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Donor-specific unresponsiveness while preserving an intact immune function remains 
difficult to achieve in organ transplantation. Induction of tolerance requires a fine mod-
ulation of the interconnected innate and adaptive immune systems. Antigen-presenting 
cells (APCs) predominate during allograft rejection and create a highly inflammatory 
context where allospecific T cells are primed. Currently, the available protocols to prevent 
allograft rejection include a cocktail of drugs that are efficient in the short-term, but 
with severe long-term side effects and considerable toxicity. Consequently, better and 
less burdensome strategies are needed to promote indefinite allograft survival. Targeted 
delivery of immunosuppressive drugs that prevent the alloimmune response may address 
some of these problems. Nanoparticle-based approaches represent a promising strat-
egy to negatively modulate the alloresponse by specifically delivering small compounds 
to APCs in vivo. Nanoparticles are also used as integrating imaging moieties to monitor 
inflammation for diagnostic purposes. Therefore, nanotechnology approaches represent 
an attractive strategy to deliver and monitor the efficacy of immunosuppressive therapy 
in organ transplantation with the potential to improve the clinical treatment of transplant 
patients.
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inTRODUCTiOn

Transplantation is a life-enhancing therapeutic option for tens of thousands of patients with 
end-stage organ failure. Outstanding short-term outcomes in organ transplantation have been 
achieved by pharmacologic immunosuppression. Despite these accomplishments, the detrimental 
effects’ life-long continuous immunosuppression compromise long-term allograft survival (1, 2). 
Immunosuppressive combination therapies are not specific and often toxic, resulting in the deteriora-
tion of the patient quality of life and severe side effects, including infections and malignancies (3, 4).

Novel therapeutic approaches that target the adaptive immune response have been developed, 
but the long-term transplant outcomes remain suboptimal. This underlines the need for additional 
approaches to develop tolerance-inducing protocols. Allograft tolerance induction in murine models 

Abbreviations: APC, antigen-presenting cell; DC, dendritic cell; FDA, Food and Drug Administration; IFN, interferon; 
IL, interleukin; HDL, high-density lipoprotein; HDL-NPs, high-density lipoprotein nanoparticles; PET, positron emission 
tomography; PLGA, poly(lactic-co-glycolic acid).
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cannot be fully explained by mechanisms that target only the 
adaptive immunity (5, 6). Recent work revealed how the innate 
immune system, especially monocytes and macrophages, reacts 
to allogeneic non-self and critically influences the adaptive 
immune response (7–10). As a result, therapeutic approaches 
that target myeloid cells in vivo and deliver immunomodulatory 
agents that prevent activation of the adaptive immune response 
represents a largely unexplored approach to promote indefinite 
allograft survival.

In this mini review, we first discuss the current state and 
perspectives of nanotherapy in transplantation by focusing on 
nanoparticles, particularly for modulation and immunosup-
pressive drug delivery to antigen-presenting cells (APCs). We 
then introduce the synthetic high-density lipoprotein (HDL) 
nanoparticles (HDL-NPs), which represent an emerging and 
very promising nanotherapeutic option to be exploited in organ 
transplantation. In addition, we describe nanoparticle-based 
imaging approaches that are being evaluated for graft immune 
monitoring and transplant rejection diagnosis. We finally raise 
several outstanding questions about the use of nanoparticles in 
organ transplantation to conclude that this technology represents 
an additional therapeutic option to prevent transplant rejection 
and promote organ acceptance.

APCs AS A THeRAPeUTiC TARGeT FOR 
iMMUnOSUPPReSSive THeRAPY in 
TRAnSPLAnTATiOn

Circulating and tissue-specific monocytes, macrophages, and 
dendritic cells (DCs) are APCs that activate strong cellular 
and humoral immune response against the transplanted organ. 
Non-self recognition by the innate immune system is certainly 
required for this response; however, it is still unclear what 
other mechanisms are involved in the early steps leading to 
APC maturation. It has been hypothesized that dying graft cells 
release “danger” molecules that directly induce APC maturation 
and that then initiate the adaptive alloimmune (11). Fadi Lakkis 
laboratory demonstrated that the “danger” signal associated 
with dying cells is not sufficient to initiate alloimmune response 
but that innate recognition of allogeneic non-self is required (9). 
By analyzing the innate immune response in either syngeneic or 
allogeneic grafts, it was demonstrated that only allogeneic grafts 
induced persistent differentiation of recipient monocytes into 
mature DCs that expressed interleukin 12 (IL-12) and stimu-
lated T-cell proliferation and interferon γ (IFN-γ) production 
(9, 11). Altogether, these findings underline the importance 
of alloantigen innate recognition by APCs in initiating graft 
rejection and in maintaining a pro-inflammatory context. More 
recently, the Lakkis laboratory uncovered the mechanisms 
underlying non-self allorecognition and demonstrated that 
donor polymorphism in the gene encoding the signal regula-
tory protein α recognition by recipient CD47 elicits the innate 
immune response (12).

While monocyte-derived cell accumulation in transplanted 
organs has long been recognized as a feature of allograft rejection 
(13), recent data suggest that monocyte-derived macrophages 

inhibit graft-reactive immune responses (14) and mediate the 
induction of transplantation tolerance (10). This suggests that the 
functional properties (stimulatory or suppressive) of allograft-
infiltrating APCs dictate the outcome of the transplanted organ. 
In this respect, circulating stimulatory (Ly-6Chi) monocytes 
contribute to leukocyte recruitment and consequently to acute 
organ rejection (15), while suppressive (Ly-6Clo) macrophages 
are responsible for the long-term allograft survival (10). These 
findings indicate that the innate immune system is not just an 
innocent bystander in the allograft immune response and that its 
modulation is required for tilting the immune balance in favor of 
the homeostasis status and of long-term allograft survival.

nAnOPARTiCLe-BASeD MODULATiOn 
OF APCs FOR TRAnSPLAnTATiOn 
TOLeRAnCe

Drug-loaded nanoparticles represent a promising tool in organ 
transplantation to circumvent the limitations of conventional 
approaches by a localized, sustained, and controlled delivery of 
bioactive agents. Engineering nanoparticles for modulating the 
innate immune system in transplantation is an emerging field 
that provides new insights into the basic immunobiology of graft 
rejection/tolerance. The therapeutic aim is to deliver antigens and 
immune modulatory agents through specific myeloid derived cell 
targeting, thus allowing a better control on the innate immune 
response to induce transplantation tolerance (Figure 1A).

Targeting DCs with nanoparticles harboring antibodies or 
small compounds is one of the most promising strategies to 
negatively regulate the immune response after transplantation. 
Delivering antigen to specific DC receptors may result in the 
production of regulatory cytokines and the induction of nega-
tive costimulatory pathways that promote tolerogenic responses. 
C-type lectin receptors that are responsible of antigen presenta-
tion, such as mannose receptor and DEC-205 (16), have been 
previously used for immune cell activation (17, 18). Interestingly, 
antigen delivery by the same nanoparticles in the absence of 
adjuvant induces suppressive immune responses, leading to a 
tolerogenic phenotype (19). This represents a potential strategy 
to inhibit activated CD4 and CD8 T cells that mediate transplant 
rejection. Furthermore, transplant recipient mice treated with 
nanoparticle-encapsulated immunosuppressive drugs, such as 
rapamycin, tacrolimus, and mycophenolic acid, prolong allograft 
survival. PLGA nanoparticles have been developed to deliver 
rapamycin to increase the suppressive activity of myeloid cells. 
The resulting nanoparticles have a better efficacy in comparison 
to free drug in terms of antiproliferative (20), and inhibitory 
effects on the maturation of DCs (21). In a mouse model of skin 
transplantation, Goldstein and colleagues successfully delivered 
mycophenolic acid loaded-PLGA nanoparticles to myeloid cells, 
which prolonged allograft associated with upregulation of pro-
grammed death ligand-1 (22). Using a similar mouse model of 
skin graft transplantation, treatment with a mixture of rapamycin-  
and tacrolimus-loaded nanomicelles was shown to effectively 
target multiple immune cell subsets in the lymph node, with a 
prolonged allograft survival (23). Moreover, locally controlled 
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FiGURe 1 | Toward nanomedicine in transplantation. Conventional organ transplant treatment requires continuous immunosuppressive drugs to provide therapeutic 
benefit that results in several side effects, including toxicity. Due to their structural stability and gradual drug release capacity, nanoparticle-based strategies could be 
used to reduce drug doses, minimize toxicity, and induce long-term allograft tolerance. Among the nanomaterials currently being developed, many are studied as 
drug delivery and imaging agents. (A) Myeloid cells can be targeted by using nanoparticles (in green) with the aim of modulating the early steps of the immune 
response. Nanoparticles deliver immunosuppressive drugs and/or antigens that result in a tolerogenic environment through the upregulation of anti-inflammatory 
mediators, such as IL-10, TGF-β, and the Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN), and the downregulation of  
pro-inflammatory mediators, such as TNF-α and CD40. This will promote the formation and maintenance of myeloid cells with suppressive activity to reduce the 
alloreactive T cell response and concomitantly induce regulatory T cells (Treg) and long-term tolerance. (B) Among the various polymers synthesized for formulating 
polymeric nanoparticles, poly(lactic-co-glycolic acid) (PLGA) is the most popular with several interesting properties such as controlled and sustained release, low 
cytotoxicity, biocompatibility with tissues and cells, and a targeted delivery. A schematic representation of PLGA-based nanoparticles (PLGA-NP) is included in this 
figure. The entrapped drug is distributed throughout the polymer matrix and the particles surface is covered with a cationic surfactant such as 
didodecyldimethylammonium bromide. (C) Nanoparticles can also be used as moieties for positron emission tomography (PET), magnetic resonance imaging (MRI), 
and X-ray imaging and monitor graft function in patients. These non-invasive imaging approaches could be applied for diagnosis and prognostic purposes.
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and sustained release of corticosteroids using a biodegradable 
nanoparticle system after corneal transplantation prevents graft 
rejection in rats (24). In conclusion, these studies provide a 
comprehensive in vitro and in vivo evidence for the superiority of 
PLGA encapsulated immunomodulatory drugs over the soluble 
form and its potential in organ transplantation.

In summary, nanoparticles are used for the delivery of low dose 
immunosuppressive agents in conjunction with antigens to pre-
vent specific immune responses. These studies mostly used nano-
therapies based on the Food and Drug Administration-approved 

poly(lactic-co-glycolic acid) (PLGA) nanoparticles. While biode-
gradable, PLGA nanoparticles are large (≥100 nm in diameter), 
tend to aggregate, and are taken up by all phagocytic cells in a 
non-specific manner. The nanoparticle size is a critical factor for 
uptake and retention in the lymphoid secondary organs, since 
small nanoparticles (≤25 nm) are taken up more efficiently and 
retained for longer periods (25). Altogether, nanotherapeutic 
specific targeting of the APCs represents a promising strategy to 
inhibit the upstream steps of transplant rejection and to generate 
a durable donor-specific tolerant state.
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HDL-nPs AS nAnOCARRieRS FOR DRUG 
DeLiveRY TO APCs in 
TRAnSPLAnTATiOn

High-density lipoproteins are natural, small dynamic nanoparti-
cles that have immuno protective function through macrophage 
targeting (26). They are being exploited in atherosclerosis, as 
a nanotherapeutic option (27) and are also used for targeting 
tumor-associated macrophages and as a cancer therapeutic tool 
(28, 29). Since HDL-NPs exhibit high specificity toward myeloid 
cells, they deliver immune modulatory drugs to APCs in vivo (30). 
Apolipoprotein A-I (apoA-I) is the main amphipathic lipoprotein 
associated with HDL-NPs and defines the size and shape of these 
nanoparticles (28, 31). HDL-NPs preferentially interact with 
receptors that are highly expressed by myeloid cells, including 
ATP-binding cassette receptor A1 and scavenger receptor type 
B-1 (32). As a result, HDL-NPs represent an attractive approach 
to in vivo target myeloid cells in transplant recipients. Their abil-
ity to incorporate therapeutic agents can be used to specifically 
deliver immunosuppressive drugs to the innate immune system 
and prevent the immune alloreactivity, thus promoting long-
term allograft survival. Since the biodistribution of HDL-NPss 
is tightly dependent on their composition, the number of apoA-I 
molecules, their purity, and ratio relative to other nanoparticle 
components, such as phospholipids, need additional investiga-
tion for optimal results. Ultimately, HDL-NPs synthesis should 
be adapted to each disease to provide the best and most specific 
tissue and cell targeting tool (33).

nAnOPARTiCLeS FOR APCs 
MOniTORinG in TRAnSPLAnTATiOn: 
iMAGinG APPROACHeS

Besides their use as drug delivery carriers, nanoparticles can 
also be used to image a biological process. Pioneer approaches 
to imaging transplant rejection used radiolabeled anti-myosine 
antibody Fab fragments as a non-invasive detection of human 
cardiac transplant recipient rejection (34). Besides, magnetic 
resonance imaging (MRI) was used for repetitive imaging of 
transplanted hearts because it combines high spatial resolution 
with the ability to measure heart function while avoiding radia-
tion exposure (35). Indeed, in vivo electrocardiographically gated 
MRI has been reported as a sensitive, non-invasive modality for 
the detection and the grading of cardiac transplant acute rejec-
tion, which correlates with the T2 relaxation times value (35). 
Even though gadolinium-based contrast agent play an important 
role in molecular and cellular imaging (36), most MRI cellular 
studies rely on the superior sensitivity of superparamagnetic 
or ultrasmall superparmagnetic iron oxide nanoparticles for 
imaging contrast. MRI-sensitive iron oxide approach exploits the 
phagocytic capacity of myeloid cells, specifically macrophages to 
monitor allograft rejection (37, 38).

More recently, nanoparticles were used to visualize mac-
rophages in  vivo and for assessing their absolute number, flux 
rate, and functional state in different tissues and models (39–41). 
Radiolabeled and dextran crosslinked nanoparticles have been 

used as a macrophage-specific imaging agent for positron emis-
sion tomography (39, 42, 43). Furthermore, magnetic nanoparti-
cles could also be used as probes for MRI to examine the function 
of immune cells in humans. However, using MRI for in  vivo 
cell quantitation in organs is often complicated and needs more 
concentrated magnetic materials than radiolabeled nanoparticles 
(44). PEGylated gold nanoparticles and other nanoparticle-based 
contrast agents have been used also for X-ray computed tomog-
raphy (CT) (45). Differently from the other described imaging 
techniques, X-ray CT requires a high concentration of nanopar-
ticles to follow the macrophage populations. Therefore, different 
nanoparticle platforms can be used in personalized clinical care to 
provide diagnostic and prognostic information as well as for quan-
tifying the treatment efficacy of transplant patients (Figure 1B).

COnCLUDinG ReMARKS AnD 
OUTSTAnDinG QUeSTiOnS

The use of nanoparticles represents a promising therapeutic strat-
egy to target APCs in vivo and negatively modulate the immune 
response in organ transplant recipients. Nanoparticles are capable 
to induce antigen-specific myeloid cells with suppressive function 
that promote regulatory T  cells expansion (46). Therefore, the 
immunosuppressive effects of nanoparticles loaded with donor 
antigens are ultimately transplant- and patient-specific. In addi-
tion, assays that evaluate the robustness of this nanotherapeutic 
approach and potentially distinguish between tolerant and non-
tolerant patients need to be optimized. This could be in part be 
monitored using gene expression profiling of the patient’s blood, 
urine, or transplant biopsy as previously reported. As the final 
clinical objective is to maintain graft function and intact host 
defenses, a patient-specific genetic tolerogenic signature could be 
used to determine the frequency and dose of the nanotherapeutic 
treatment of each patient.

Protocols using nanoparticles for imaging in transplanta-
tion need to be optimized for their clinical application as a 
non-invasive approach to characterize and monitor the allograft 
function. While some animal models are being developed that 
evaluate the efficacy of nanoparticles in organ transplantation, 
much work is yet to be done to translate the results from bench 
to bedside. In addition, the precise mechanisms of action and the 
long-term effects of nanoparticles have not been fully elucidated 
yet. Although drug-loaded nanoparticles have demonstrated 
lower toxicity than the soluble form, the potential long-term 
toxicity and side effects of nanoparticles are not fully known. 
Interestingly, drug-loaded nanoparticles could be used as a com-
bination therapy with other induction therapy strategies, such 
as thymoglobulin and interleukin-2 (IL-2) receptor antibodies 
(47). In this respect, it is important to test whether combined 
approaches that use drug-loaded nanoparticles are optimized in a 
mechanism-independent fashion and to determine the potential 
synergistic effects. Collectively, the use of nanoparticles as a tar-
geted delivery approach that modulates APCs in vivo represent an 
innovative therapeutic protocol to prevent undesirable immune 
responses and promote long-term organ acceptance in transplant 
recipients direct translation into the clinical practice.
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