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Abstract

Theoretical models of allometric scaling provide frameworks for understanding and predicting how and why the
morphology and function of organisms vary with scale. It remains unclear, however, if the predictions of ‘universal’ scaling
models for vascular plants hold across diverse species in variable environments. Phenomena such as competition and
disturbance may drive allometric scaling relationships away from theoretical predictions based on an optimized tree. Here,
we use a hierarchical Bayesian approach to calculate tree-specific, species-specific, and ‘global’ (i.e. interspecific) scaling
exponents for several allometric relationships using tree- and branch-level data harvested from three savanna sites across a
rainfall gradient in Mali, West Africa. We use these exponents to provide a rigorous test of three plant scaling models
(Metabolic Scaling Theory (MST), Geometric Similarity, and Stress Similarity) in savanna systems. For the allometric
relationships we evaluated (diameter vs. length, aboveground mass, stem mass, and leaf mass) the empirically calculated
exponents broadly overlapped among species from diverse environments, except for the scaling exponents for length,
which increased with tree cover and density. When we compare empirical scaling exponents to the theoretical predictions
from the three models we find MST predictions are most consistent with our observed allometries. In those situations where
observations are inconsistent with MST we find that departure from theory corresponds with expected tradeoffs related to
disturbance and competitive interactions. We hypothesize savanna trees have greater length-scaling exponents than
predicted by MST due to an evolutionary tradeoff between fire escape and optimization of mechanical stability and internal
resource transport. Future research on the drivers of systematic allometric variation could reconcile the differences between
observed scaling relationships in variable ecosystems and those predicted by ideal models such as MST.
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Introduction

One of the central goals of ecology is to identify and understand

the underlying rules and mechanisms that govern the form and

function of organisms. In particular, the existence of consistent

allometric relationships across diverse taxa has led to theories that

attempt to use physical first principles to model biological scaling.

For plants, there are several ‘universal’ scaling theories that

produce testable predictions including Metabolic Scaling Theory

(MST; [1]), the Geometric Similarity model (GEOM; [2]), and the

Stress Similarity model (STRESS; [3]) (Table 1). These models all

assume physical constraints to arrive at predictions of allometric

scaling. However, given the variability inherent in many ecological

systems, the utility of these idealized (i.e. ‘‘optimal’’) models to

predict real ecological phenomena [4,5] across multiple scales of

inquiry [6] has come into question [5,7–10] (but see [11,12]).

Indeed, the extent to which variability and disturbances such as

herbivory and fire may invalidate the allometric predictions of

universal models based only on physical first principles remains

uncertain. Since these models are based on optimizing assump-

tions about mechanical constraints that ignore the role of resources

(GEOM and STRESS), or optimize resource distribution and

plant uptake (MST) they may fail to predict scaling relationships in

temporally and spatially heterogeneous environments where

resource uptake is constrained by resource limitation [5]. Further,

demographic processes may not be entirely resource-based in

variable environments where populations may be maintained in a

non-equilibrium or disequilibrium state [13,14] by disturbances

and resource pulses [15]. In these cases, selection for traits

adaptive under conditions of spatiotemporal variability and

disturbance may be more important than selection for optimal

mechanical or physiological architecture [16] – the only selective

forces invoked by zero-order scaling models (see Materials and

Methods: Scaling models).

Savannas therefore offer an interesting test case for universal

scaling models because the dominant paradigms of savanna
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ecology invoke competition, environmental variability, and

anthropogenic disturbances as mediators of tree cover and

structure [17]. Savannas are highly variable two-layer tree-grass

systems broadly defined by a discontinuous and dynamic tree layer

with a continuous herbaceous layer [18]. Climate plays an integral

role in constraining potential tree cover of savannas, but realized

tree cover is highly variable in space and time [14]. Moreover, tree

biomass and architecture may vary in savannas based on the

magnitude and extent of disturbances such as browsing [9] and

fire [19]. Inter- and intra-annual variability in precipitation,

competition for water, and multiple disturbances including fire,

herbivory, and tree harvest establish broad environmental

gradients and create conditions that may select for modified

allometries and lead to greater allometric variation at the level of

individuals and species.

To test the ability of universal scaling models (MST, GEOM,

and STRESS) to predict whole-tree and within-tree allometric

relationships in variable systems we examine allometric scaling

relationships for three tree species from three savanna sites in West

Africa. We use a hierarchical Bayesian (HB) approach to estimate

scaling parameters (a, the normalizing constant, and b, the scaling

exponent) from the general allometric equation,

Y~aX b, ð1Þ

a power-law. In this analysis we treat branch (or basal) diameter as

the independent variable (X) and calculate its relationship with

four branch (or tree) traits: 1) length, 2) aboveground mass, 3) stem

mass, and 4) leaf mass (Ys in Equation 1). We evaluate the

competing scaling models by comparing our empirical estimates to

theoretical predictions. All are power-law models that make

specific predictions for the scaling exponent b (Equation 1) relating

plant morphology (Y, e.g. length, mass) to plant size (X, e.g.

diameter).

Specifically, the objectives of our study are to determine: 1) if

tree species in savannas exhibit similar scaling relationships for

length, aboveground mass, stem mass, and leaf mass; 2) if there is

more variability in scaling relationships among or within species;

and 3) if the scaling exponents derived from our combined branch

and tree data support or reject MST and/or other scaling model

predictions. Our main hypothesis is that since universal scaling

models make idealizing assumptions regarding plant architecture

and the environment within which plants live, we will observe

deviations from model predictions for an idealized network

structure since savanna trees must respond to variable environ-

mental conditions. To assess this hypothesis we proceed in two

stages: 1) identify the ‘‘best’’ model as the model (MST, GEOM,

or STRESS) with the most predictions included within our

calculated 95% credible intervals for each scaling relationship; and

2) interpret any deviations from the best model by considering how

factors specific to savanna systems may interact with the idealizing

assumptions of the theoretical model to cause allometric devia-

tions.

Materials and Methods

Field Data
We collected data from three savanna sites that span the tropical

rainfall gradient in Mali, West Africa. The sites vary in mean

annual precipitation, tree architecture, canopy cover and height,

fire frequency, grazing intensity, and species composition (Table 2).

Across the sites mean annual precipitation ranges from 570–

1,400 mm yr21 (north to south) and fire frequency ranges from

0.9 yr21 at the northernmost site (Lakamané) to 0.35 yr21 at the

southernmost site (Tiendéga). Large, wild herbivores are effectively

absent in West African savannas, but each site does receive some

level of grazing by cattle and browsing by goats (Table 2). At each

site, we chose ten trees of the dominant species for harvest, except

at one site (Tiorola) where we only harvested five individuals.

We felled each tree and for every branch with a diameter greater

than or equal to 2 cm measured: 1) branch (or basal) diameter

within 5 cm of the branch points (or within 10 cm of the soil for

basal measurements), 2) length, 3) wood wet weight, and 4) leaf wet

weight. We took subsamples of main stem (i.e. trunk) wood (one

sample per tree) and leaves (approximately 30 g wet weight per tree)

to obtain species-specific dry:wet weight ratios used to account for

the contribution of water content to wet weights of wood and leaf.

We aggregated biomass data by branch. That is, the biomass (leaf,

wood) of each daughter branch was summed for each parent branch

to ensure all biomass downstream of any particular branching node

is attributed to that branch’s diameter. Since not all trees had

branches with diameters greater than 2 cm we only used dry:wet

weight ratios from the trunk, but for trees where we took sub-

samples of trunk and branch wood there is a near 1:1 relationship

between trunk and branch dry:wet weight ratios (data not shown)

indicating there is no systematic variation in dry:wet weight ratios

with regards to branch order. The dataset contains observations for

25 individual trees composed of 286 branches (including main

stems) representing three savanna tree species: Deterium microcarpum

Guill. and Perr. (ntree = 10; nbranch = 103), Combretum geitynophylum

Loefl. (ntree = 5; nbranch = 30), and Combretum glutinosum Perr.

(ntree = 10; nbranch = 128). We conducted the subsequent analysis

using a combined dataset comprised of tree and branch data. Each

branch, including the main stem or whole-tree, is treated as an

observation and is indexed by tree and species (see Data analysis:

hierarchical Bayesian model). All data associated with this work is

available from Dryad (http://dx.doi.org/10.5061/dryad.4s1d2).

All necessary permits were obtained for the described field

studies. All field sites are in public lands administered by the

Malian Nature Ministry (Departement des Eaux et Forets). Data

collection at field sites was made possible through a memorandum

of understanding covering the creation and long-term operation of

Table 1. Model predictions for scaling exponents (b).

Scaling Model Length Aboveground Mass Stem Mass Leaf Mass

Metabolic Scaling Theory (MST) 2/3 8/3 8/3 2

Stress Similarity (STRESS) 1/2 5/2 NA NA

Geometric Similarity (GEOM) 1 3 3 2

The scaling exponents all refer to b in Equation 1 where the dependent variable (X) is diameter. For example, the 2/3 in upper-left cell shows that under Metabolic
Scaling Theory length is proportional to diameter to the 2/3 power (l!D2/3

).
doi:10.1371/journal.pone.0058241.t001
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the sites. Field data collection did not involve or cause harm to any

endangered or protected species.

Scaling Models
The MST botanical model by West, Brown, and Enquist (WBE;

[1]) postulates rules that govern plant branching architecture and

can serve as a baseline for variation in plant form. In so doing, this

model invokes the existence of, and selection for, optimally

branching resource distribution networks (e.g. plant vascular

systems). In particular, the original WBE model of plant

architecture proposes that vascular networks have evolved to

minimize hydrodynamic resistance and to maximize the scaling of

exchange surfaces such as leaves [1,20]. Quarter-power scaling

then emerges as a consequence of these constraints and physical

constraints related to buckling [1]. Based on these assumptions,

MST makes specific predictions for the scaling of branch/tree

length/height (l) and total aboveground biomass (M) with branch

(or basal) diameter (D) (Table 1). Further developments by Enquist

and Niklas [21] predict the allocation of total biomass to leaf mass

(L) and stem mass (S) within the plant based on size (Table 1). If

‘space-filling’ and ‘area-preserving’ are the primary evolutionary

drivers of network architecture across taxa and resources are

homogeneously distributed, then WBE scaling exponents should

be identical across divergent taxa that may differ functionally due

to other traits [22].

In addition to MST, we also evaluate two other scaling models

that invoke biophysical limitations to derive scaling exponents

from first principles. As in Price et al. [10], we consider the Stress

Similarity model (STRESS) [3] and the Geometric Similarity

model (GEOM) [2]. The STRESS model assumes that for a trunk

or branch there is a constant maximum biomechanical stress level

maintained throughout [3]. This assumption is based on

engineering principles of stress levels in beams necessary to resist

buckling. GEOM has been considered a null model of plant

scaling [10] and it assumes length and radius (or diameter) scale

isometrically (i.e., l !D, leading to bl = 1). These models (MST,

GEOM, and STRESS) all make predictions assuming an

allometrically ideal plant, that is, a plant that follows the

assumptions laid out by any given general theory of allometric

scaling. An ideal plant is then model-specific. Thus, we refer to any

given model prediction as an ‘‘ideal’’ prediction.

We do not explicitly consider the elastic similarity model (ELAS)

[3,23] because the original fractal-branching model of WBE

includes the assumption of elastic similarity [1] and thus MST and

ELAS make similar predictions for the scaling of mass and length

with tree diameter [21,24]. Also, we do not consider models of

increased complexity, such as the PES model described by Price

et al. [25] or models that include competitive interactions such as

proposed by Muller-Landau et al. [5] or Rüger and Condit [26]

because our goal is to focus on simple, universal scaling models

that do not need specific environmental data. Specific allometric

predictions for all models are in Table 1.

Data Analysis: Hierarchical Bayesian Model
We used a hierarchical Bayesian (HB) approach to simulta-

neously estimate multiple scaling relationships using the general

allometric power-law in Equation 1 where Y is the dependent

variable or plant trait/characteristic, X is branch (or basal)

diameter (hereafter D in equations), a is a normalizing constant,

and b is the scaling exponent. Parameters were fit using the log-

form of Equation 1:

log(y)~log(a)zb � log(D), ð2Þ

because recent work suggests biological power-laws are best

characterized assuming multiplicative error distributions [27,28].

The hierarchical Bayesian approach allows us to explicitly

model measurement error on independent variable D and allows

for under-represented species to borrow statistical strength by

assuming the allometric parameters come from some global

population. Moreover, our approach allows us to simultaneously

estimate tree, species, and interspecific level scaling parameters

using partial pooling [29].

To account for measurement error in diameter (D) for each

observation i we used a Berkson ‘‘error-in-variables’’ model

assuming 5% error on at least 5% of trees [30] and used

conditioning parameters from Price et al. [10] to inform the prior

error distribution, sr. We assumed measurement error to be log-

normally distributed as:

log(ri)*N(log(Di),s
2
r), ð3Þ

where ri is the latent (‘‘true’’) diameter for observation i and s2
p is

the measurement error variance. We used a multivariate normal

likelihood to estimate the parameters of several scaling relation-

ships simultaneously [10]:

log(li)

log(Mi)

log(Li)

log(Si)

2
6664

3
7775 * N

al,s(t(i)) bl,s(t(i))

aM,s(t(i)) bM,s(t(i))

aS,s(t(i)) bS,s(t(i))

aL,s(t(i)) bL,s(t(i))

2
6664

3
7775

1

log(ri)

� �
, S

0
BBB@

1
CCCAð4Þ

where a’s are normalizing constants and b’s are scaling exponents

for the relationships between l (branch length), M (total

aboveground biomass), L (leaf biomass), or S (stem biomass) and

r, and S is a 464 covariance matrix. Subscripts i, t, and s refer to

Table 2. Site characteristics.

Site Tiendéga Tiorola Lakamané

Sampled Species Detarium microcarpum Combretum geitynophylum Combretum glutinosum

Mean Rainfall (mm y21) 1,400 1,200 570

Woody Cover (%) 60.3 61.3 12.4

Domestic Animal Density Low Medium High

Fire Frequency (y21) 0.35 0.5 0.9

Woody cover was measured and domestic animal density provisionally estimated in 2008. Fire frequency was extracted from continental-scale data and thus shows
broad patterns.
doi:10.1371/journal.pone.0058241.t002
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observation, tree, and species respectively and s(t(i)) indicates

‘‘species s associated with tree t associated with observation i’’.

As suggested by the subscripts, our analysis includes a

hierarchical structure to explicitly account for the nested structure

of our dataset (i.e. branches nested within individual trees; trees

nested within species). Specifically, we account for data depen-

dencies within species and within trees. We account for the fact

that all branches within a given tree are related by including a

‘‘tree level’’ in the HB model (denoted by subscript t), but we do

not account for specific parent-daughter branch relationships.

Adding the amount of layers necessary to account for such

dependencies in our hierarchical model is unreasonable due to our

relatively small sample size. We acknowledge this limitation but we

believe the three-level structure described below is sufficiently

conservative. Note that ‘‘tree level’’ does not refer to scaling

exponents calculated using whole-tree data, but rather the tree

level of the HB model.

Scaling exponents for the relationships between l, M, L, and S

were calculated using the full dataset combining branch and

whole-tree data at tree, species, and population levels. Thus, for

variable Y (Y = l, M, L, or S) and species s associated with tree t, the

tree-level parameters, as(t) and bs(t), are hierarchically drawn from

species-level parameter distributions with prior:

aY ,s(t) * N(aY ,s,s
2
aY ),

bY ,s(t) * N(bY ,s,s
2

bY
),

ð5Þ

where aY,s and bY,s are the intraspecific (species-specific) normal-

izing constants and scaling coefficients, and s2
�aaY and s2

�bbY
are the

within species variances describing tree-to-tree variability in the

parameter. To assess the overall tendency of the model coefficients

regardless of species but while still explicitly accounting for

multiple sources of error (partial pooling) we define �aaY ,s and �bbY ,s

as coming from an overall ‘global’ population [10]:

aY ,s * N(AY ,s2
AY ),

bY ,s * N(BY ,s2
BY ),

ð6Þ

where A and B are the interspecific, population-level normalizing

constant and scaling exponent, respectively. The variance terms

(s2
AY and s2

BY ) describe the variability among species for both

parameters. All priors (for error terms and the hyper-parameters A

and B) were chosen to follow non-informative, uniform distribu-

tions [31]. We used a non-informative Wishart distribution for the

precision matrix (S{1) in Equation 4 [10,29,32].

We used Markov chain Monte Carlo (MCMC) methods to

estimate the joint posterior distributions of each parameter as

implemented using JAGS [33] within the statistical package ‘R’

[34]. Three parallel MCMC chains were run with only the

covariance matrix S initially estimated to define the structure of

the matrix. We obtained 1,000,000 iterations of each chain,

thinned by 10, after discarding an initial 200,000 iterations as

burn-in. We achieved convergence of MCMC chains as assessed

using the Heidelberger [35] diagnostic within the ‘coda’ package

of ‘R’ [36]. An R script to replicate our analysis is included as

supporting information (Supporting Information File S1) as well as

JAGS code for the HB model (Supporting Information File S2).

Since our hypothesis is that environmental factors will influence

plant allometries we also conducted the analysis above with

additional explanatory variables from Table 2. We took two

approaches: 1) we included mean annual precipitation, fire

frequency, and percent tree cover as potential explanatory

variables in Equation 4 (similar to the approach taken by Rüger

and Condit [26]), and 2) we included mean annual precipitation,

fire frequency, and percent tree cover as hyperparameters in a

regression equation that served as a prior for the species-specific

normalizing constant (aY,s) in Equation 5. However, for both cases

the posterior distributions for the coefficients of each variable

(except diameter) broadly overlapped zero and r2 values did not

increase. Likewise, some parameters in our HB model did not

achieve convergence with the extra variables included. This is

most likely because the environmental variables (specifically mean

annual precipitation and fire frequency) in Table 2 are taken from

continental-scale, coarse-resolution remote sensing datasets. As

such, even though those factors may be important for tree

allometries in savannas, the data are not highly resolved enough to

be statistically important.

Data Analysis: Posterior Predictive Checks
To check HB model fit we take a simple approach comparing

replicated datasets as simulated from the model to the data that

were used to estimate parameters [29]. If the distribution of the

simulated data is not congruent with the distribution of the real

data then there may be problems with the model itself or with the

prior probability distributions [37]. Here we use posterior

predictive checks [29] that use a test statistic from the replicated

data (Trep) and an identical test statistic from the real data (Tobs;

following the notation of [37]). Using these test statistics we test for

lack of fit by calculating PB, the probability that the replicated data

is more extreme than the real data:

PB~ Pr (Trep(yrep,h)§Tobs(y,h)Dy) ð7Þ

where h is the vector of power-law parameters (a and b). The

model shows lack of fit if PB is near 0 or 1, since it is a two-tailed

probability [38]. Values nearer 0.5 indicate no lack-of-fit. To

assess goodness-of-fit we calculate correlation coefficients (r2)

between observed and replicated datasets.

For our log-log regressions we used two test statistics, one to

assess the ability of the model to capture the mean tendency of the

data (Equation 8), and a second to assess the model’s ability to

portray the variation in the data (Equation 9). For each trait

(length, mass, leaf mass, and stem mass) we used:

Tobs~

PN
i~1

Yi

N
, Tobs~

PN
i~1

Y
rep
i

N
,

ð8Þ

and

Tobs~
XN

i~1

(Yi{mi)
2

mi

, Trep~
XN

i~1

(Y
rep
i {mi)

2

mi

, ð9Þ

where Yi is the real data, Y
rep
i is the replicated data, and mi is the

model prediction for length, mass, leaf mass, or stem mass.

Essentially, Equation 9 uses a sums-of-squares approach to

evaluate model fit [37]. We refer to the corresponding PB values

as Pmean
B and P

fit
B for Equations 8 and 9, respectively.

Data Analysis: Scaling Model and Exponent Comparison
To compare the scaling models (MST, STRESS, and GEOM)

we examined the mean, median, and 95% CIs of the posterior

distributions of the global exponents for scaling parameters

estimated by our HB model. If a theoretical prediction is included

Plant Scaling Models in Variable Savannas
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in the 95% CI, then we consider that model supported by the data.

More specifically, when the predicted parameters of one of the

scaling models fall within the CI of the empirical observations, that

model cannot be excluded. We calculate the percentage of all CIs

(at all hierarchical levels) that include the theoretical prediction of

each model. We consider the scaling model with the highest

percentage of inclusion to be the best model.

To compare scaling exponents for a particular relationship

among species we examined the overlap of the 95% CIs. Further,

we used the HB model to estimate the posterior distribution of the

difference between exponents. We then used this distribution to

calculate the probability that a difference between two exponents

is greater than zero.

Results

HB Model Evaluation
All models explain $84% of the variation for a given trait

(Table 3). Posterior predictive checks show the HB model is

capable of replicating data consistent with the mean of the

observations, with all Pmean
B values near 0.5 (Table 3). However,

the HB model is less able to accurately replicate the variability

inherent in the observed data since all P
fit
B values are nearer to 1 or

0 than Pmean
B values (Table 3). In particular, when predicting

diameter–length scaling there is much unaccounted variability

(P
fit
B = 0.048). This greater variation in model fit for length and leaf

mass scaling compared to aboveground mass and stem mass

scaling is also reflected by lower r2 values (Table 3). Raw data and

fitted ‘global’ level allometries are shown in Figure 1.

Scaling Exponents: Tree, Species, and ‘Global’ Levels
Within-trees there is considerable branch-level variability as

indicated by the 95% CIs associated with tree-level means

(Figure 2). Tree-to-tree variability of scaling exponents within

species is extremely low for each trait scaling relationship (Table 4

and Figure 2 ‘Tree and branch level’). Only the scaling exponents

for leaf mass scaling show substantial tree-to-tree variability

(Figure 2D).

At the species level, only length scaling exponents show any

interspecific variability. Fitted length scaling exponents are greater

than predicted by MST and increase with mean annual

precipitation (Figure 2A, ‘Species level’ and Table 2). Importantly,

for the species on the extreme ends of the savanna gradient we

sampled (D. microcarpum and C. glutinosum), there is a 99%

probability that the difference between length scaling exponents

is greater than zero (Figure 3). There is 76% probability the scaling

exponents for D. microcarpum and C. geitynophylum are different, and

a 92% probability the scaling exponents for C. geitynophylum and C.

glutinosum are different (Figure 3). Similarly, the length-scaling

normalization constants also show a directional trend, but with D.

microcarpum having the lowest value and C. glutinosum having the

highest value (Figure 4).

Given the low variance at the tree-level, species-specific

exponents have 95% CIs that are primarily driven by branch-

level variance, not tree-level variance. For example, for all trait

scaling relationships and all species the average difference in CI

width between the tree level and the species level is 0.037.

However, species-level variance is greater than tree-level variance

(Table 4). Except for the leaf mass scaling relationship, the

normalization constants of D. microcarpum are lower than that of C.

geitynophylum and C. glutinosum (Figure 4) and the 95% CIs do not

overlap the means.

The combination of branch-level variability (95% CIs on tree

means) and variability among species results in wide 95% CIs at

the ‘global’, interspecific level (Figure 1, 2). Tree-level variability

does not contribute greatly to interspecific variation since that

variance is low (Table 4). The ‘global’ means and associated 95%

CIs indicate the overall distribution from which subsequent levels

(tree and species) are derived. These distributions serve as

indicators of ‘naturally possible’ scaling exponents regardless of

species.

The scaling exponents arising from our dataset are generally

consistent with those calculated in other studies using a diversity of

species and tree functional types. For example, diameter-length

scaling exponents tend to fall between values of approximately

0.3–0.8 [5,9,10,32] and diameter-aboveground biomass scaling

exponents tend to fall between approximately 2.0–3.0 [5,10,20].

Few studies have examined the scaling of diameter to stem or leaf

biomass specifically. But, our results for stem and leaf biomass

scaling are consistent with those presented by Enquist and Niklas

[21] in their initial derivation of the proposed MST exponents.

Likewise, our results for leaf mass scaling are broadly consistent

with those presented by Price et al. [10], using 2,362 individuals

from over 100 species, that show leaf area scaling exponents

(which are equivalent to leaf biomass exponents under the

assumption that leaf biomass and area scales isometrically) to be

in the range of approximately 1.3–2.8.

Scaling Exponents: Empirical Support for Theoretical
Scaling Models

The wide 95% CIs at the ‘global’, interspecific level precludes

the exclusion of any of the theoretical scaling models. However,

the universal models we evaluated make predictions assuming

species-specific normalizing constants that influence the scaling

exponents [22]. As such, it is important to evaluate the models

with reference to all the levels in our HB model (the tree and

species levels). At the tree and species levels, GEOM is most

supported for length scaling and MST under predicts the length

scaling exponents (Figure 2A). MST is generally supported for

aboveground mass scaling with STRESS receiving nominal

support (Figure 2B). MST and GEOM make predictions for

biomass partitioning and they perform reasonably well but with

MST tending to under-predict and GEOM tending to over-

predict wood-mass scaling (Figure 2C). For leaf-mass scaling MST

and GEOM are equally well supported (since the predictions are

identical) given their abilities to capture the means (Figure 2D).

For all scaling relationships, and including all hierarchical levels

(29 calculated exponents per scaling relationship), MST predic-

tions are included in 75% of the credible intervals and GEOM

predictions in 57%. For the two scaling relationships that all three

models predict (length and aboveground mass) MST predictions

are included in 70% of CIs, GEOM in 33%, and STRESS in

52%.

Discussion

Departures from the ideal predictions of scaling models that do

not include environmental factors and variability are to be

expected in natural settings where local conditions may select for

modified allometries. As such, our goal was to evaluate the extent

to which variable environments result in departures of tree

allometries from ideal predictions. The ability to determine

appropriate allometric relationships in trees is critical to scaling

carbon and water fluxes from the leaf to the ecosystem level. Since

there is an urgent need to better understand terrestrial dynamics of

West African savanna ecosystems in light of current land use

Plant Scaling Models in Variable Savannas
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change [39] and future climate change [40], here we calculated

scaling exponents and tested the utility of popular allometric

scaling models in these systems. Since savannas have variable

rainfall, fire, and herbivory regimes, we aimed to determine if

theoretical models of plant form based in metabolic and

mechanical scaling models could successfully be used in these

ecosystems to scale allometries.

Allometric Convergence among and within Savanna
Trees

Despite differences in bottom-up (mean annual precipitation,

light availability) and top-down (fire, herbivory) forces important

to savanna trees [17,41–43], tree and branch scaling from three

species from three sites appear to converge on similar mean

allometries describing stem length, total above ground biomass

and the stem and leaf mass components of total aboveground

biomass (Figure 2, 4). Thus, it appears that scaling characteristics

in savanna trees converge on mean relationships among and

within trees, indicating that some set of universal scaling rules

applies. While the mean scaling exponents overlap among trees,

there are different amounts of variation associated with exponents

at each hierarchical level as discussed below.

Across all species, the most variability in exponent estimations

exists around the tree and branch level scaling exponents (Figure 2,

‘Tree and branch levels’ 95% CIs). This indicates that branches

may have a greater ‘‘scaling space’’ [44] than trees due to different

limitations on mechanical strength and resource transport related

to network size. For example, saplings tend to violate the MST

assumption of a space-filling branching, and thus elastic similarity

[3,45], and there is evidence branches violate this assumption as

well [46]. Likewise, it is important to note that had we included

branches smaller than 2 cm in diameter our exponent estimates

Figure 1. Fitted allometries for each allometric relationship using global level parameters. The symbols correspond to species as
according to the legend and are semi-transparent to show overlapping points. Lines show global level (interspecific) mean fit and the shaded regions
are the 95% credible intervals. Note that all plots are in log-log space. Species codes: demi, Detarium microcarpum (MAP = 1400 mm yr21); coge,
Combretum geitynophylum (MAP = 1200 mm yr21); cogl, Combretum glutinosum (MAP = 570 mm yr21).
doi:10.1371/journal.pone.0058241.g001

Table 3. Posterior predictive checks of the HB model.

Trait r
2 Pmean

B Pfit
B

Length 0.85 0.500 0.049

Aboveground mass 0.94 0.502 0.258

Stem mass 0.95 0.501 0.255

Leaf mass 0.85 0.502 0.369

We calculated three test statistics: 1) Pearson’s r2 assessing the correlation
between the observed data and the replicated data, 2) Pmean

B to assess the

ability of the model to capture the mean tendency of the data, and 3) P
fit
B based

on a sums-of-squares approach to assess overall model fit including its ability to
capture data variability. A value of PB (for both mean and fit) near 0 or 1

indicates lack of fit; values near 0.5 are acceptable.
doi:10.1371/journal.pone.0058241.t003
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may have been more variable. von Allmen et al. [46] show that

branches where diameter (D) is less than 2 cm tend to violate the

elastic similarity assumption. As such, our results are biased toward

branches and stems that meet the elastic similarity assumption.

With regard to exponents, the greatest variation among and

within individual trees occurs in the leaf mass scaling exponents

(Figure 2D, ‘Tree and branch levels’). It is well known that leaf

area and biomass are variable in space and time at a variety of

scales [47–49]. As such, leaf biomass may be more plastic in

response to micro-environmental conditions than other ‘wood-

based’ traits (aboveground and stem mass and length) that are

more tightly linked to diameter through mechanical constraints [3]

and metabolic efficiency [1]. Discovering how micro-environmen-

tal conditions and tree size interact to produce tree- and branch-

specific allometric relationships, and the width of allowable

allometries, is an important avenue for future research.

Figure 2. Posterior means and 95% credible intervals of scaling exponents (b) at different hierarchical levels. Symbols correspond to
the species and the large diamond represents the interspecific, global-level scaling exponent. 95% credible intervals are shown as vertical lines on
means. The levels along the x-axis refer to levels in the hierarchical Bayesian model. The horizontal lines represent the theoretical predictions of the
three scaling models (note that in D MST and GEOM make the same prediction, see Table 1). Species codes are as in Figure 1. AG mass = aboveground
mass.
doi:10.1371/journal.pone.0058241.g002

Table 4. Variance components of the hierarchical Bayesian
model for each scaling relationship (diameter vs. trait).

Trait

Tree-level variance

(s2
�bbY

)

Species-level variance

(s2
BY )

Length 0.0016 (1.71e-6, 0.007) 0.2700 (0.002, 2.281)

Aboveground
mass

0.0003 (2.77e-7, 0.002) 0.1323 (1.83e-5, 1.385)

Stem mass 0.0005 (5.29e-7, 0.003) 0.1698 (3.99e-5, 1.676)

Leaf mass 0.0160 (3.18e-5, 0.067) 0.2160 (3.56e-5, 2.026)

Means are shown with 95% credible intervals displayed in parentheses.
doi:10.1371/journal.pone.0058241.t004
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Empirical Support for Theoretical Scaling Models
Previous tests of ‘universal’ scaling models of plant form and

function have found only limited empirical support for the

theoretical models considered here [5,9,10,26,32]. Our analysis

shows that none of the models tested (MST, GEOM, and

STRESS) can be definitively excluded at the ‘global’, interspecific

level (Figure 2), though the models do differ in overall performance

at the species and tree levels as also found in a comprehensive

analysis by Price et al. [10]. This is particularly interesting given

the broad climate and disturbance gradient from which the data

were gathered, the diversity of species considered (Table 2), and

the fact that we tested these models using branch-level data. In

aggregate, however, MST outperforms STRESS and GEOM in

predicting the scaling relationships we observed across all levels

(Figure 2). Many other studies also report support for the

predictions and assumptions related to external branching

architecture as defined by WBE and MST. For example, area-

preserving branching has been widely reported [3,50–59], and

recent studies find empirical support for elastic similarity [46] and

self-similarity (Bentley et al. unpublished data). However, since the

length-scaling exponents are most consistent with the predictions

of GEOM (Figure 2), it will be important for future research to

focus on the underlying assumptions of the competing models

[60]. Only then can we truly identify departures from model

predictions, as opposed to comparing data to an incorrect or

incomplete model.

It is important to note that we did not consider models of

differing complexity. Several authors have begun to relax MST

assumptions [25] or include competitive interactions [5,26] to

better account for diversity in botanical form and function [61].

These more complex models have been shown to provide better

fits to empirical data [10]. Though we did not evaluate such

models here, since our focus was on strictly ‘universal’ models and

we did not have adequate data, it is likely they would outperform

the models we did evaluate. Nonetheless, our analysis does

indicate MST may best capture the underlying constraints on

allometric relationships, so extensions of it may prove most useful

[25,62].

Implications for MST in Variable Ecosystems
Given the data in hand and the competing scaling theories we

tested, we consider MST the ‘best’ model since its predictions were

included in the greatest percentage of credible intervals (see

Results). If MST is considered the ‘best’ model, what can we

conclude regarding deviations from MST predictions?

The most striking deviation from MST predictions occurs in the

scaling of diameter to length (Figure 2A) where MST shows a

strong trend for under predicting the scaling exponent. In concert

with this deviation from the MST prediction, the length-scaling

parameters display a clear directional trend among species: the

exponents increase with mean annual precipitation and tree cover

(Table 2, Figure 2A, 3) while the normalization constants decrease

(Figure 4). The normalization constants absorb some of the

environmental variation among sites, as predicted by MST [20]

and reflected in our analysis (Figure 4), but not enough to produce

convergent exponents. We consider this variation among species’

scaling exponents to represent an ecologically important deviation

from MST and hypothesize that the following biological processes

may differentially influence the scaling of tree height and branch

length in savannas at multiple levels: 1) long-term adaptation to

fire in savanna trees, and 2) differences in the intensity of resource

competition among sites. Environmental factors such as fire

frequency, woody cover (proxy for light competition), and mean

annual precipitation were not statistically important in our model,

but, as discussed previously, this was likely due to the spatial

Figure 3. Posterior densities of the difference between species-
specific scaling exponents. The dashed line shows a difference of
zero. Species contrasts are indicated by color as in the legend where
‘‘demi–coge’’ means the scaling exponent of D. microcarpum minus the
scaling exponent of C. geitynophylum. The probability that a specific
difference is greater than zero (which can be considered a significant
difference between exponents) is displayed in parentheses in the
legend. Species codes are as in Figure 1.
doi:10.1371/journal.pone.0058241.g003

Figure 4. Species level posterior means and 95% credible
intervals of normalization constants (a). Species codes are as in
Figure 1 and ‘‘Traits’’ along x-axis refer to the scaling of diameter with
that trait (e.g., ‘‘length’’ refers to the normalizing constants for the
scaling relationship l = aDb). Symbols correspond to the species and
95% credible intervals are shown as vertical lines on means.
doi:10.1371/journal.pone.0058241.g004
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resolution of the environmental data as opposed to their lack of

importance.

Fire plays a critical role in regulating savanna structure by

constraining recruitment of juvenile trees into adult classes [43]. As

such, fire is a strong selective force in savannas [63–67], and trees

in fire-prone ecosystems may benefit from rapid vertical growth to

escape the fire zone [19,68,69]. Therefore, we would expect, and

our data shows, length-scaling exponents to trend toward values

greater than expected from MST. As has been suggested before

[19,68,70], we hypothesize that savanna trees have evolved, via

natural selection, to allocate growth toward height or branch

length at the expense of mechanical stability and optimization of

resource transport. Fire is a selective force in savannas that

overrides the first-order optimization of plant vascular networks in

response to physical (water and nutrient transport) and mechanical

(buckling) constraints. All species in our dataset reflect the

allometric influence of fire toward a greater exponent, even while

showing some interspecific variability (Figure 2A). Trees in South

African and Brazilian savannas have shown qualitatively and

quantitatively similar allometric trends [9,19,71], suggesting a

universal trade-off in savannas between fire escape and mechanical

stability and optimization of resource transport.

While fire can explain overall deviation from the MST

prediction, multiple selective pressures related to resource

competition may be operating simultaneously at the intraspecific

level (Figure 2A, 4). For example, light has been shown to

influence forest tree allometries [5] and predictions based on

optimal partitioning theory indicate that plants in reduced sunlight

shift allocation toward height to gain a competitive advantage for

light capture [72]. Since our calculated intraspecific exponents for

length scaling increased with precipitation and woody cover

(Table 2, Figure 2A, 3), our results are consistent with this theory.

In dense savannas, as in forests, the competition for light may

select for modified allometries with scaling exponents for diameter

vs. height/length greater than 0.67 as observed here (Figure 1A).

However, light competition in savannas has received very little

attention, and water may still be the limiting factor. In that case we

would not expect a light response in allometries.

The directional trend observed among species could also be

explained by an interaction between a bark thickness–height

growth tradeoff and access to resources. Work in African,

Australian, and Brazilian savannas suggests top-kill/mortality of

savanna trees due to fire is most correlated (negatively) with bark

thickness [69,70,73]. Thus, Lawes et al. [73] argue that fire escape

height is better conceived as the height required to attain bark

thick enough to resist fire damage; as opposed to simply being tall

enough to avoid branch inflammation. As such, trees in fire-prone

savannas must invest biomass in bark growth at the expense of

height growth [73]. It follows, then, that this trade-off may be

more pronounced in arid savannas where moisture is more

limiting to overall growth. Then, as observed in this study, the fire

response in arid savannas would lead to lower length-scaling

exponents than in more mesic savannas (Figure 2A). This

proposed interaction among height (or length), bark thickness,

and resource availability has yet to be thoroughly investigated (but

see [69]).

In addition to light availability and fire frequency, browsing can

also lead to intra and interspecific variation of length scaling and

has been shown to influence savanna tree architecture [9,19,42].

Our dataset did not come from sites with large browsers, but

interestingly, length-scaling exponents calculated for South Afri-

can savanna trees protected from and exposed to large browsers

(e.g., giraffe) are remarkably similar to our estimates (in the range

of 0.57–0.74 [9]). Moncrieff et al. [9] do show that browsing can

decrease length-scaling exponents below both our calculated value

and the MST predicted value. However, the deviations from MST

observed by Moncrieff et al. [9] on trees subject to browsing may

reflect near-term physiological responses to mechanical damage

rather than long-term adaptations in growth strategy as proposed

here.

Conclusions
Ultimately, observed plant allometries in any system will reflect

some combination of multiple trade-offs that may be difficult to

capture in general theories of plant form and function, such as

MST. Deviations from the predictions of MST make intuitive

sense when we consider the multiple costs, benefits and selective

forces active in savannas. While plant architecture may reflect, in

part, the morphological adaptations that optimize the efficiency of

resource transport, when subject to selective forces unrelated to

transport (e.g. mortality of shorter individuals in fire, or

competition with neighbors for light) we can anticipate selection

of traits (e.g. longer branch node-lengths) that balance the benefits

of ‘escape’ from fire and competition with the potential

mechanical and transport ‘costs’ associated with longer and

thinner branches. However, unlike Moncrieff et al. [9] who

conclude that general theories including MST may be ‘‘neither

general nor predictive in systems with frequent disturbance’’, we

find that, even in disturbance-prone savannas, MST is generally

consistent with observations (i.e. allometries for leaf, stem, and

total mass). Further, in those situations where observations are

inconsistent with MST (i.e. stem length) we find that departure

from theory corresponds with expected tradeoffs related to

disturbance and competitive interactions. Thus, we suggest two

future research priorities: 1) detailed studies that empirically test

the validity of model assumptions related to length scaling and 2)

theoretical work aimed toward quantitatively predicting the

magnitude and direction of allometric modifications in response

to selective drivers other than core physical principles. In

combination, such work could lead to an improved plant scaling

model that best represents observed scaling relationships in

variable ecosystems.
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