine [9] is absent in NTHi and, as yet, no effective vaccine exists against it. Furthermore,

with the introduction of the Hib vaccine, NTHi has become more prevalent [10]. NTHi vac-

cine development has proven to be challenging, in part due to high heterogeneity of outer

membrane protein vaccine candidates and antigenic drift present in patients with long-term

NTHi infection [11, 12]. The development of novel treatments, antimicrobials and vaccines is

therefore much needed and would be aided by an improved understanding of NTHi patho-

genic survival strategies.

An essential system for NTHi survival and persistence in vivo is the Sap (sensitivity to anti-

microbial peptides) transporter. This multi-component system uses a periplasmic protein

(SapA) to bind and deliver substrates to the heterodimeric inner membrane-associated Sap

permease (SapBC). The Sap ABC transporter is completed by two membrane-associated nucle-

otide-binding proteins (SapD & SapF) that hydrolyze ATP to provide energy for substrate

transport across the bacterial inner membrane.

Studies based mainly on NTHi sap mutants have shown a decrease in sensitivity to host

antimicrobial peptides (AMPs) both in vitro and in vivo. As part of the innate immune system,

AMPs contribute to the first line of defense against infection. These small (<10 kDa), cationic

or amphipathic peptides have diverse structures and mostly act by disrupting cell membranes

leading to cell lysis and death. Cell killing assays that tested sapA, sapD, and sapBC mutant

strains have shown these to be more sensitive to AMP-mediated killing. Specifically, the sapA
mutant is more sensitive to chinchilla Beta Defensin 1 (cBD1) [13]; sapD to cBD1 [14], catheli-

cidin LL-37 and human Beta Defensin 3(hBD3) [15]; and sapBC to LL-37 and hBD3 [16].

Growth of sapA [13], sapD [14] and sapF [15] mutant strains was attenuated in a chinchilla

model of OM. The sap genes have also been postulated to have a role in iron acquisition [17,

18], with sapA, sapBC and sapF mutants demonstrating an inability to utilize heme for growth

in specific nutrient controlled media. Evidence has also been presented for a direct interaction

of SapA protein with heme [17, 19], and with cBD1 and LL-37 [14]. Additionally, hBD1,

hBD2, hBD3, LL-37, human neutrophil protein 1, and melittin were shown to displace bound

heme from SapA [17]. NTHi [20] and K. pneumoniae [21] sapA mutants have decreased adhe-

sion to epithelial cells and increased invasiveness, while the sapF mutant has altered biofilm

morphology [15]. The importance of the sap genes in resistance to AMPs has been demon-

strated in other bacterial pathogens, including H. ducreyi [22, 23], S. typhimurium [24–27] and

E. chrysanthemi [28].

Based on these studies a model has been proposed [17] for a multifunctional Sap trans-

porter where SapA shuttles heme and AMPs to the Sap ABC transporter which moves them

across the cytoplasmic membrane. Within the cytoplasm, AMPs are degraded and heme is uti-

lized in a nutritional context. The disruption of the sap genes clearly has dramatic effects but

the precise molecular interactions that are responsible for these effects are poorly understood.

To shed light on these issues we have determined the crystal structure of NTHi SapA and char-

acterized its interactions with a number of chemically distinct ligands.
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Results

SapA crystallized in open and closed conformations

Despite numerous optimization attempts, the expression of SapA was poor, with a final yield

of�5 mg pure protein per 50 g of E.coli cells. Crystals were nevertheless obtained and the

structure of the 60 kDa SapA protein was solved to a resolution of 2.6 Å. The structure con-

firmed the classification of SapA into the Substrate Binding Protein (SBP) superfamily, as was

predicted from sequence analysis. SBPs are a class of proteins that are often associated with

membrane protein complexes, in particular, ABC transporters [29]. Within the SBP superfam-

ily, SapA can be further categorized as a Class II SBP [30] based on β-sheet topology, and to

SBP Cluster C by the atypical presence of an additional domain of approximately 15 kDa [29,

31]. In the SapA crystal structure this additional domain, Ib, associates with domain Ia to form

one lobe, whilst domain II forms the second lobe (Fig 1A). Domain Ia encompasses residues

35:68, 230:312, 532:561; residues 69:229 constitute domain Ib, and domain II is formed by resi-

dues 313:531. All three domains present a mixed α/β architecture with central β-sheets sur-

rounded by α-helices (Fig 1B). The polypeptide chain is for the most part in well-defined

electron density, except for residues 139–162 which form a loop that could not be modeled.

We crystallized SapA in several forms (Table 1, S1A–S1C Fig): the first, denoted as SapA-

closed (PDB = 7OFZ), contains a single SapA chain with its two lobes in close contact with each

other. The second, denoted as SapAmixed (PDB = 7OG0), contains two copies of SapA, with

chain A adopting a similar conformation to SapAclosed and chain B showing substantially

greater separation between the lobes, this conformation is denoted SapAopen. As a comparison,

the distance between Asp 222 and Val 435, residues that respectively reside near to the termini

of lobes I and II, are 35 Å apart in SapAclosed and over 40 Å apart in SapAopen. A transition

from the open to closed state requires a 15.6˚ rotation around the axis bisecting domains I and

II (Fig 1C). Conformational shifts such as these are characteristic of the SBP superfamily upon

binding/release of their cognate ligand [29] and have been described as a “Venus flytrap”

mechanism [32]. The structure of SapAclosed aligns well with the structures of its homologs in

their ligand-occupied states (Fig 2). Specifically, the alignment rmsds of SapAclosed with ligand

occupied H. parasuis HbpA (HpHbpA), E. coli DppA (EcDppA) and Pseudoaltermonas sp.

SM9913 DppA (PsDppA) are 1.71 Å, 2.33 Å and 2.27 Å, respectively. The observation that the

SapAclosed structure was in the same conformation as its ligand-bound homologs was unex-

pected as no extraneous ligands were added to the purified protein or crystals.

SapA binds an endogenous ligand within its small and hydrophobic/

neutral binding cavity

In SapAclosed, the lobes enclose a cavity with two narrow openings to the protein surface. Dif-

ference electron density (Fo—Fc) became apparent within this cavity during the later stages of

refinement (Fig 3A). This additional density was not observed in SapAopen. Since the location

of the SapAclosed cavity approximately coincides with the ligand binding cavities of other SBPs

(Fig 2), we inferred that this density might represent an endogenous ligand likely derived from

the cell lysate. The presence of an endogenous ligand rationalizes the observed closed confor-

mation of SapAclosed. The amino acids lining the ligand-binding cavity of SapA are predomi-

nantly hydrophobic or neutral (Table 2), the only exceptions are Glu 63, Lys 68 and Asp 71;

however, these residues are located at the opening of the ligand binding cavity and may be

classed as surface exposed.

Analysis of the ligand binding cavities across a range of peptide binding proteins structur-

ally homologous to SapA carried out by [33] showed that cavity volumes correlate well with
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the size of peptides accepted by the binding site. For instance, L. lactis OppA (LlOppA), which

can bind peptides of up to 35 residues, has a very large cavity (4900 Å3), whereas dipeptide

binding EcDppA has a much smaller cavity (700 Å3). The SapA cavity volume is even smaller

again at approximately 400 Å3, which implies that SapA can only bind a small ligand such as a

single amino acid or dipeptide (Fig 3B). That SapA is likely to bind a ligand of this type is also

Fig 1. Overall SapA structure. A, the overall structure of SapAclosed coloured by domain. Each SapA monomer was

co-crystallised with a single-stranded A-form RNA molecule. The antisense strand (turquoise rings) completing the

duplex is contributed by a symmetry mate SapAclosed molecule not shown in the diagram. The pitch distance of the

RNA helix is indicated. B, topology diagram of SapA. C, comparison of the closed (light cyan) and open (wheat)

conformations of SapA. Rotation angle around axis was calculated and visualised with the program ProSMART. The

distances between the Cα atoms of residues Asp 222 and Valine 435 are indicated in the closed and open

conformations.

https://doi.org/10.1371/journal.pone.0256070.g001
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predicted by phylogenetic analysis of structurally characterized SBP Cluster C members. Pro-

tein sequences of Cluster C members as described by [31], together with the sequences of

NTHiSapA and PsDppA, were used to construct a cladogram of sequence relationships (Fig 4).

SapA falls within a clade of proteins functionally described to bind either dipeptides or gluta-

thione (a tripeptide).

SapA binds heme with low affinity

Initial qualitative assessment of hemin/SapA interaction was carried out by Native PAGE assay

(Fig 5A). The results are strongly suggestive of complex formation at high hemin

Table 1. Crystallographic data collection and refinement statistics.

Crystal form SapAclosed SapAmixed SapAheme

PDB ID 7OFZ 7OG0 7OFW

Data Collection

Wavelength (Å) 0.9200 0.9174 0.9763

Resolution range (Å)a 72.2–2.62 (2.71–2.62) 65.74–2.61 (2.70–2.61) 71.36–3.15 (3.26–3.15)

Space group P 4 21 2 P 21 21 2 P 4 21 2

Unit cell (Å,˚) 144.4 144.4 62.0 90 90 90 143.3 148.0 59.6 90 90 90 142.7 142.7 60.6 90 90 90

Total reflectionsa 38352 (3840) 144902 (14854) 116349 (11497)

Unique reflectionsa 19270 (1929) 38143 (3848) 11330 (1111)

Multiplicitya 2.0 (2.0) 3.8 (3.9) 10.3 (10.3)

Completeness (%)a 94.9 (96.9) 96.9 (98.7) 99.9 (99.8)

Mean I/σIa 18.2 (1.1) 11.2 (2.1) 16.9 (3.3)

R-mergea 0.031 (0.600) 0.089 (0.623) 0.128 (1.029)

R-measa 0.044 (0.848) 0.104 (0.721) 0.135 (1.084)

CC1/2a 0.999 (0.571) 0.997 (0.698) 0.998 (0.845)

Refinement

Reflections used in refinementa 19267 (1929) 38142 (3848) 11326 (1110)

R-worka 0.218 (0.318) 0.199 (0.286) 0.239 (0.341)

R-freea 0.263 (0.381) 0.249 (0.308) 0.276 (0.366)

Number of non-hydrogen atoms 4527 8917 4395

Protein 4005 8030 3963

RNA/ions 407 728 387

heme - - 43

solvent 114 157 2

RMSD bond lengths (Å) 0.014 0.014 0.01

RMSD bond angles (˚) 1.8 1.4 1.5

Ramachandran favored (%) 96.1 97.3 96.5

Ramachandran allowed (%) 3.7 2.0 3.1

Ramachandran outliers (%) 0.2 0.7 0.4

Clashscore 3.3 4.8 4.6

Average B-factors (Å2)

all 69.6 61.4 98.2

macromolecules 65.3 55.7 94.1

RNA/ions 116.0 129.4 138.9

heme - - 116

solvent 54.1 35.9 41.2

aValues in parentheses refer to the highest resolution shell.

https://doi.org/10.1371/journal.pone.0256070.t001
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concentration. Under the conditions of the assay, the interaction did not appear to be satu-

rated before the limit of the hemin solubility was reached.

Hemin was also soaked into SapA crystals. From these a structure was obtained, SapAheme

(PDB = 7OFW). As with SapAclosed, SapAheme displayed difference density in the central ligand

binding pocket. However, the pocket remains too small (approximately 400 Å3) to accommo-

date a substantial ligand such as heme, which occupies a volume closer to 800 Å3. Further-

more, additional difference density, corresponding to heme, was present on the protein

surface. The bound heme forms a crystal contact between two symmetry-related SapA mole-

cules, each coordinating the ligand via a surface exposed histidine (His 306 in both cases)

(Fig 5B).

Fig 2. Superimposition of the NTHi SapAclosed structure (green) with its closest structural homologs. A, HpHbpA

(cyan, PDB = 3M8U); B, EcDppA (magenta, PDB = 1DPP); C, PsDppA (yellow, PDB = 4QFL). The dipeptide (GL,AF)

and oxidised glutathione disulphide (GDS) ligands are shown in stick representation. The green mesh represents the

difference density Fo-Fc within the ligand-binding cavity of NTHi SapAclosed (contoured at 3σ).

https://doi.org/10.1371/journal.pone.0256070.g002

Fig 3. The SapA ligand-binding cavity. A, a detailed view of the SapAclosed ligand binding cavity. Aromatic residues

lining the cavity are shown in stick representation together with the other residues discussed in the text. Unexplained

Fo-Fc residual density is represented as a green mesh and is contoured at 3σ. B, left: The same Fo-Fc density

highlighted in the context of the overall view of SapAclosed (cα trace). Right: The ligand-binding cavity of SapAclosed as

calculated by the program Voidoo (magenta mesh). Arrows indicate cavity openings to the protein surface.

https://doi.org/10.1371/journal.pone.0256070.g003
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Isothermal titration calorimetry (ITC) was performed to quantitatively assess the binding

affinity. A sigmoidal binding curve for this reaction was not observed for this reaction due to

the binding affinity. Therefore, the binding stoichiometry of the reaction was fixed to 1, allow-

ing a Kd of 282 ± 18.3 μM to be proposed (Fig 5C). Although the heme bound in the SapAheme

crystal structure is present at a crystal contact, providing a stoichiometry of 0.5, there are no

further interactions between the protein molecules. Therefore, there is no reasonable basis to

suggest that the 2 SapA:1 heme complex shown in Fig 5B is a physiologically relevant dimer.

Control experiments indicated that the measured heats were not caused by dilution or hemin

aggregation.

SapA interacts with dsRNA

SapA co-crystallized with a strand of endogenously acquired RNA coordinated on the opposite

face to the binding cleft. Identical RNA binding was observed at the same site in both

SapAclosed and SapAopen and therefore did not appear to affect the overall conformation of the

protein. The RNA crystallized as a double helix with parameters consistent for standard A-

form dsRNA [34], with a radius of ~12 Å and pitch of 31 Å with 11 bp per turn and a rise per

bp of 2.8 Å (31 Å/11 bp). The antisense strand is provided by a SapA symmetry mate. Further-

more, although definitive electron density is only present for a 19 bp stretch RNA, inspection

of the symmetry neighbors indicates that the RNA strands extend across asymmetric units,

forming a matrix within the crystal. The RNA backbone is coordinated to positively-charged

chemical groups on the SapA surface. Specifically, the guanidino group of Arg 101 forms a

hydrogen bond with the ribose 2’ hydroxyl and the 3’oxygen. Additionally, Gln 85 interacts

with the O4 ring oxygen and 2’ hydroxyl of neighboring ribose residues (Fig 6A). APBS elec-

trostatics analysis [35] of the SapA surface revealed that Arg 101 contributes to a wider posi-

tively charged patch formed by lysine residues–Lys 73, 258, 259, 262, 542 and 545 (Fig 6B).

This area provides a counter-charge to the negatively charged RNA molecule. Interestingly,

both Gln 85 and Arg 101 are located within the conserved SBP family 5 motif—(LIVM)

AX2(WI)X1 or 2(SN)(KE)DX4T(FY)X(LIV)RX3K - which in NTHi SapA encompasses resi-

dues 84–106 of domain Ib. This motif represents a signature sequence within a system of clas-

sification based on sequence similarity where most SBPs can be grouped into 8 families or

clusters. Family 5 nominally includes binding proteins for peptides and nickel [36] such as E.

coli oligopeptide, dipeptide, murein, and nickel binding proteins OppA, DppA, MppA, and

NikA. Besides SapA in H. influenzae it includes the periplasmic lipoprotein HbpA.

The ribonucleotides were modeled as C-G pairs because at 2.6 Å resolution it was not possi-

ble to assign the exact sequence of individual bases. The density accounting for the RNA

showed signs of possible density averaging between the two stands suggesting that heteroge-

nous RNAs bind this site.

Table 2. Residues in the putative ligand-binding cavity. Neutral or hydrophobic residues are underlined.

Domain Residue Range Cavity residues

domain 1b (loop 55:68) gly55, ser57, met58, asn59, val60, glu63, lys68

domain 1a (loop 71:72) asp71, ile72

domain 1a (loop 166) tyr166

domain 1a (loop 200:206) ser200, ala203, ser204, gln205, tyr206

domain 2 (loop 458:463) trp458, leu459, ala460, gly461, asn462, leu463

domain 1b (loop 547:552) thr547, phe549, gly550, ser551, leu552

https://doi.org/10.1371/journal.pone.0256070.t002
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To determine the specificity of Arg 101 and Gln 85 in binding RNA, single (Arg101Ser)

and double (Gln85Ser and Arg101Ser) serine mutants were generated and tested by agarose gel

electrophoretic shift assay (EMSA). Here the wild-type and mutant proteins were assayed for

interaction with DH5α E. coli ribosomal RNA, as measured by the decrease in intensity of 23S

and 16S rRNA bands at increasing protein concentrations. The double mutant showed the

greatest reduction in binding relative to the wild-type, whilst the single mutant showed an inter-

mediate effect (Fig 6C, S2A Fig). Dissociation constants (Kd) could be estimated from these

experiments as 4.4 μM for wild-type, 7.7 μM for single and 23.0 μM for double mutant SapAs.

The mutants were also tested for DH5α E. coli genomic DNA binding. The interaction was

only observed at the highest protein concentrations tested (41 μM) with no significant differ-

ence between the wild-type and mutant proteins (S2B Fig). Overall, these results indicate that

Arg 101 and Gln85 are responsible for the specific binding to RNA rather than contributing to

a general electrostatic effect by providing a counter charge to the anionic nucleic acids.

Discussion

SapA was successfully crystallized in an open (no ligand) and closed conformation with an

endogenous ligand in the binding cavity. The cavity volume of SapAclosed and the unexplained

electron density within it can potentially accommodate a small ligand such as a short peptide

or even an extended polypeptide chain that could protrude out of the narrow openings of the

SapA ligand-binding cavity. However, there is not enough cavity volume to accommodate

AMPs in their folded state. Additionally unfolding of BDs would require disruption of disul-

fide bridges. SapAclosed has a cavity volume of 400 Å3 whereas LL-37 and hBDs have volumes

ranging from 3000 Å3 to 8500 Å3. As discussed previously, the SapA binding cavity is formed

predominantly by hydrophobic or neutral residues, providing no obvious countercharges for

Fig 4. Cladogram of sequence relationships between structurally characterized SBP cluster C members. Clades organize by distinct functions that are colored

according to the key.

https://doi.org/10.1371/journal.pone.0256070.g004
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the reported cationic AMP ligands of SapA (Fig 3A, Table 2). We found no evidence for hBD1,

hBD2, hBD3 and LL-37 binding to highly purified SapA protein by crystallographic or bio-

physical methods (ITC, thermofluor; S1 File Supporting methods).

We suggest the most likely ligand occupying the binding cavity of SapAclosed is a hydropho-

bic di/tripeptide based on overlap predictions from cavity size volume, the hydrophobic nature

of the cavity and phylogenetic analysis. We attempted many experiments to confirm binding

of dipeptides, however were unable to do so, probably due to some of our sample already

being in a ligand occupied state preventing further interaction. Our efforts to devise a dena-

ture/refold protocol followed by ligand screening were unsuccessful and additionally compli-

cated by low SapA expression levels.

Fig 5. SapA interaction with heme. A, native gel assay for hemin interaction with SapA: Lanes 1–6 correspond to increasing concentrations of

Hemin incubated with 5 μg of SapA. B, Soaking of hemin into SapA crystals. Top panel: a spherical representation of a heme molecule coordinated on

the interface of two symmetry-related copies of the SapAheme monomer. Bottom panel: the heme iron (orange sphere) is coordinated by His 306

(dashed line) from two symmetry mates. The meshes represent 2Fo-Fc (cyan) and Fo-Fc (orange) maps contoured at 1 and 3.5σ respectively. C,

isothermal titration calorimetry; Top panel: The experimental trace (black) obtained upon injection of hemin into SapA and into buffer control

(blue). The baseline is indicated in red. Bottom panel: The integrated heats upon injection (black squares) and the data fit (red line) after subtraction

of the control data.

https://doi.org/10.1371/journal.pone.0256070.g005
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It should be noted that while NTHiSapA organizes into a functional clade with di/tripeptide

binding SPBs, there is poor conservation of ligand-binding residues with its homologs PsDppA

(33% identity), EcDppA (30% identity) and HpHbpA (31% identity) (S3 Fig). In the DppA

SBP family, strongly conserved binding site aspartate and arginine residues (Asp 436, Arg 383

in EcDppA, Asp 432, Arg 379 in HpHbpA) confer specificity for peptides by coordinating the

dipeptide terminal carboxyl and amino moiety respectively. However, in SapA, neither are

conserved, with the aspartate replaced by Gly 461 and the arginine replaced by Gln 406, with

the Gln 406 side chain oriented out of the binding site (Fig 3A). In SapA, the tip of the loop

centered on Gly 55 replaces the approximate volume occupied by the ligands in DppA and

HbpA, effectively bisecting the binding cleft (Fig 2). As a result, the endogenous SapA ligand

lies shifted along the cleft relative to the DppA and HbpA ligands, in a cavity that is much

more reduced in volume. The possibility that SapA binds something other than a short peptide

therefore cannot be ruled out. Cluster C SBPs, albeit more phylogenetically distant ones, also

bind nickel, longer oligopeptides, oligosaccharides and pyranose-2-phosphate containing

compounds (Fig 4).

We can confirm that NTHiSapA directly binds heme in agreement with other studies [17,

19]. In addition to native gel and ITC evidence we provide structural evidence for heme bind-

ing on the surface of the SapA molecule. This surface location is far from the ligand binding

cavity and out of the context of any defined pocket and may therefore cast some doubt on the

physiological relevance of this interaction. Nevertheless, at the very minimum, we can con-

clude that a surface residue His 306 has the capacity to coordinate heme to the SapA molecule.

It is the first molecular-detail experimental structural evidence for heme binding to SapA or

indeed any Cluster C SBP. SapA homologs EcDppA, EcMppA and NTHiHbpA have also been

reported to bind heme but without direct structural evidence. Consequently, heme site predic-

tions have relied on computational docking [17–19, 37]. Our observation that the heme site is

physically separate from the ligand binding cavity in NTHiSapA correlates well with the results

of a SPR competition assay carried out with NTHiOppA [19]. Here the authors showed that

heme does not directly compete with peptide in the substrate-binding pocket. Their second

prediction that, while separate, the two sites are in close proximity is not supported by our

data. This discrepancy may be due to the limitations of computational docking and in the case

of SapA-heme modelling [18] exacerbated by the previous unavailability of a crystal structure.

Questions remain surrounding the physiological relevance of RNA binding to SapA. The

Kd of the RNA interaction is approximately 4.4 μM, 60 fold tighter than the interaction mea-

sured here with heme. This Kd falls within the range of measured binding affinities reported

for 73 structurally characterized RNA-protein complexes [38]. Additionally, the RNA interac-

tion is within a conserved sequence motif, which can be indicative of a functional role [39].

While there are no reports of RNA specifically localizing to the periplasm, RNA may conceiv-

ably exist in this compartment during processes such as viral infection and during the recently

described bacterial secretion of small non-coding RNAs [40]. Under these circumstances, peri-

plasmic SapA could encounter RNA. We can only speculate on what would be the function of

Fig 6. SapA interaction with RNA. A, residues in the Ia domain of SapA involved in hydrogen bonding (black dashed

lines) to the RNA helix backbone. The meshes represent 2Fo-Fc (cyan) and Fo-Fc (orange) maps contoured at 1 and

2.5σ respectively. B, the surface of SapA coloured by electrostatic potential. NH1 and NH2 atoms of Arg 101 and NZ

atoms of Lysines 73, 258, 259, 262, 542 and 545 are visualised as blue spheres. Electrostatic potentials (units of kT/e

from −8 to 8) were calculated by APBS and visualized on the solvent-accessible surface by the program PyMOL

(Version 1.5.0 Schrödinger, LLC). C, Agarose gel electrophoretic mobility shift assays: 0.5 μg of genomic E. coli DH5α
RNA was incubated with increasing concentrations of wt SapA (blue line), single mutant SapA R101S (orange line)

and double mutant SapA R101S, Q85S (green line). The intensities of the 23S and 16S rRNA bands were measured at

each protein concentration. (See S2A Fig for typical gel data).

https://doi.org/10.1371/journal.pone.0256070.g006
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such an interaction. Perhaps RNA binding motifs present on bacterial periplasmic proteins

can act as "sticky patches" to prevent or slow down the entry of viral RNA as a mechanism of

bacterial resistance to viral infection.

RNA contamination of the SapA protein may explain previous observations regarding

AMP binding. Cationic AMPs interact with a variety of anionic macromolecules including

nucleic acids [41–45]. Therefore, interactions previously observed between SapA and AMPs

[14] may in fact be via interactions with contaminating RNA bound to the SapA sample, with

the RNA acting as the bridging molecule. This model would explain the results of a competi-

tion assay [17] where the ability of different AMPs to displace heme from SapA was correlated

to their overall positive charge. Such observations are consistent with charge-charge interac-

tions between molecules rather than a sequence-specific interaction characteristic of peptide/

protein binding. Such effects were not apparent in our experiments as we ensured that our

SapA samples avoided RNA contamination. The A260/A280 ratio of purified SapA samples was

monitored; and a measured value of ~0.6 was taken to be consistent with a nucleic acid free

sample. In this work, we utilized a number of techniques using highly purified components to

characterize SapA and the molecular interactions with its proposed ligands. The weight of our

evidence favors the involvement of SapA, and its cognate transporter, in the transport of

dipeptides or tripeptides, even though further research will be required to confirm this on a

functional level. Research should take two distinct directions: one, to confirm the true sub-

strate of the transporter and two, to elucidate the mechanisms of AMP resistance. That AMP

sensitivity may not be mediated through direct molecular interactions with Sap needs to be

considered, given that sapA sensitivity to AMPs is not conserved across species nor is it con-

fined to a particular set of AMPs. For instance, the H. ducreyi sapA mutant was more sensitive

to LL-37 but not human defensins [22] while resistance to LL-37 in E. coli was unaffected by

ΔsapBCDF deletion [46]. In closing, the data presented here provide the basis for the commu-

nity to cast a wider net and consider other mechanisms and pathways that could explain the

observed heme requirement and AMP sensitivity of NTHi sap genetic mutants in cell assays

and in vivo.

Materials and methods

NTHi SapA protein expression and purification

Purified NTHi 86-028NP genomic DNA (gift of Kevin Mason, Nationwide Children’s Hospi-

tal, Columbus, Ohio, USA) served as a template for PCR amplification of the SapA protein-

coding region. The In-Fusion1 cloning method was used to insert the PCR product into a

pOPINF plasmid vector [47]. The construct was designed to exclude the predicted signal pep-

tide region and encompassed residues 33 to 560 with a S3C cleavage site. The recombinant

plasmid was transformed into E. coli RosettaTM (DE3) expression strain (Novagen). A single

colony was used to inoculate 100 ml of Power Prime Broth™ media (Molecular Dimensions)

supplemented with 50 μg/ml carbenicillin, 35 μg/ml chloramphenicol and grown overnight at

37˚C, 230 rpm. 10 ml of the overnight culture was then used to inoculate 1 liter of Overnight

Express™ Instant TB autoinduction media (Novagen). The cultures were initially grown at

37˚C for 5–6 h, followed by prolonged growth at lowered temperatures (230 rpm, 20 h, 25˚C).

The cells were harvested by centrifugation and stored at -80˚C. Approximately 50 g of cells

were resuspended in lysis buffer (50 mM Hepes pH 8, 500 mM NaCl, 30 mM imidazole pH 8,

0.2% Tween-20, 5% (w/v) glycerol) supplemented with DNase I (10–20 μg/ml) and a cOm-

plete™ EDTA-free Protease Inhibitor Cocktail tablet (Roche), and lysed using a Constant Sys-

tems Ltd. cell disrupter (3 passes, 30 kpsi, 4˚C). The crude extract was centrifuged (50000 g,

1hr, 4˚C) and filtered with a 0.22 μm filter to remove insoluble components.
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The soluble lysate was loaded onto a 1 ml nickel sepharose HisTrap FF column (GE Health-

care) equilibrated in wash buffer (50 mM Hepes pH 8, 500 mM NaCl, 30 mM imidazole pH 8,

5% (w/v) glycerol). The bound protein was washed using 20 column volumes of wash buffer

and eluted using an Imidazole step gradient using the wash buffer containing 500 mM

Imidazole.

The major peak from Ni-affinity purification was collected and applied to a HiLoad 16/600

Superdex 200 pg size-exclusion column (GE Healthcare) equilibrated in 20 mM Hepes pH 8,

500 mM NaCl and 5% (w/v) glycerol. Post size-exclusion, the protein was subjected to (His)6

tag cleavage by incubation with 50% (w/w) Human Rhinovirus B 3C protease (2 h at 20˚C

then 14 h at 4˚C), followed by reverse His-tag purification.

Purity at all stages was monitored by SDS-PAGE. High purity samples were pooled and

concentrated to 10 mg/ml for crystallization using a 10 kDa MWCO Amicon-Ultra centrifugal

filter unit (Merck). In parallel, the buffer was exchanged on the unit (final buffer: 20 mM

Hepes pH 8, 500 mM NaCl). The molecular weight of the purified protein was confirmed by

intact mass spectrometry (Predicted Mass / Experimental Mass = 60460.64 / 60458.29 Da).

Crystallisation, data collection and structure determination

Diffraction quality crystals (SapAclosed) were obtained from 200 nl sitting drops where the pro-

tein was mixed 1:1 with 22% (w/v) PEG 3350, 0.25 M NaBr, 0.1 M Bis-Tris Propane pH 7.5.

In an attempt to obtain RNA-free crystals the above procedure was modified by adding 0.5

ml of RNase Cocktail™ Enzyme Mix (Ambion) to the clarified and filtered cell lysate. This was

incubated on ice for 1 hour prior to Nickel sepharose purification. A second crystal form,

SapAmixed, was subsequently obtained from this protein preparation, in a crystallization condi-

tion containing 10% (w/v) PEG 8000, 0.1 M imidazole pH 8.0, 0.2 M Ca(OAc)2. Heme deriva-

tive SapAheme crystals were obtained by soaking closed-form crystals for 48 h in a mother

liquor solution containing Hemin added to a theoretical concentration of 25 mM. Hemin was

added from a freshly prepared unfiltered suspension generated by the addition of hemin to 0.5

M NaOH and subsequent neutralization to pH 8. A theoretical concentration of 25 mM hemin

was also maintained in the cryoprotectant solution.

The crystals were then rapidly transferred from the sitting droplet into a cryoprotectant

solution, the composition of which was based on the original crystal growth condition, and

either 20% (v/v) glycerol or ethylene glycol. The crystals were then immediately plunged into

liquid nitrogen. X-ray diffraction data were collected at 100 K at beamline I04 and I04-1, Dia-

mond Light Source (Didcot, UK). Data were processed using the xia2 automated reduction

pipeline [48] which makes use of Mosflm [49], Pointless [50], CCP4 [51] and XDS [52].

The structure of SapA was solved by molecular replacement by the programs BALBES [53]

and Phaser [54] in the CCP4 suite of programs. The molecular replacement pipeline BALBES

identified the crystallographic structure 3M8U as the best search model. Initial model auto-

building and refinement was carried out in PHENIX [55]. Further rounds of manual building

and refinement were carried out using the programs Coot [56], Refmac5 [57], BUSTER [58]

and the PDB-REDO server [59]. The quality of the final model was assessed with the PDB Vali-

dation Services and MolProbity [60]. Domain movements were analyzed using ProSMART

[61] by aligning the structure of SapAclosed with chain B of SapAmixed. Structural alignment

with SapA homologs was carried out using the SSM superpose tool within the program Coot.
Sap cavity volume calculations were carried out using the program Voidoo [62] using the same

parameters as described by [33]. Identification of residues lining the cavity was carried out

with the same program.
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Phylogenetic analysis

The phylogenetic analysis used structurally characterised SBP cluster C members as described

in Scheepers et al with NTHiSapA and PsDppA added to the set. UniProt derived sequences

for this set were aligned with Clustal Omega [63]. Phylogenetic neighbour joining tree data we

obtained from within Clustal Omega and the corresponding cladogram was visualised using

iTOL [64] software.

Native PAGE gel shift assays

Samples for native PAGE were prepared by mixing 5 μg of purified SapA protein with 0, 0.1,

0.5, 1, 5, 10 mM hemin from a freshly prepared concentrated hemin stock. The volumes were

adjusted to a final volume of 20 μl by the addition of 20 mM Hepes pH 8, 300 mM NaCl buffer.

The samples were then incubated for 45 min at room temperature, prior to separation by

native PAGE (10% gel, running buffer pH 8.8) as previously described [65, 66].

Isothermal titration calorimetry

Isothermal titration calorimetric measurements were carried out using a MicroCal iTC200

microcalorimeter (Malvern Instruments UK) at 25˚C. 200 μL of SapA (20 μM) in was placed

in the cell and 40 μL of hemin (10 mM) in the syringe. The buffer used in ITC was 20 mM

Hepes pH 8, 300 mM NaCl. The concentration of SapA and hemin solutions were determined

using spectrophotometry at 280 and 385 nm, and the extinction coefficients used were ε280 =

77490 M-1cm-1 and ε385 = 58440 M-1cm-1, respectively. Sixteen 2.4 μL injections were per-

formed at an injection speed of 0.5 μL/sec, with a pre-injection of 0.5 μL, a three-minute inter-

val between injections and a stirrer speed of 750 rpm. To establish the heat of dilution, a

control experiment was performed where hemin (10 mM) was injected into the ITC buffer

using identical experimental conditions. This was then subtracted from the main experiment.

Data were analyzed using MicroCal Origin software (version 7) fitting to a single site binding

model. The binding enthalpy (ΔH) and association constant (Ka), were permitted to float dur-

ing the least-squares minimization process and taken as the best-fit values. The binding stoi-

chiometry (n) was fixed to one.

RNA and DNA electrophoretic mobility shift assay (EMSA)

SapA R101S and SapA Q85S R101S mutants were generated for the purpose of testing in

EMSAs. The double-stranded DNA encoding the mutant proteins was purchased as gBlocks1

Gene Fragments (Integrated DNA Technologies) and cloned into pOPINF plasmids by the In-

Fusion1method. Purification was carried out as for the wild-type protein.

0.5 μg of genomic total RNA from E. coli DH5α (Ambion) was incubated with increasing

amounts of wild-type SapA, SapA R101S and SapA Q85S R101S mutants in a total volume of

20 μl of TBE at room temperature for 1 hour. Following incubation, the samples were loaded

on a 1% (w/v) agarose/TBE gel containing SYBR™ Safe Gel Stain (Invitrogen) at 1:10000 dilu-

tion. The samples were then separated at 60 V for 1 hour in 1X TBE buffer. The gels were then

imaged and bands were quantified using the ImageQuant TL 1D v8.1 software. The back-

ground subtracted intensities for rRNA 16S and 23S bands were summated, normalized

against the average intensity at zero concentration and plotted. The experiments were

repeated 4 or 5 times. The Kd of an interaction was estimated by least squares linear regression

of the normalized reduction in rRNA band intensity using Origin (version 7) fitting to the
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equation:

PR ¼
Kdþ ½P� þ ½R� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðKdþ ½P� þ ½R�Þ2 � 4½P�½R�
q

2

where PR is the normalized reduction in rRNA band intensity, and [P] and [R] are the concen-

tration of the SapA protein and the rRNA, respectively.

Total genomic DNA was isolated from Subcloning Efficiency™ DH5α™ Competent Cells

(Invitrogen) using the GenElute™ Bacterial Genomic DNA Kit (Sigma) according to the manu-

facturer’s instructions. The genomic DNA was then concentrated by vacuum concentration

(to approximately 200 ng/μl) and dialyzed into water using a 3500 MWCO Slide-A-Lyzer

MINI Dialysis Device (Pierce). The assays were carried out as above with the following modifi-

cations: Protein samples were diluted in TAE and incubated with 0.5 μg of gDNA for 1 hour.

Electrophoresis was carried out at 75 V for 30 minutes on a 0.8% (w/v) agarose/TAE gel.
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