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ABSTRACT: Neurodegenerative diseases, encompassing conditions such as
Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral
sclerosis, prion disease, and Huntington’s disease, present a growing health
concern as human life expectancy increases. Despite this, effective treatments to
halt disease progression remain elusive due to various factors, including
challenges in drug delivery across physiological barriers like the blood−brain
barrier and patient compliance issues leading to treatment discontinuation. In
response, innovative treatment approaches leveraging noninvasive techniques
with higher patient compliance are emerging as promising alternatives. This
Review aims to synthesize current treatment options and the challenges
encountered in managing neurodegenerative diseases, while also exploring
innovative treatment modalities. Specifically, noninvasive strategies such as
intranasal administration and nanosized drug delivery systems are gaining
prominence for their potential to enhance treatment efficacy and patient adherence. Nanosized drug delivery systems, including
liposomes, polymeric micelles, and nanoparticles, are evaluated within the context of outstanding studies. The advantages and
disadvantages of these approaches are discussed, providing insights into their therapeutic potential and limitations. Through this
comprehensive examination, this Review contributes to the ongoing discourse surrounding the development of effective treatments
for neurodegenerative diseases.

1. INTRODUCTION
Neurodegenerative disease is an inclusive term for a range of
disorders characterized by progressive loss of nervous system
cells and consequent loss of nervous system functions.(1) Many
different diseases, such as Alzheimer’s disease, Parkinson’s
disease, Multiple sclerosis, Amyotrophic Lateral Sclerosis
disease, Prion disease and Huntington’s disease, are included
in this group. With the increase in the average human life
expectancy worldwide, “neurodegenerative diseases” are seen
in increasing prevalence today due to the increased oxidative
stress in nerve cells and brain cells, free radical accumulation,
and intensified immune response resulting from pro-inflam-
matory cytokine release, tau protein accumulation, mitochon-
drial dysfunction, genetic factors, environmental factors such as
smoking and alcohol consumption (Figure 1) Since all causes
and mechanisms of neurodegenerative diseases have not been
fully elucidated and the clinical response obtained in treating
these diseases is not at the desired level, studies on treating
diseases in this group are still up to date.
In these researches, nanosized drug delivery systems come to

the fore in providing effective treatment of neurodegenerative
diseases, thanks to their intrinsic properties. Nanosized drug
delivery systems have significant advantages due to their
mechanical, electrical, optical, and magnetic superiority
compared to conventional dosage forms, especially in the

treatment of all neurodegenerative diseases that require
bypassing the blood−brain barrier (BBB).1,2

These advantages include their nanoscale size, high surface
area to volume ratio, high drug loading capacity, ability to
escape from the reticuloendothelial system and long residence
time in the blood circulation, suitability for surface
modifications, active and passive targeting, biosafety, protect
the active substance from enzymatic degradation, targeting
ability, suitable for surface modification.1,3

Especially in the treatment of neurodegenerative diseases
that require long-term treatment, nanosized drug delivery
systems provide controlled drug release, increase bioavailability
and biocompatibility properties come to the fore.4,5

Within the scope of this Review, neurodegenerative diseases
will be defined, current treatment options and challenges
encountered in these treatments will be summarized and
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nanodrug carrier-based treatment approaches to create the
desired therapeutic effect will be discussed.

2. NEURODEGENERATIVE DISEASE
In this section, the most common neurodegenerative diseases
will be defined, and treatment approaches will be discussed as a
foundational framework for further discussion.
2.1. Alzheimer’s Disease. Today, Alzheimer’s disease

(AD) is the most common neurodegenerative disease, affecting
24 million people worldwide. This disease is characterized by
memory loss, decreased cognitive functions, and various
psychiatric and behavioral disorders.6 Risk factors for AD
include age, gender, genetic factors (presence of APOE ϵ 4
allele), smoking, diabetes, hypertension, and high serum
cholesterol levels. Extracellular beta-amyloid plaque formation,
neurofibrillary tangle formation containing tau-protein, glial
dysfunction, neuron damage, and synapse damage in different
central nervous system (CNS) regions are the main
distinguishing factors in the histopathological examinations of
this disease.7,8

Different treatment strategies are being developed for the
treatment of specified pathologies. Cholinesterase inhibitors
and N-Methyl D-Aspartate (NMDA) receptor antagonists are
clinically approved for AD treatment. Although recent studies
suggest the use of tacrine, estradiol, curcumin and peptides,
their use is limited due to the limited passage of these
components the BBB and potential serious side effects.7

2.2. Parkinson’s Disease. Parkinson’s disease (PD) was
first described as “shaking palsy” by British physician James
Parkinson in 1817. In Parkinson’s disease, which is a
progressive neurological disease in which dopaminergic neuron
loss in the substantia nigra part of the brain and Lewy bodies
are detected, individuals experience tremors, bradykinesia,
rigidity, postural instability and deterioration of other motor
functions, and loss of sensation.

According to the data published by The Global Burden of
Disease Study, Parkinson’s disease is the neurological disease
with the fastest incidence, and it is predicted that
approximately 13 million people will be diagnosed with this
disease in 2040.9

PD causes complex disorders that require an individualized
treatment approach. Currently, treatment is carried out with
levodopa/carbidopa, dopamine agonists (rotigotine, apomor-
phine, pramipexole, ropinirole), catechol-O-methyl transferase
inhibitors (entacapone, tolcapone, opicapone), monoamine
oxidase inhibitors. Studies continue to reduce side effects and
develop targeted treatment strategies.9

2.3. Multiple Sclerosis. Multiple Sclerosis (MS), an
autoimmune CNS disease characterized by inflammation,
demyelination, and axonal damage, was first described by
Jean-Martin Charcot in 1868 as “sclerose en plaques”.10

After MS attacks, together with the deterioration of electrical
signal transmission in nerve cells, numbness in the limbs,
paralysis, visual disturbances, and other neurological disorders
occur. In this disease, the diagnosis is made by detecting scars,
plaques, and lesions in the brain, spinal cord, and cerebrospinal
fluid with magnetic resonance imaging. The risk factors for this
disease, are genetic factors, especially gender, metabolism,
virus, etc., and immunological response to infections caused by
other pathogens.10,11

There are different treatment options for MS treatment to
relieve symptoms and prevent disease progression. In order to
prevent disease progression, immunosuppressant (like fingoli-
mod, natalizumab, ocrelizumab) or immunomodulatory
(interferon beta, glatiramer acetate, teriflunomide, etc.) agents
are frequently used in treatment. Treatment for relieve
symptoms is often planned to improve the patient’s quality
of life. For this purpose, tricyclic antidepressants, painkillers, or
anticholinergic agents are oftenly used.11

2.4. Prion Diseases. Prion diseases are rare transmissible
neurodegenerative diseases. This disease, which occurs due to

Figure 1. Factors that trigger neuron damage and lead to neurodegenerative disease. Internal and external contributors lead to complex series of
events that result in neurodegeneration. Environmental toxins, pollution, heavy metals, genetic predisposition, gene mutations, protein misfolding,
oxidative stress in cells, and lack of energy production in mitochondria are among several factors. (This figure was created with BioRender.com).
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the accumulation of misfolded prion proteins, progresses
rapidly and can lead to death. Because of their infectious
properties, these diseases are considered infectious diseases of
the central nervous system and are also called ’Transmissible
Spongiform Encephalopathies’. This disease can be transmitted
to humans through medical devices, blood, and from animals.
Although there is no definitive treatment yet for this disease,
which is divided into different subgroups as sporadic,
hereditary, and acquired, treatment development studies are
continuing.12,13

2.5. Huntington’s Disease. Huntington’s disease (HD), is
a rare disease of inherited origin that causes progressive
degeneration of neurons in the CNS. In this disease, which was
first described by George Huntginton in 1872, the presence of
the 350 kDa “Huntingtin” protein is observed due to the
constant repetition of cytosine-adenine-guanine nucleotides in
the human genome. Progressive destruction begins in the CNS
due to excessive production and accumulation of huntingtin
protein by neurons. The hereditary transmission of this disease
is seen at the same level in men and women.14

Different motor, cognitive, and psychiatric symptoms are
observed in HD. Cachexia, dysarthria, dysphagia, dystonia,
movement disorders, loss of coordination, muscle stiffness,
seizures, cognitive impairment, and insomnia occur in patients.
There is no radical cure for HD yet or a treatment that will
slow disease progression. Current treatment options include
symptomatic treatment with haloperidol, tetrabenzaine, and
amantadine.15

2.6. Amyotrophic Lateral Sclerosis Disease. ALS
(Amyotrophic Lateral Sclerosis Disease) is a neurodegener-
ative disease in which damage occurs primarily in the motor

neurons responsible for the movement of the muscles in the
brain and spinal cord.
Pathologically, loss of neuromuscular connections, axonal

retraction, and death in motor neurons due to these, together
with ubiquitin-positive inclusion formations, are observed. As a
result, progressive weakness, muscle wasting, and coordination
disorders occur in the extremities and trunk, which can
significantly affect the quality of life of individuals. Risk factors
for this disease include age, genetic factors, gender, and
exposure to environmental toxins.
In addition to the treatment with two FDA-approved (Food

and Drug Administration) drugs, Rilozule (1993) and
Edaravone (2017), symptomatic and palliative treatment is
applied to improve the quality of life of ALS patients.16

3. CHALLENGES WITH CURRENT TREATMENT
OPTIONS

Although there are limited treatment options for neuro-
degenerative diseases, current treatment strategies mainly aim
to slow the progression of the disease and alleviate its
symptoms. A crucial obstacle in establishing the desired
therapeutic efficacy is the presence of protective barriers
surrounding the central nervous system. Most of the drugs
with clinical potential cannot reach the targeted area at
adequate concentration due to various physiological barriers,
especially the blood−brain barrier.17 Blood-cerebrospinal fluid
barrier, arachnoid barrier, blood-spinal cord barrier, and
multidrug resistant proteins (P-glycoprotein) are other
significant physiological barriers that limit the passage of
drugs to the CNS. (Figure 2)
3.1. The Blood−Brain Barrier. The blood−brain barrier

(BBB) is the most critical barrier in the transition to the CNS

Figure 2. Physiological barriers that protect the CNS from harmful toxins and provide a stable environment for optimal function limit the passage
of drugs to the CNS. The passage of substances into the CNS is tightly protected by various physiological barriers: (a) the blood−brain barrier, (b)
the blood−cerebrospinal barrier, (c) multidrug resistant proteins, (d) the blood−spinal cord barrier, and (e) the arachnoid barrier. (This figure was
created with BioRender.com).
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and basically acts as a border between blood circulation and
the brain’s interstitial fluid. The functions of this barrier in the
membranous structure include maintaining the homeostasis of
the central nervous system, obtaining necessary nutrients from
the blood, providing neuroprotection, and preventing the
passage of neurotoxic metabolites and xenobiotics.17 The BBB
consists of endothelial cells, pericytes, astrocytes (astroglia),
and the basement membrane.
There are tight connections called “tight junctions” between

endothelial cells that form the microvascular structure in the
brain parenchyma.18 These connections create a high electrical
resistance, resulting in a low transit rate by transcytosis and a
limited rate of transcellular and paracellular transport.19

Endothelial cells have a high mitochondrial content, creating
high metabolic activity.20,21 Pericytes, as another component of
the blood−brain barrier, contribute to the formation of the
barrier and are involved in regulating cerebral flow, regulating
permeability from blood walls, controlling the entry of immune
cells, and clearing residues from cell death.22 The passage of
drugs through the blood−brain barrier is affected by several
physicochemical properties such as the concentration differ-
ence between the compartments, molecular weight of the
active substance, lipophilic character, partition coefficient, and
degree of ionization. In parallel, the presence of pathological
conditions due to the neurodegenerative disease and the
binding affinity of the drugs to plasma proteins are critical.
Based on these factors, the passage through the blood−brain
barrier occurs through different mechanisms including passive
paracellular transition, passive transcellular transition, passage
through carrier proteins, receptor-mediated transcytosis,
adsorptive transcytosis, and active efflux pumps.23

3.1.1. Passive Paracellular Transition. Primarily the
passage of water-soluble and low molecular weight substances
between endothelial cells is mediated via this route.24,25 Tight
junction connections between endothelial cells have a major
role in limiting the passage of molecules in this way. Therefore,
using this transition is not an ideal strategy in cases where it is
aimed to increase the passage through the blood−brain
barrier.26

3.1.2. Passive Transcellular Transition. The passage of
lipophilic molecules with low molecular weight predominantly
occurs through this route. However, in this transition, due to
the high lipophilic character of drugs, involvement in the
microvascular area can be observed in the brain; this may lower
the rate of drug passing to the targeted area in the treatment.27

3.1.3. Passage Through Carrier Proteins. The high
electrical resistance and low permeability of the blood−brain
barrier, restrict the passage of hydrophilic substances to an
almost negligible extent. The passage of substances of this
character takes place in the barrier through stereospecific
carrier proteins located in bidirectional transport systems. In
this way, the passage of more vitamins, nucleosides, glucose,
and amino acids takes place, and it is in an exciting position in
cases where it is aimed to increase the passage through the
blood−brain barrier.24,25,28,29

3.1.4. Receptor-Mediated Transcytosis. Specific receptors
on endothelial cell membranes are involved in this transition,
which is based on energy use and occurs through endocytotic
mechanisms. As the drug/ligand binds to its specific receptor,
vesicle formation occurs and after passing through the
endothelial membranes, the drug leaves the receptor and
becomes free. This passage is achieved through endocyto-
sis.30,31 The transport of substances in a peptide−protein

structure, such as immunoglobulin G (IgG), transferrin, leptin,
and low-density lipoprotein (LDL), which have a high
molecular weight, mainly occurs in this way.31

3.2.5. Adsorptive Transcytosis. This transition occurs
through adsorptive mechanisms due to the electrostatic
interaction between the positively charged ligand/active
substance and the negatively charged endothelial cell
wall.32,33 Compared to receptor-mediated transcytosis, it has
lower specificity but higher transport capacity.34 The transition
of molecules such as oligopeptide and protamine, cationic
albumin, cationic peptides, and avidin occurs through this
transition mechanism.35,36

3.2.6. Active Efflux Pumps. The blood−brain barrier also
has efflux transporters that allow passage from the brain
parenchyma to the bloodstream. These transporters not only
ensure the removal of xenobiotics, substances that cause
neurotoxicity but also cause the removal of drugs with high
lipophilic character.37,38 Located in the endothelial cell
membrane, these transporters belong to 2 large gene families,
ATP-binding Casette (ABC) Family and Solute Carrier (SLC)
Family. P-glycoprotein (P-gp), the best-known member of the
ABC transporters, was first detected in drug-resistant tumor
cells. In the presence of neurodegenerative disease, a significant
increase in p-glycoproteins is observed.38 Since this leads to a
decrease in the amount of the active substance reaching the
targeted area, it significantly limits the generation of the
intended therapeutic effect.
3.2. The Blood−Cerebrospinal Fluid Barrier. The

second significant barrier that limits the passage of active
substances to the CNS in systemic drug administration is the
blood-cerebrospinal fluid barrier, which consists of choroid
plexus epithelial cells. It plays a crucial role in maintaining the
homeostasis of the cerebrospinal fluid.39

3.3. The Arachnoid Barrier. The arachnoid barrier is the
part that separates the dura mater, where the passage of
nanoparticles takes place, from the subarachnoid space,
facilitated by the lymphatic channels embedded within its
structure. The main component forming this barrier, which has
an average thickness of 200 μm in a healthy individual, is
leptomeningeal cells. A study was carried out to elucidate the
structure of the arachnoid barrier and revealed the high
numbers of P-gp and breast cancer resistance protein (BCRP)
transporters.40,41

3.4. The Blood−Spinal Cord Barrier. The blood-spinal
cord (spinal cord) barrier, which provides a unique micro-
environment for the cellular components of the spinal cord,
consists of morphological components like the blood−brain
barrier. Its structure includes specialized endothelial cells,
surrounding basal lamina, astrocytes, pericytes, and tight
junctions. The blood-spinal cord (spinal cord) barrier has a
protective and regulating function for the spinal cord
parenchyma.42,43

4. TREATMENT APPROACHES TO INCREASE DRUG
TRANSITION TO THE CENTRAL NERVOUS SYSTEM

As stated earlier, one of the most important factors limiting
success in treating neurodegenerative diseases is the existence
of various physiological barriers that are responsible for
protecting the sensitive structure of the central nervous
system. The impeded drug transport to the targeted area;
obstructs the achievement of the desired therapeutic effect. In
order to overcome this problem different treatment strategies
have been developed based on increasing the passage through
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the blood−brain barrier or bypassing the blood−brain barrier.
Developed treatment strategies are grouped under two
headings by evaluating whether they involve direct inter-
vention in the central nervous system. (Table 1)
4.1. Invasive Techniques. These treatment methods,

which involve a direct intervention to the central nervous
system, include intracerebral, intraventricular, and intrathecal
applications, intracerebral implants, different treatment techni-
ques using ultrasonic sound waves, vasoactive components,
and osmotic solutions.17,23,44,45 For example, the blood−brain
barrier is bypassed in intrathecal applications by direct
injection into the lumbar subarachnoid region. In intracerebral
and intraventricular applications, direct applications to the
brain parenchyma or ventricles allow the drugs to reach the
targeted area by bypassing the blood−brain barrier.23 The
intracerebral implants prepared from biodegradable polymeric
materials, provide treatment by controlled drug release in the
targeted area over a predetermined period. Particularly, with
applications aimed at deliberately damaging the physiological
barriers, which have been revealed in studies on Parkinson’s
disease, a high level of penetration of drugs into the brain
parenchyma occurs. For example, by performing a temporary
structural deterioration at “tight junctions,″ specific openings
are created in the blood−brain barrier in a time-controlled and
reversible manner.
Other applications in this context are the application of

osmotic solutions (for example, hyperosmotic mannitol
solution), vasoactive components (for example, bradykinin),
and ultrasonic sound waves. Similarly, in these applications,
conscious disruptions are formed in the blood−brain barrier’s
structure, and the active drug transition to the brain
parenchyma is ensured.46

The advantages of invasive techniques with different
treatment strategies include reaching the optimum drug
concentration in the targeted area, the applicability of the
treatment for molecules of different sizes, low levels of systemic
exposure, and controlled drug release (for intracerebral
implants).
However, in addition to these advantages, patient com-

pliance is deficient in invasive treatment strategies, and these
applications can cause significant complications. Vascular
pathological disorders and other chronic neuropathological
disorders can be observed. The infection risk, catheter
obstruction, and trauma situations are other possible
complications.17

4.2. Noninvasive Techniques. For noninvasive treatment
methods, where patient compliance is higher than invasive
techniques, there are strategies based on increasing the passage
through the blood−brain barrier with lipid-mediated transport
mechanisms, the use of alternative administration routes, and
the use of nanosized drug delivery systems. There are several
strategies based on increasing lipid-mediated transport
mechanisms and crossing the blood−brain barrier which
include chemical modification with various functional groups
and the pro-drug approach.44

The basic principle in chemical modification is to increase
the lipophilicity of the drug molecule. In case of drugs with
hydrophilic character, the modification is achieved by adding a
functional group that increases the lipophilic character of the
drug, so that the low level of passage through the blood−brain
barrier can be increased. In the pro-drug approach, the inactive
form of the original molecule is metabolized in the brain
parenchyma as it passes through the blood−brain barrier. A
bioactivation step is needed in the pro-drug approach.47 While
evaluating the effectiveness of these treatment strategies, the
increased sensitivity to oxidation due to the increased
lipophilic character of the drug, its distribution to other
tissues, and the need for a metabolic bioactivation step in the
pro-drug approach must be taken into consideration.47,48 Due
to the unique physiological characteristics of the brain, studies
have been carried out on alternative administration routes to
achieve the desired treatment outcomes. Among the alternative
routes of administration, intranasal administration stands out
for its ability to bypass the blood−brain barrier via the neuron
axons responsible for the sense of smell in the olfactory mucosa
region.49 The olfactory and trigeminal nerve pathways, which
are located in the nasal cavity and have a direct connection
with the central nervous system, play a role in this route of
administration, first discovered by Frey in 1989. The recent
studies have revealed that the trigeminal nerve pathway is
crucial in targeting the brain’s frontal region.50,51 This route of
administration, which is preferred especially for drugs with low
oral bioavailability, has significant advantages such as high
patient compliance, ease of application, and rapid absorption.
However, the limited volume of the nasal cavity and the
presence of mucociliary clearance in the nasal cavity
significantly limit the use of this route of administration.
Among noninvasive techniques, nanosized drug delivery

systems hold significant promise in treating neurodegenerative
diseases, attributed to their small particle size at the nanometer

Table 1. Treatment Approaches to Increase Transition to the Central Nervous Systema

treatment approach advantages disadvantages

invasive techniques
intracerebral, intrathecal, intraventricular
administration

the required drug concentration in the target tissue is provided high risk of CNS infection

intracerebral implants applicable to different molecule size catheter obstruction
ultrasounds low systemic exposure limited distribution of therapeutic agents
hyperosmotic solutions controlled or extended drug release trauma risk
vasoactive substances
non-invasive techniques
alternative drug administrations routes (e.g., intranasal) high patient compliance scale-up process
chemical modification easy application the limited volume of nasal cavity
nanosized drug delivery systems rapid absorption the presence of mucociliary clearance

controlled or extended drug release damage of nasal mucosa
high risk of oxidative metabolism

aAlthough each treatment approach has advantages and disadvantages, noninvasive methods are featured in the overall evaluation.
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scale which provides many advantages such as increased
permeability, stability, and therapeutic activity.44

5. THE USE OF NANOSCALE DRUG DELIVERY
SYSTEMS IN THE TREATMENT FOR
NEURODEGENERATIVE DISEASES

The term “nanoparticle” is defined by the National Nano-
technology Initiative (NNI) as a particle with dimensions
ranging from 1 to 100 nm in at least one dimension. Nanosized
drug delivery systems, on the other hand, are colloidal drug
carrier systems that can be prepared from natural or synthetic
polymers and inorganic elements, whose dimensions are
several hundred nanometers.4,51

Nanosized drug delivery systems appear to be quite
successful in targeting, creating the desired pharmacological
effect, and reducing side effects, thanks to their ability to
interact with cells. The success of these systems in passing
through the blood−brain barrier and reducing side effects is
associated with their effects on pharmacokinetic properties
such as absorption, biodistribution, and bioavailability. In
addition, nanosized drug delivery systems protect therapeutic
active compounds from enzymatic degradation, enabling
greater passage through the blood−brain barrier.
For nanosized drug delivery systems to be successful in

targeting the central nervous system, they must have ideal
properties such as physicochemical stability, permeability to
blood vessels, appropriate circulation time in the blood
circulation, specificity to the targeted cells, controlled release
profile, high receptivity to the transported molecules,
biocompatibility and biodegradable properties. These ideal
properties are directly related to the intrinsic properties of
nanosized drug delivery systems such as size and polydispersity
index, zeta potential, composition, hydrophobicity, stiffness,
mucoadherence, and permeability.52

Nanosized drug delivery systems have significant advantages,
especially in treating neurodegenerative diseases due to their
mechanical, electrical, optical, and magnetic advantages when
compared to conventional dosage forms (Table 2).53 They
have adjustable nanoscale dimensions, their surface area/
volume ratio and drug loading capacity is high, due to their
small size they can escape from the reticuloendothelial system
and prolong the residence time in the blood circulation, they
are suitable for surface modifications, active and passive
targeting can be done, they protect the drug from enzymatic
degradation, target to specific region and provide controlled
drug release.4,5,53−55 In addition, nanosized drug delivery
systems are considered as promising systems for improving the
bioavailability of drugs with solubility problems or short
biological half-lives.55,56

Many approved drugs and natural origin compounds
(polyphenols such as curcumin, quercetin, resveratrol,
genistein, cyanidin) with clinical potential in the treatment of
neurodegenerative diseases could not reach their target site due
to physiological barriers such as the BBB. The use of natural
origin compounds in the treatment of neurodegenerative
diseases is promising, because of increasing brain plasticity,
improving cognitive functions, neutralization of reactive
oxygen species, cell protection, and redox homeostasis effects.
However, they could not reach the target area due to reasons
such as degradation, low stability, and low passage through the
BBB. It is thought that the effectiveness of these compounds
can be increased by encapsulating them into nanosized drug
delivery systems.57−59

At the same time, nanosized drug delivery systems also
enable the delivery of viral vectors, siRNA, peptide−protein,
and oligonucleotides for gene therapy. Studies on the transport
of these factors, especially for the treatment of AD and PD,
have increased the effectiveness of treatment.6061

Various nanosized drug delivery systems can be formulated
by considering their sizes, production methodologies, and
compositions. (Figure 3)
5.1. Liposomes. Liposomes are closed vesicular systems

consisting of one or more lipid bilayers with an aqueous phase
between them. The basic building blocks of these systems are
phospholipids, both hydrophilic and hydrophobic drugs can be
loaded into liposomes with high encapsulation efficiency. Due
to the similarity of the double-layered phospholipid structure
to cell membranes, the drugs can pass through the blood−
brain barrier more easily. Because of its ability to cross the
blood−brain barrier, low intrinsic toxicity, low immunogenic-
ity, and biodegradability properties; Liposomes are very
suitable nanosized delivery in neurodegenerative diseases.62

In a study by Yang et al., liposome formulations containing
riluzole and verapamil were prepared to increase the
bioavailability of riluzole for the treatment of ALS. The
significant increase in the synthesis of P-glycoproteins in the
CNS cells in ALS limits the passage of riluzole through the
blood−brain barrier as it is a P-glycoprotein substrate. Yang et
al. designed liposome formulations containing riluzole and the
P-glycoprotein inhibitor verapamil to increase the bioavail-
ability of riluzole by thin lipid film hydration method. The
effectiveness of liposomes was evaluated on healthy and ALS
cell culture models prepared with brain endothelial Bend3 type
cells and compared with free drug. In both cell groups higher
riluzole uptake was achieved with liposome formulations
containing riluzole and verapamil combination compared to
riluzole formulation alone.63

The phospholipids are prone to degradation and rapid
systemic elimination of liposomes limits their use. Ligand-
mediated liposome/multifunctional liposome formulations are
prepared by various surface modifications to eliminate the in
vivo and in vitro stability problems. Glutathione-modified
liposomes, PEGylated liposomes, and cationic liposomes are
several examples of this approach.64

5.2. Polymeric Nanoparticles. Polymeric nanoparticles
are colloidal systems prepared from biocompatible and
biodegradable polymers of natural or synthetic origin. In the
preparation of these systems, chitosan, alginate, gelatin,
polyacrylate, PLGA (Poly lactic-co-glycolic acid), PACA
(Polyalkylcyanoacrylate), PCL (Polycaprolactone), PLA (Poly-
lactic acid), PEG (Polyethylene glycol) polymers are used. The
advantages of these systems are that they are biocompatible
and biodegradable, have fewer stability problems, low
production costs, low immunogenicity, and toxicity. Nano-
particles containing mucoadhesive polymers, increase the
residence time in the nasal cavity in the intranasal application
and provide a significant advantage for developing different
treatment strategies for neurodegenerative diseases.
Polyphenols provide an antioxidant effect by inducing

inflammatory pathways encoding nuclear factor erythroid 2
related factor (NRF2)-mediated protein and cytoprotective
vitamins. Antioxidant activity is provided by the transcription
factor NRF2 up-regulation of genes called vitagenes, thereby
inducing intracellular antioxidant and phase II detoxification
enzymes. In this way, polyphenols reduce reactive oxidative
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stress, ensure redox homeostasis and provide neural cell
protection.
Considering these properties, polyphenols can be used in the

treatment of neurodegenerative diseases.
They are thought to be effective. However, due to their

enzymatic degradation, low stability and low passage through
the BBB, the amounts reaching the brain are very low.65,66

In a study conducted by Naeimi et al., formulation design
was carried out by encapsulating chitosan alginate nano-
particles to increase the bioavailability of curcumin, which has
potent antioxidant and anti-inflammatory activity. Initially,
curcumin and chitosan alginate nanoparticles containing
curcumin were applied to rats for 10 days. On the 10th day,
a demyelination model was conducted by injecting lysolecithin
(LPC) into the corpus callosum regions of the rats. In order to
evaluate the efficacy of chitosan alginate nanoparticles
containing curcumin, inflammation level, myelin repair, and
glial activation levels were evaluated in rats for 1 week and 2
weeks after LPC injection. The glial activation and
inflammation levels were lower in rats that received chitosan
alginate nanoparticles containing curcumin compared to the
plain curcumin administered group. Similarly, when evaluated
in terms of myelin repair, it was determined that the level of
demyelinating area was decreased significantly in rats treated
with curcumin-containing chitosan alginate nanoparticles.67

In a study conducted by Sun et al., quercetin loaded PLGA
nanoparticles were prepared to increase the effectiveness of
quercetin in reducing Aβ fibril formation that occurs in AD.
Quercetin, a natural polyphenolic compound, has low water
solubility, low stability, and problems with the BBB barrier
during passage to the CNS. To increase its effectiveness in the
treatment of AD, PLGA nanoparticles containing quercetin
were prepared and the prepared formulations were applied to
mice with 7 days of treatment. Following the treatment,
behavioral tests performed on mice showed improvement in
cognitive functions and positive effects on memory.68

5.3. Solid Lipid Nanoparticles. Solid lipid nanoparticles,
which have been developed as an alternative to polymeric
nanoparticular systems, are colloidal drug carrier systems
prepared using lipid matrices and surfactants that are in solid
state at room temperature.69 Due to the biocompatible/
biodegradable nature of the lipid matrices in the formulation,
these systems have essential advantages such as low
cytotoxicity, high biocompatibility, protection of the encapsu-
lated drug from chemical and enzymatic degradation, and
increasing the bioavailability of drugs with low aqueous
solubility.
A study was conducted to increase the amount of

erythropoietin (EPO) in the brain as it is considered as a
promising neuroprotective agent for Alzheimer’s disease. EPO,
which has low bioavailability due to its high molecular weight,
hydrophilicity, and rapid clearance, was loaded into solid lipid
nanoparticles prepared by the double emulsion solvent
evaporation method. In the formulation, glycerin monostearate
was used as the lipid phase component, Span 80/Span 60 as
the internal phase surfactants, and Tween 80 as the external
phase surfactant. The prepared formulations were injected
intraperitoneally to the rats, in which the Alzheimer’s model
was developed using beta-amyloid protein to evaluate the in
vivo efficacy. After the treatment, oxidative stress levels and
beta-amyloid plaque depositions in the hippocampus were
measured in rats, and the Morris water tank test was
performed. Higher treatment efficacy was obtained in termsT
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of these parameters in rats to which EPO-loaded solid lipid
nanoparticles were administered.70

5.4. Dendrimers. The term dendrimer is derived from the
Greek word “dendron” meaning “tree”. Dendrimers are drug
carrier systems with a three-dimensional structure consisting of
a core, branching units around the core, and active terminal
groups called functional groups. While branching units enable
dendrimers to grow repeatedly, the diversity of dendrimers is
provided by functional groups. Controlled drug release can be
achieved by encapsulating the active substance into the space
inside the dendrimers. In addition, targeting the CNS can be
achieved by conjugating different active substances and various
molecules to the many-branched structures and functional
groups in its structure.
Dendrimers are nanosized drug carrier systems that are

biocompatible and enable increased permeation through the
blood−brain barrier. There are different types of dendrimers
depending on their composition: polyamidoamine (PAMAM),
polypropyleneimine, chiral, peptide, and polyester dendrimers.
PAMAM-type dendrimers are frequently used as drug carrier
systems, thanks to the high amount of primary amines and
highly charged surface groups for proper conjugation.103,104

Kumar and his colleagues prepared PAMAM (polyamido-
amine) dendrimer formulations loaded with galantamine
hydrobromide in order to improve the pharmacokinetic
properties of galantamine hydrobromide and increase its
uptake into the brain. In order to increase the amount of
galantamine hydrobromide reaching the brain, bifunctional
PAMAM dendrimeric formulations were prepared by con-
jugating vitamin C/PEG to the surface of PAMAM
dendrimers. When the prepared formulations were applied to
AD model mice, it was observed that amyloid beta fibril
formation and acetylcholine esterase enzyme activity were
significantly reduced compared to the group administered free
galantamine hydrobromide. In pharmacokinetic-based studies,
it was observed that the amounts of galantamine hydrobromide
were 2.3 times higher in the group where the prepared
dendrimer formulations were applied compared to the
application of free galantamine hydrobromide.105

5.5. Nanogels. “Nanogel” systems, an essential alternative
to macroscopic hydrogels have essential properties attributed
to their size at nanoscale (2−250 nm), are polymeric drug
carrier systems prepared by physical or chemical cross-linking.
With their nanosized network structure, high encapsulation
efficiency, and targetability with various surface modifications
they can overcome the blood−brain barrier and further prevent
drug degradation.106

In a study by Azadi et al., chitosan nanogels loaded with
methotrexate were prepared. To ensure the passage through
receptor-mediated endocytosis, the prepared nanogels were
coated with polysorbate 80. When drug delivery systems
prepared with an average size of 118,4 nm were administered
to rats by intravenous administration, a higher transition to the
brain parenchyma was observed.107

5.6. Nanoemulsion. Nanoemulsions are drug carrier
systems where the oil and water phases, which are immiscible,
are formed in the presence of surfactant and the dispersed
phase is in the form of droplets at the nanometer level.
Nanoemulsions, which can be prepared in the form of oil in
water and water in oil, have important advantages such as
increasing solubility, improving bioavailability, increasing
stability, reducing toxicity, and providing targeting to the
central nervous system. Studies continue to use these systems
in the treatment of various neurodegenerative diseases,
especially AD and PD.108

Empagliflozin, an anti-inflammatory and antioxidant drug
apart from an antidiabetic agent, is a neuroprotective agent
that has the potential to be used in the treatment of AD and
PD-related neuroinflammation. The amount of empagliflozin
crossing the BBB is limited due to solubility and permeability
problems. In a study conducted by Alhakamy et al.,
empagliflozin-loaded nanoemulsion formulations were pre-
pared and when the prepared formulations were treated to
mice, it was found that empagliflozin-loaded nanoemulsion
formulation showed higher anti-inflammatory and neuro-
protective activity compared to groups administered free
empagliflozin.109

5.7. Polymeric Micelles. Polymeric micelles are formed by
the self-assembly of amphiphilic polymers into a core−shell

Figure 3. Various nanosized drug delivery systems: (a) liposomes, (b) solid lipid nanoparticles, (c) polymeric nanoparticle, (d) dendrimer, (e)
polymeric micelles, (f) carbon nanotubes, (g) inorganic nanoparticles, (h) exosomes, (i) cell membrane coated nanoparticles. (This figure was
created with BioRender.com).

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.4c01774
ACS Omega 2024, 9, 35223−35242

35233

https://pubs.acs.org/doi/10.1021/acsomega.4c01774?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01774?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01774?fig=fig3&ref=pdf
http://BioRender.com
https://pubs.acs.org/doi/10.1021/acsomega.4c01774?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c01774?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


type of nanodrug carrier system. The hydrophilic polar blocks
surround the hydrophobic blocks in the core.106 These
systems, whose sizes range from 5 to 100 nm, have essential
advantages in eliminating solubility problems of poorly water-
soluble drugs and improving their bioavailability. In addition,
they have significant advantages such as preventing the
interaction with serum proteins, preventing the release of the
active substance before reaching to the targeted area,
preventing the degradation of the active substance, providing
targeting through a specific ligand, and having easy and
reproducible production processes.110,111

Recently, there have been many studies on target-specific
functionalization of polymeric micelles in neurodegenerative
diseases. In this context, there are many different studies on the
functionalization of polymeric micelles with active ligands,
cargo agents, and smart linkers.112

Bi et al., designed a rotigotine-loaded polyethylene glycol-
polylactic acid−based micelle formulation for the treatment of
Parkinson’s disease. They functionalized the polymeric
micelles by coating with lactoferrin. In cell culture studies on
the human bronchial epithelial cell line (16HBE) and SH-
SY5Y cell line, cellular uptake of rotigotine was higher in
lactoferrin-coated micelles compared to uncoated ones. The in
vivo studies conducted in mice, revealed higher rotigotine
accumulation in brain upon intranasal administration of
lactoferrin-coated micelles compared to uncoated micelles.113

5.8. Carbon Nanotubes. First discovered by S. Iijima in
1991, carbon nanotubes are cylindrical systems formed due to
rolling carbon layers with sp’2 hybridization between C−C
atoms. These systems have high chemical stability due to their
electronic, structural, and thermal properties, provide high
drug encapsulation, large surface area, and high penetration to
the biological membranes.114 In addition to their use as drug
delivery systems, studies were carried out on the formation of
scaffolds within the scope of tissue engineering to regulate
impaired electrical stimulation in the CNS and provide neuro-
regeneration.115

Genistein is a molecule that can inhibit amyloid precursor
protein synthesis in the treatment of Alzheimer’s disease. Due
to its low solubility and problems binding to biological
membranes, its therapeutical efficiency is low. Researchers
have developed genistein-loaded fullerene and multiwall
carbon nanotube formulations. Upon intranasal application
to Wistar rats, genistein bioavailability was improved and the
side effects were reduced.116

5.9. Carbon Nano-onions. Carbon nano-onions are a
more recently emerged class of carbon fillers with significant
potential in the pharmaceutical field. Following the first
discovery of fullerenes as carbon nanomaterials, carbon
nanotubes, graphene, and finally carbon nano-onions emerged.
Carbon nano-onions are defined as multishell fullerenes
consisting of several graphene layers with inner layer spacing
of 0.34 nm. Carbon nano-onions, which have a lattice-like
shape, consist of polyhedral- and quasi-spherical-shaped layers.
These systems, whose dimensions are below 100 nm, have the
potential to be used as a drug carrier system, thanks to their
low density, high surface area, high biocompatibility, and low
toxicity properties. Existing studies have shown that carbon
nano-onions provide controlled drug release and improve
bioavailability in molecules with low bioavailability prob-
lems.1,117

Carbon nano-onions, with their large surface area and
surface properties, can be functionalized by attaching different

ligands to the surface. Studies have revealed that functionalized
carbon nanobulbs have a very high potential to pass through
the blood−brain barrier and interact with brain endothelial
cells.118,119

To date, there is no study on the use of carbon nano-onions
in the treatment of neurodegenerative diseases. However,
considering the characteristics of these systems, they are
thought to have significant potential for their use in the
treatment of neurodegenerative diseases and are an interesting
research area by researchers.
5.10. Nanowires. Nanowires are nanosized drug carrier

systems that have the potential to be used in the treatment of
neurodegenerative diseases and are relatively newly discovered
compared to other systems. Nanowires are anisotropic
nanocrystal systems with a high length/diameter ratio.
Nanowires are used in sensor devices thanks to their high
chemical reactivity and electronic properties. However,
because of their unique properties (mechanical, electronic,
and length/diameter ratios, etc.), their use as drug carrier
systems is attracting increasing attention.
They are potential drug delivery systems to provide

controlled drug release, especially in the treatment of
neurodegenerative diseases. In the studies carried out, thanks
to titanium-dioxide-based nanowires, a higher level of
penetration through the blood−brain barrier and an increase
in the amount of drug reaching the CNS were achieved.
Studies on the use of nanowires in the diagnosis and treatment
of neurodegenerative diseases, especially AD and PD,
continue.120,121

5.11. Inorganic Nanoparticles. Compared to polymer
and lipid-based systems, inorganic-based nanoparticles (e.g.,
gold, iron oxide, silica, silver, cerium oxide nanoparticles) can
pass through the BBB, interact with CNS components, and
reduce oxidative stress. They are compatible with various
surface modifications and can be conjugated with diagnostic
and imaging agents. They have recently attracted attention due
to their optical properties.122

Gold nanoparticles have high biocompatibility; silver
nanoparticles have a high level of transition to the brain
parenchyma. Conversely, cerium oxide nanoparticles have
essential advantages for treating neurodegenerative diseases
with their regenerative antioxidant and neuroprotective effects.
One of the first striking issues in neurodegenerative diseases

is the increased oxidative stress levels in the CNS. Considering
the physicochemical properties and oxygen storage capacity of
cerium oxide nanoparticles, it is predicted that they can reduce
the level of reactive oxidative stress and protect neural
survival.123

In a study by Eitan et al., researchers investigated the potent
anti-inflammatory molecule (lenalidomide) and antioxidant
cerium oxide nanoparticles synergistic effects in the EAE
mouse model of Multiple Sclerosis. Mice developed in the EAE
model were divided into various treatment groups that
received lenalidomide treatment, cerium oxide nanoparticles,
and combined treatment with lenalidomide and cerium oxide
nanoparticles. While the onset of disease symptoms was
delayed in the group receiving lenalidomide treatment alone,
no change in symptom onset or disease severity was observed
in the group receiving cerium oxide nanoparticles alone.
However, more successful results were obtained in the group
receiving combined treatment with lenalidomide and cerium
oxide nanoparticles in terms of white matter pathology and
inflammatory cell responses.124
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5.12. Exosomes. Exosomes are miniature membranous
vesicular systems, ranging in size from 40 to 100 nm. These
vesicles, which have different characteristics according to the
tissues and cells they originate from (such as neurons, tumor
cells, and kidney cells), mediate the transport of different
peptides and proteins.125

Due to their natural origin, their low rate of retention by
mononuclear phagocyte cells and, accordingly, their high rate
of passage through the BBB is a feature that makes them very
advantageous in terms of targeting. These systems, which have
essential advantages because they can carry different peptides
and proteins in targeting, have low immunogenicity, escape
from reticuloendothelial system components, and circulate in
the bloodstream for a long time, are up-and-coming systems in
immunotherapy and RNAi treatment.125,126

5.13. Nanoparticular Systems Coated with Cell
Membrane. Nanosized drug delivery systems can contain
many reactive groups on their surfaces, depending on their
large surface area. Therefore, exposure to light, UV, and
transition metals can cause an increase in the existing oxidative
stress with the formation of prooxidants.127 In order to prevent
this from happening, “ghost (nano ghost) nanocarriers” were
prepared by coating the particulate systems with hydrophilic
polymers (polysorbate-80, polyethylene glycol). In recent
years, there has been growing interest in biomimetic drug
delivery systems prepared by coating particulate systems with
cell membrane fragments. These systems carry innate cells’
features and the advantages of synthetic nanoparticles.128

Avoiding immune system elements, circulating in the
bloodstream for a longer time, and tissue targeting can be
achieved by cell membrane coated biomimetic systems. Based
on this idea, in a study conducted by Hu et al., the coating
process was performed around PLGA nanoparticles using
erythrocyte membrane vesicles. These biomimetic systems had
higher in vivo circulation times compared to pegylated PLGA
nanoparticles.129 Other studies conducted on erythrocyte cell
membrane-coated synthetic nanoparticles also revealed the
prolonged presence in blood circulation, low immunogenicity
and high treatment effectiveness.130−134 Although the first
studies on this subject were carried out with “nuclear-free”
erythrocyte cells due to their more straightforward production
process, today, different systems are designed using neutro-
phils, platelet cells, stem cells, and tumor cells.135

One of the critical steps in designing biomimetic nano-
particle systems is obtaining the nanoghost (isolated cell
membrane) structure. For this purpose, after the proliferation
of the selected cell type under in vitro conditions, isolation of
the cell membrane is provided by hypotonic applications or
homogenization methods. The second stage is coating the
polymeric nanoparticular systems with the nanoghost
structure. For this purpose, cell membrane vesicles are
extruded several times with the help of a porous polymeric
membrane around the polymeric nanoparticles in the core in
the “mechanical coextraction” method, which is the oldest and
preferred method.128 Along with the developing technology,

Figure 4. Reprinted with permission from ref 136. Copyright 2022 Elsevier. (A) The study includes representative images of dendritic segments
from cortical layer II/III pyramidal neurons, visualized using Golgi staining on brain sections. (B, C) Quantitative analysis was conducted to
determine the density of apical and basal dendritic segments in cortical layer II/III pyramidal neurons, as well as spine density in hippocampus CA1
pyramidal neurons. (D) Western blotting analysis was performed to detect specific protein expression levels. (E, F) The study involved quantifying
the levels of Synapsin1 and PSD95 proteins in the cortex, providing insights into synaptic protein dynamics. (G) Representative images obtained
through Transmission Electron Microscopy (TEM) illustrate the ultrastructure of dorsal hippocampus neurons. The experimental conditions or
treatments mentioned (M, RBC-MIC hybrid membrane; CA, curcumin-aspirin esterl; MI, minocycline; MCAGP, CA loading the graphene oxide
quantum dots nanosize carrier with the modification of a hybrid cell membrane) were applied to investigate their effects on the observed
parameters, such as dendritic morphology and protein levels.
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electroporation and sonication methods, which provide higher
efficiency in the coating process, are also used.128

Li and co-workers designed an aspirin-curcumin ester (CA)
loaded graphene oxide quantum dots nanosize carrier with the
modification of a hybrid cell membrane (MCAGP NPs) for
Alzheimer’s disease. They aimed to transfer drugs to the
targeted area, regulate microglia activity, provide synaptic
elasticity, and improve memory. For evaluating neuro-
protection, they analyzed synaptic protein, synapse morphol-
ogy, and Golgi staining. In the group treated with MCAGP
NPs, the mice had an important synaptic protection score.
(Figure 4) The microglia activity was assessed by performing
fluorescence Aβ deposition and microglia in mouse brain. The
MCAGP NPs treatment remarkably reduced Aβ deposition,
repolarization of microglia, and augmented inflammatory
environment in brain tissue. In the Morris Waster maze test
and nest behavior test, changes in cognitive abilities were
observed. The group treated with MCAGP NPs was compared
to other groups and the subjects had shorter escape latencies
and swimming speeds and crossed over the platform in the
Morris Waster maze test.136

Han and colleagues developed a genistein (GS) loaded solid
lipid nanoparticle (SLN) formulation coated with a macro-
phage membrane (MA). The macrophage membrane coating
enabled the escape of nanocarrier from the reticuloendothelial
system compounds. Rabies virus glycoprotein (RVG29) was
added to the macrophage membrane surface to facilitate
passage through BBB and to provide neuronal targeting and
triphenylphosphine (TPP) was added to the MA surface to
ensure mitochondrial targeting. The effectiveness of genistein
(GS)-loaded biomimetic nanoparticle (RVG/TPP-MASLNs)
formulations designed with all the synergistic effects provided
by macrophage membrane (MA), RVG29, and TPP was
demonstrated by in vitro and in vivo studies.
In vitro antioxidative stress effect tests and other cell culture

studies showed that genistein (GS) loaded biomimetic
nanoparticle (RVG/TPP-MASLNs) formulation had a high
antioxidant effect and free radical binding capacity compared
to other formulations. For formulation evaluation of behavioral
effects, the Morris Water tank test was performed on 9-month-
old APP/PS1 mice. The escape latency was significantly
reduced by RVG/TPP-MASLNs, the presence time in the
target area was noticeably longer and spatial learning was
effectively restored. These findings showed that cognitive
learning levels in the RVG/TPP-MASLNs received group
developed at a higher level compared to all groups.137

A biomimetic drug delivery system was developed for
curcumin. In this carrier, human serum albumin nanoparticles
encapsulating curcumin were coated with red blood cell
membranes (RBC). Triphenylphosphine (TPP) and positron
emission tomography (PET) agent (T807), which can easily
pass the blood−brain barrier and bind to nerve cells, were
conjugated to the red blood cell membranes (CUR-loaded
T807/TPP-RBC-NPs). By combining appropriate physico-
chemical and biological properties, biocompatibility was
increased, long-term circulation was ensured, and nerve cells
were directly targeted via TPP and T807 conjugation. In vitro
and in vivo studies revealed that CUR-loaded T807/TPP-
RBC-NPs could significantly reduce oxidative stress and
reduce neuronal death. To observe the change in learning
levels in behavioral tests, the Morris Water Maze test was
performed on mice in which Alzheimer’s model was developed
by okadaic acid injection. According to the test results, a

significant improvement in cognitive abilities was observed in
the group treated with CUR-loaded T807/TPP-RBC-NPs
compared to the groups treated with free curcumin (free
CUR), curcumin loaded RBC-coated human serum albumin
nanoparticle (CUR-loaded RBC-NP), curcumin loaded RBC-
coated TPP-conjugated human serum albumin nanoparticle
(CUR-loaded TPP-RBC-NPs). While a shortening in escape
latency was observed in the group receiving CUR-loaded
T807/TPP-RBC-NPs compared to the other groups, an
increase was observed in the frequency of across the platform
and prolonging the time spent in a targeted quadrant after
removing the platform. (Figure 5)138

The preliminary studies on biomimetic systems are
promising in the advanced treatment of neurodegenerative
diseases and they are leading toward the concept of
personalized drug therapy. However, much research is
necessary to evaluate the effectiveness and safety of these
systems. Their safety properties must be proven, especially
through clinical studies.

6. FUTURE PROSPECTS
With the increasing average lifespan worldwide, the frequency
of neurodegenerative diseases is also increasing day by day.
The primary problem encountered in the treatment of
neurodegenerative diseases such as AD, PD, MS, ALS, Prion,
and Huntington’s disease is the inability of drugs to reach the
CNS at the desired level. The CNS is well protected by various
physiological barriers, and the passage of substances into the
CNS is tightly regulated by these barriers.
Ensuring effective treatment in the management of neuro-

degenerative diseases is crucial for slowing disease progression
and improving patients’ quality of life. Considering the
increasing prevalence of these diseases, developing an effective
treatment remains an open area of research, drawing the
interest of many researchers.

Figure 5. Repair of the spatial learning abilities of AD model mice.
Adapted with permission from ref 138. Copyright 2020 Elsevier. (A)
The time taken to reach the escape point for each group. (B)
Recorded swimming paths representing different groups. (C) The
number of times the platform was crossed on the final day after its
removal. (D) Proportionate time spent in the target quadrant. The
data are shown as mean values with standard deviations (n = 5).
*Signifies statistical significance at P < 0.05. **Signifies statistical
significance at P < 0.01..
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In this regard, in addition to increasing passage through the
BBB, patient compliance must also be taken into account in
developing different treatment strategies. Among the devel-
oped strategies, noninvasive methods stand out for increasing
BBB passage and significantly increasing drug levels reaching
the brain parenchyma, given the high patient compliance in
treatment. One alternative route of administration, intranasal
delivery, offers a significant advantage in treatment by directly
delivering the drug to the CNS via the olfactory region and
trigeminal nerves. However, in this strategy where patient
compliance is high, the short residence time of the drug in the
nasal mucosa and mucociliary clearance significantly affect
treatment efficacy. To overcome these issues, nanosized drug
carrier systems prepared with various polymeric systems hold
importance.
Another noninvasive treatment strategy, nanosized drug

delivery systems, possess ideal properties for overcoming the
BBB due to their intrinsic characteristics (nanoscale
dimensions, composition, mucoadhesion, etc.). Particularly in
the treatment of neurodegenerative diseases requiring long-
term therapy, nanosized drug delivery systems stand out for
providing controlled drug release, increasing bioavailability,
and exhibiting biocompatibility properties. These systems have
significant advantages in targeting the brain, such as high drug-
loading capacities, the ability to evade the reticuloendothelial
system, and long circulation times in the bloodstream, which
protect the drug from enzymatic degradation.
These systems attract researchers’ attention in the develop-

ment of different treatment strategies due to their suitability for
surface modifications, enabling active and passive targeting,
biocompatibility, providing controlled drug release, and
increasing drug bioavailability. Studies have been conducted
on the use of various drug carrier systems such as polymeric
systems, dendrimers, liposomes, and solid lipid nanoparticles
for treatment, demonstrating not only their biocompatibility
but also their significant enhancement of treatment efficacy.
One of the most significant drawbacks of these systems is

their potential to increase existing reactive oxidative stress
levels due to exposure to UV, light, and metals, depending on
their large surface area.127 Researchers have developed
strategies such as PEG coating around nanoparticles to
overcome this issue; however, the development of biomimetic
systems has opened a new door in treatment. Studies have
shown that biomimetic drug carrier systems stay in the
bloodstream longer and have higher access to the CNS
compared to PEG-coated nanoparticles.129 To achieve this,
initially, coatings were made around nanoparticles using cell
membranes obtained from erythrocytes, leading to the design
of biomimetic systems. Nowadays, different cell types,
especially membranes obtained from stem cells, are being
used to develop new systems.139 Developed biomimetic
systems not only enhance treatment efficacy but also reduce
reactive oxidative stress, promising great hope in the treatment
of neurodegenerative diseases due to their biocompatibility
and safety.100,140

7. CONCLUSION
Neurodegenerative diseases, which have had an increasing
prevalence in recent years, remain current because they
significantly reduce patients’ quality of life, and effective
treatment has not yet been provided. Compared to invasive
techniques, noninvasive techniques can provide higher patient
compliance and lower complication and trauma probability in

treatment. Among the noninvasive techniques, nano drug
delivery systems are considered ideal properties such as
physicochemical stability, permeability to blood vessels,
appropriate circulation time in the blood circulation, specificity
to the targeted cells, controlled release profile, high receptivity
to the transported molecules, biocompatibility and biodegrad-
able properties. These ideal properties are directly related to
the intrinsic properties of nanosized drug delivery systems such
as size and polydispersity index, zeta potential, composition,
hydrophobicity, stiffness, mucoadherence, and permeability.
Nanosized drug delivery systems enable the transportation of
substances approved for clinical use as well as polyphenolic
compounds with anti-inflammatory activity, viral vectors,
siRNA, peptide−protein complexes, and oligonucleotides to
the brain.
Among these systems, “biomimetic drug delivery systems”

have emerged as novel systems demonstrating superior
features. Higher therapeutic efficacy compared to conventional
systems has been achieved with these systems, due to the
synergetic contributions of natural cells characteristics and the
advantages of synthetic nanoparticles.
There are numerous studies on nano drug delivery systems

for the treatment of neurodegenerative diseases, including
liposomes, polymeric nanoparticles, dendrimers, exosomes,
solid lipid nanoparticles, etc. This article provides a broad
perspective on different systems and various studies. Research
is ongoing for the development of new systems or
modifications to existing ones. In addition to the currently
developed nanosized drug delivery systems, current studies
continue on the usage of various drug carrier systems such as
nanosponges, carbon dots, quantum dots, nanozymes, nano-
transfersomes for the treatment of these diseases. Additionally,
further studies are needed to evaluate the suitability of the
developed systems for industrial production and their possible
toxicity.
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■ ABBREVATIONS
ABC, ATP-binding casette family; AD, Alzheimer’s disease;
ALS, amyotrophic lateral sclerosis; BBB, blood−brain barrier;
BCRP, breast cancer resistance protein; CNS, central nervous
system; DSPE-PEG2000, 1,2-distearoyl-sn-glycero-3-phos-
phoethanolamine-N-[methoxy(polyethyleneglycerol)-2000;
EAE, experimental autoimmune encephalomyelitis; EPO,
erythropoietin; GS, genistein; FDA, Food and Drug Admin-
istration; HD, Huntington’s disease; IFN-β, interferon-β; IgG,
immunoglobulin G; LDL, low-density lipoprotein; LIF,
leukemia inhibitory factor; LPC, lysolecithin; MA, macrophage
membrane; MS, multiple sclerosis; NMDA, N-methyl D-
Aspartate; NNI, National Nanotechnology Initiative; NRF2,
nuclear factor erythroid 2 related factor; PACA, polyalkylcya-
noacrylate; PCL, polycaprolactone; PD, Parkinson’s disease;
PEG, polyethylene glycol; PET, positron emission tomog-
raphy; PLA, polylactic acid; PLGA, poly lactic-co-glycolic acid;
RVG29, Rabies virus glycoprotein; SH-SY5Y, SK-N-SH
neuroblastoma cell line; SLC, solute carrier family; SLN,
solid lipid nanoparticle; TPP, triphenylphospine; 16HBE,
human bronchial epithelial cell line
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