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Abstract: Human hepatitis delta virus (HDV) is a small defective RNA satellite virus that requires
hepatitis B virus (HBV) envelope proteins to form its own virions. The HDV genome possesses a single
coding open reading frame (ORF), located on a replicative intermediate, the antigenome, encoding the
small (s) and the large (L) isoforms of the delta antigen (s-HDAg and L-HDAg). The latter is produced
following an editing process, changing the amber/stop codon on the s-HDAg-ORF into a tryptophan
codon, allowing L-HDAg synthesis by the addition of 19 (or 20) C-terminal amino acids. The two delta
proteins play different roles in the viral cell cycle: s-HDAg activates genome replication, while L-HDAg
blocks replication and favors virion morphogenesis and propagation. L-HDAg has also been involved
in HDV pathogenicity. Understanding the kinetics of viral editing rates in vivo is key to unravel the
biology of the virus and understand its spread and natural history. We developed and validated a new
assay based on next-generation sequencing and aimed at quantifying HDV RNA editing in plasma.
We analyzed plasma samples from 219 patients infected with different HDV genotypes and showed
that HDV editing capacity strongly depends on the genotype of the strain.

Keywords: HDV; editing; genotype; HDAg; next-generation-sequencing; pathogenesis

1. Introduction

Hepatitis delta virus (HDV) is a small defective RNA virus that infects humans already
chronically carrying hepatitis B virus (HBV). Indeed, HDV requires the HBV envelope
proteins expressing the HBV surface antigen (HBsAg) for the morphogenesis of its viral
particles [1]. HDV has been assigned to the Deltavirus genus. New HDV RNA-like se-
quences have been recently identified in the animal kingdom [2–5]. Human HDV infection
is widespread, and its prevalence differs between areas. It is estimated that, among the
257 million individuals with chronic HBV infection, approximately 15–20 million are also
infected with HDV. According to recent meta-analyses, this number may be underestimated
in several countries [6,7]. HDV infection is associated with the most severe forms of viral
hepatitis, ranging from acute and sometimes fulminant disease to a rapidly progressive
form of chronic viral hepatitis rapidly leading to cirrhosis and hepatocellular carcinoma [8].

The HDV genus is characterized by a very high genetic diversity. We recently pro-
posed, based on large-scale sequencing of HDV strains for many regions of the world,
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individualizing eight HDV genotypes, numbered HDV-1 to HDV-8, that differ by ≤20%
over the sequence of their full-length genome, with a strong robustness of branch topolo-
gies in Bayesian-based tree reconstruction [9,10]. HDV genotypes can be further split into
two or more subgenotypes that differ by ≤10% of their sequence (≤16% for HDV-1) [9].
Interestingly, HDV genotypes and subgenotypes have a distinct worldwide geographic
distribution [9–11].

The HDV virion is approximately 36 nm in diameter. The viral particle is composed of
a double lipid layer in which the HBV envelope glycoproteins are anchored surrounding the
HDV ribonucleoprotein (RNP). This RNP is composed of the circular single-stranded RNA
of negative polarity containing ∼1700 nucleotides (nt) closely linked to the two isoforms of
the HDV protein, including the small (s) and the large (L) hepatitis delta antigens (s-HDAg
and L-HDAg, respectively) [12]. The HDV genome has a high (approximately 60%) GC
content. It is characterized by an intramolecular base-pairing of 74%, which confers the
genome an unbranched rod-like structure [9,13].

HDV RNA replication is carried out independently of HBV by the host DNA-dependent
RNA polymerase-2 (RNA-Pol-II) [14]. It has been suggested that the RNA-Pol-I and/or
RNA-Pol-III can drive genomic-to-antigenomic RNA synthesis in the nucleolus, although
this remains debated [15]. The double-rolling circle model, similar to that in plant viroid
agents, generates a complimentary copy of the genome, the replication intermediate known
as the antigenome [16,17], and numerous copies of the genomic sense RNA synthesized
from the antigenomic template in the nucleoplasm. In addition, the genome is also tran-
scribed in a messenger RNA (mRNA) of antigenomic polarity (∼0.8 kb) coding for the
s-HDAg protein of 195 amino acids.

As replication proceeds, a fraction of the full-length antigenome RNA undergoes
editing by a specific host cellular enzyme, the adenosine deaminase acting on double
stranded RNA (ADAR), essentially its short isoform ADAR-1 [18,19]. As described for
HDV-1, additional RNA structures are required to optimize editing. They include: (I) an
A-C mismatch at the editing amber/stop codon (UAG) ending the s-HDAg gene at position
1012 on the antigenome; (II) strict base pairing of four nucleotide pairs surrounding this
position in both directions; and (III) a specific secondary structure, located approximately
25 nucleotides 3′ downstream, called the dsRNA binding motif (DRBM), which defines the
minimal editing substrate for ADAR-1. Indeed, this structure is required for the initiation of
editing [20,21], and we recently showed that it can vary according to the HDV genotype [9].
It has also been shown that a 16/17-nt segment located as far as 114 nt upstream of the
editing site of HDV-1 was involved in this process [22]. Thus, ADAR-1 mediates editing of
the antigenomic RNA by acting on the adenosine within the amber/stop codon (UAG) of
the s-HDAg ORF, which is deaminated into an inosine. Through the replication process, the
stop codon (UAG) is changed into a tryptophan codon W (UGG), allowing the extension
of the s-HDAg ORF during translation to produce the L-HDAg by the addition of 19 (or
20 for HDV-3) amino acid residues at the C-terminus of the s-HDAg protein. The small
protein s-HDAg, while having no polymerase activity, is involved in genome replication
through the recruitment of the cellular DNA-dependent RNA polymerase 2 by histone
mimicry [23]. In contrast, due to its carboxyl-extension that adds a farnesyl transferase
signal, the isoprenylated L-HDAg protein favors virion morphogenesis via a nuclear export
signal that may contribute to the cytoplasmic membrane localization of the delta RNP.
L-HDAg has also been involved in HDV pathogenicity [24–30].

In earlier studies [31,32] (and unpublished personal data), Sanger sequencing of PCR
amplicons from plasma samples often results in double populations at the amber-stop/W
codon position that are difficult to interpret. This finding suggests that both replication-
competent and defective quasi-species variants circulate in the peripheral blood of infected
individuals. Interestingly, for HDV-1 strains, amplicons spanning the L-HDAg ORF display
a specific NcoI restriction site. Restriction analyses in an HDV-infected woodchuck model
showed a high and rapid decrease in the proportion of editing clones in the context of
a transient viremia. Therefore, hypotheses have been raised as to a role for the early
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expression of L-HDAg in viral clearance and/or for a better presentation of some HDAg
epitopes to the immune system [33]. In a first attempt to use next-generation sequencing
(NGS) to characterize samples from three patients studied longitudinally, chronic HDV
infection appeared to be associated with a higher proportion of non-edited HDV RNA [34].
More recently, Sopena and colleagues studied four patients infected with HDV-1 strains
using the Roche NGS-based assay and confirmed the performance of such an approach
compared to cloning followed by Sanger sequencing [35].

The aim of our study was to develop a dedicated tool to accurately quantify HDV-
RNA editing rates in vivo by means of NGS, a powerful method for the quantitative
characterization of genome populations within complex mixtures and assess the influence
of the HDV genotypes on HDV RNA editing. For this, well-characterized samples from
219 untreated patients infected with various HDV genotypes from the French National
HDV reference laboratory collection were selected and the editing rates (Edited(E)/Non-
Edited (NE) RNA + Edited (E) RNA ratio) were measured. The HDV RNA secondary
structures of full-length antigenomes from different genotypes were predicted in silico,
with special focus on the editing substrate region.

2. Materials and Methods

Implementation and validation of a new tool to quantify HDV RNA editing rates.
To implement a new assay to measure HDV RNA editing rates, we used an NGS

‘method using the MiSeq® Illumina sequencer (Illumina, Eindhoven, The Netherlands)
to quantify the proportion of edited versus non-edited genome sequences in the plasma
of HDV-infected patients. To analyze the large amount of sequence data generated, we
took advantage of the patent-protected “in-house” software recently developed for HIV
sequence analyses, including the Pyromute, Pyrotrop and Pyrolink modules, which were
further developed to create the PyroEdit software.

Initial validation of the software was performed using computer-generated edited and
non-edited sequences from reference sequences. Briefly, we created a program that gener-
ated several synthetic fastq files with the following characteristics: (I) fastq files containing
103, 5 × 105 and 105 sequences; (II) consensus sequences from all HDV genotypes (HDV-1
to -8); (III) the presence of the W codon on all sequences of each genotype; (IV) sequence
variability up to 30%; (V) Phred Quality Score ≥30, and (VI) a lower limit of detection of
the W codon of 1%.

Then, we generated clones (see below) expressing edited and non-edited genome
sequences that were mixed at different ratios, respectively: 0%/100%, 5%/95%, 10%/90%,
25%/75%, 50%/50%, 75%/25%, 90%/10%, 95%/5%, 100%/0%. Each different mixture was
analyzed 8 times in the same experiment.

Finally, we analyzed the plasma samples from 219 HDV-infected patients described
below. Repeatability and reproducibility experiments were conducted from 8 samples,
including 3 low (10%), 3 median (32%) and 2 high (52%) RNA editing rates, that were
tested 10 times using the same MiSeq® flow cell and 3 times on 3 different MiSeq® flow
cells (Illumina, Eindhoven, The Netherlands).

2.1. Generation of Non-Edited and Edited Clones

We generated non-edited and edited clones from a well-characterized HDV-1 strain
(dFr663d unpublished), which exhibited a double population by Sanger sequencing, ATC
(for non-edited) and ACC (for edited) at the 1012 position of the genome corresponding to
amber (UAG)/W (UGG) codon for the antigenome.

Briefly, amplicons of the so-called R0 genome region, spanning nt 920 to 1289 and
covering the editing region [9], were generated after reverse transcription using the Su-
perScriptIII Reverse Transcriptase (Invitrogen by ThermoFisher Scientific, Waltham, MA,
USA) and amplification with the KAPA High-Fidelity PCR kit (Roche, Indianapolis, IN,
USA). They were then cloned into a TOPO10 vector (Thermofisher Scientific, Waltham,
MA, USA) and plasmids were expressed in E. Coli bacteria. The final non-edited and edited
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purified clones were collected, further amplified using the KAPA high fidelity PCR kit and
sequenced by the Sanger method using the ABI Prism Big Dye Terminator Cycle Sequenc-
ing Kit v3.1 (Applied Biosystems by ThermoFisher Scientific, Waltham, MA, USA). DNA
plasmid purification was carried out with the GeneJET plasmid miniprep kit (Thermofisher
Scientific, Waltham, MA, USA). DNA was normalized using a Qubit Fluorometer (Qubit
dsDNA Assay kit, Life Technologies by ThermoFisher Scientific. Waltham, MA, USA), and
new PCRs were performed to characterize each non-edited and edited clones by means of
Sanger sequencing. Quantification of each clone by NGS was performed through new PCR
amplifications using a pair of primers containing the 5′ NGS-adaptor sequences P5 and
P7 (Nextera XT Index Kit V2, Illumina, Eindhoven, The Netherlands). PCR products were
further purified using the NXp Station (Agencourt AMPure XP, Beckman Coulter, Indi-
anapolis, IN, USA). DNA quantity and quality were assessed using Qubit and BioAnalyser
(Agilent by Thermofisher Scientific, Waltham, MA, USA).

2.2. Quantification of the In Vivo Editing Rate in Plasma Samples

Clinical samples from 219 untreated patients infected with different HDV genotypes
were selected from the collection of the French HDV National Reference Laboratory accord-
ing to the HDV genotype and a HDV viral load > 1000 UI/mL. HDV RNA levels ranged
between 2.7 and 10.2 Log IU/mL, with a median of 6.3 ± 1.62 Log IU/mL, as quantified by
the commercial Eurobioplex HDV kit (Eurobio, Les Ulis, France) [36]. HBV DNA levels,
quantified by the Cobas HBV 6800 Systems (Roche, Waltham, MA, USA), were available
in 139 of the 219 patients and their values ranged between 1 and 6.6 Log IU/mL, with a
median of 1.83 ± 1.94 Log IU/mL, 5% of them being close to the limit of detection of the
assay. HDV genotypes, determined as previously described [9,11], were distributed as
follows: 115 HDV-1, 55 HDV-5, 12 HDV-6, 17 HDV-7 and 20 HDV-8.

For the quantification of HDV RNA editing rate, RNAs were extracted from plasma
samples with the m2000sp system (Abbott Molecular, Chicago, IL, USA) and reverse-
transcribed with the SuperScript III First-Strand Synthesis System (Invitrogen by Ther-
moFisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions.
The cDNAs were amplified as previously described [9,37] using the KAPA High-Fidelity
DNA polymerase (KAPABiosystems, Roche, Indianapolis, IN, USA) and improving proof-
reading efficiency by using specific primers corresponding to the R0 genome region (See
Appendix A, Table A1). After purification and quantification of the PCR products, a library
was created containing all samples at the same normalized concentration, which was
sequenced by NGS on the MiSeq® System (MySeq® V2 Reagent Kit 500 cycles, Illumina,
Eindhoven, The Netherlands) according to the manufacturer’s protocol.

NGS data analysis was performed with our new dedicated tool PyroEdit. After a
specific quality filter step, only complete sequences (up to 151 pb) with a Phred Quality
Scores >30 were recorded and aligned (Smith–Waterman algorithm) with a genotype-
specific consensus reference sequence. The percentage of sequences bearing the W at the
amber/W codon was calculated for each patient sample and recorded in the final report.

2.3. Determination of the Secondary Structures of the RNA Editing Region

To analyze secondary HDV RNA structures, especially in the region surrounding the
amber/W editing site, we determined the full-length genome sequence of 32 out of the
219 strains from the initial cohort (10 HDV-1, 7 HDV-5, 5 HDV-6, 5 HDV-7 and 5 HDV-8),
as previously described [9] (Being published in EMBL). The more stable predicted sec-
ondary structures (RNAfolding) of the RNA editing site regions were determined using
two online software applications with default setting from the entire antigenome sequences:
RNAfold WebServer (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi ac-
cessed on 1 November 2019) and UNAfold WebServer (http://www.unafold.org/mfold/
applications/rna-folding-form.php accessed on 1 June 2021). We then compared the pat-
terns of the putative minimum editing substrate for the ADAR-1 enzyme according to the
genotype and the editing rate.

http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://www.unafold.org/mfold/applications/rna-folding-form.php
http://www.unafold.org/mfold/applications/rna-folding-form.php
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2.4. Statistical Analyses

Statistical analyses were carried out using the R software (version 3.5.1, 2018 Free
Software Foundation, Boston, MA, USA). The non-parametric Kruskal–Wallis test was
used to compare population distributions. The Wilcoxon test was used to analyze paired
samples of non-categorical data, while Pearson’s test was used for statistical correlations.
p values of <0.05 denoted statistical significance. Figures were carried out under ggplot2.

3. Results
3.1. Provision of a New Tool to Quantify HDV RNA Editing Rate

We developed a new tool to measure the editing capacity of HDV strains in samples
from infected patients. The workflow is based on NGS and quantifies editing of the
amber/stop codon at positions 1010–1013 of the antigenomic RNA.

Previously created in-house software was adapted to develop the PyroEdit application,
that was subsequently validated to be used regardless of the number of sequences to ana-
lyze, threshold values, virus variability and HDV genotype. Firstly, the validation process
was conducted by using computer-generated fastq files, as described in the “Methods”
section. The mean difference between the expected values of edited genome rates (input)
and the values calculated by PyroEdit (output) was less than 0.1%, whatever the HDV
genotype is (data not shown). Secondly, eight mixtures containing clones expressing either
edited or non-edited genomes in various proportions were prepared (Figure 1). A total of
18,400,000 quality-filtered sequences were obtained (mean: 175,792 sequences per sample)
with a Phred Quality Score ≥ 30. The results obtained with PyroEdit were very close to the
expected values, with a mean difference < 3%. The lower limit of quantification (LLOQ)
was 5% (percentage of edited RNA in a mixture) and the lower limit of detection (LLOD),
defined by the threshold for detection according to information from Illumina support, was
1% (Figure 1). Furthermore, repeatability and reproducibility were both high (standard
deviations: <18.2 and <8.75%, respectively), independent of the editing rate (low, 10%;
medium, 30%; high >50%).

Figure 1. Validation of the editing rate quantification assay. Edited and non-edited clones were
generated from an HDV-1 strain. The two clones were mixed in different proportions (see ‘Methods’
section) and analyzed. The expected values (in black) were compared to the observed values (in
gray). The standard deviation was calculated from 8 values obtained for each mixture.

3.2. In Vivo Editing Rates in Clinical Samples

Editing rates were quantified in plasma samples from 219 patients infected with
different HDV genotypes, including HDV-1 (n = 115), HDV-5 (n = 55), HDV-6 (n = 12),
HDV-7 (n = 17) and HDV-8 (n = 20). The editing rates ranged from <5% to 69% (median:



Viruses 2021, 13, 1572 6 of 15

32%). In three samples, the editing rate was repeatedly comprised between the LLOD
(1%) and the LLOQ (5%). Higher and lower values were controlled twice, and an identical
result was found. The median editing rate values were different across the different HDV
genotypes: 31%, 41%, 27%, 39% and 26% for HDV-1, HDV-5, HDV-6, HDV-7 and HDV-8,
respectively. The difference was significant between HDV-5 and HDV-7 compared to that
between HDV-1, -6 and -8, as assessed by multivariate analyses (p < 0.001; Table 1 and
Figure 2). In addition, within the latter group, the HDV-1 editing rate was significantly
higher than those of HDV-6 and HDV-8 (p < 0.05). No significant difference was observed
between non-African and African-HDV-1 strains (n = 73 and n = 42, respectively). Although
there was no correlation between the initial HDV viral loads and the editing rate values
(Table 1), we found a significant correlation between high editing rate levels and low HBV
DNA viral loads (p < 0.01).

Table 1. Pearson test correlation analysis performed with R (version 3.5.1, 2018).

Parameters p Value

% Editing/HDV genotype 0.0038
% Editing/HBV viral load 0.01
% Editing/HDV viral load ns

p value: Wilcoxon test. ns: non-significant (>0.05).

Figure 2. Plasma HDV RNA editing rates according to the HDV genotype. Two-hundred and
nineteen samples from untreated infected patients were analyzed. The box plots, generated with
ggplot2 application, show the median editing rate and the value distribution obtained with different
genotypes. Significantly higher editing rates (expressed in percentage) were observed for HDV-5
and HDV-7 strains, compared to HDV-1 (African and non-African genotypes), HDV-6 and HDV-8
(* p < 0.001). In addition, HDV-6 and HDV-8 editing rates were significantly lower than HDV-1 ones
(** p < 0.05). Comparison of editing rates was performed by means of Kruskal–Wallis, chi-square,
and Wilcoxon’s tests.
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3.3. Predicted RNA Secondary Structures of the Editing Genome Region

The editing process involves several structural requirements that are described in
the introduction. RNA secondary structures can differ according to the HDV genotype,
as described earlier [9,21,38]. Indeed, loops of variable sizes are directly displayed at the
vicinity of the editing site and downstream, disrupting base pairing that is essential for
ADAR-1 binding. We characterized full-length viral genome sequences from 32 of the
219 samples, selected to represent different HDV genotypes and according to different
editing rate levels. Then, we analyzed the more stable RNA secondary structures of
their antigenomic sequence, with the main focus on the so-called “minimal substrate for
editing” (Table 2 and Figure 3). The structures were identical whatever the application used,
RNAfold or UNAfold. The 32 different structures according to genotypes are presented
based on RNAfold analysis in Figure 4.

Table 2. Structural features of the minimal editing region inside the 25 nucleotides 3′-downstream of
the editing site according to the HDV genotype.

Strain HDV
Genotype Editing (%) A-C

Mismatch * DRMB † Length #

dFr7103 1 7 Yes 3 4-8-12
dFr3234b 1 7 Yes 4 4-8-7-4
dFr3895 1 8 Yes 3 3-8-21
dFr5143 1 22 Yes 3 4-8-12
dFr4189 1 26 Yes 4 4-8-7-9
dFr5056 1 31 Yes 3 4-8-21
dFr2411 1 32 Yes 3 4-8-11
dFr4350 1 33 Yes 3 4-8-21
dFr6801 1 34 Yes 3 4-8-22
dFr5985 1 38 No 4 3-8-7-4

dFr4410 5 26 Yes 4 2-4-9-4
dFr2102 5 40 Yes 5 2-4-9-4-2
dFr1689 5 45 Yes 4 2-3-9-4
dFr109 5 46 Yes 4 2-3-8-4

dFr2257 5 60 Yes 4 2-3-9-4
dFr5725 5 67 Yes 5 2-4-8-4-1
dFr1446e 5 69 Yes 5 2-3-9-4-1

dFr375d 6 18 No 4 2-13-1-4
dFr3006 6 25 No 4 2-7-9-15
dFr8840 6 26 No 5 2-7-4-4-15
dFr5786 6 32 No 5 2-7-4-4-16
dFr7543 6 35 No 5 2-7-4-4-15

dFr563 7 36 Yes 3 9-10-16
dFr3363 7 38 Yes 3 9-7-8
dFr2158 7 42 Yes 3 9-7-8
dFr1650 7 44 Yes 4 9-10-2-4

dFr2072 8 23 No 5 2-2-9-4-11
dFr1011e 8 25 Yes 3 15-4-9
dFr6493 8 28 Yes 3 12-4-5
dFr1274 8 31 Yes 4 4-7-4-8
dFr367e 8 44 No 5 2-2-8-4-15

(*) Presence or not of the A-C mismatch at the 1012 amber/W position. (†) Number of DRBMs inside the 25 nu-
cleotides 3′-downstream of the editing site. (#) Number of consecutive nucleotides base-pairing for each DRBM.
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Figure 3. Schematic representation of ADAR-1 binding on the putative minimum editing substrate
from the Italian HDV genotype 1 strain (accession number: X0445Italy1976). (A) The secondary
structure of the complete sequence of antigenomic RNA is shown. The dashed black square delimi-
tates the minimal editing substrate region for host enzyme ADAR-1. (B) ADAR-1 binding model
on the putative minimum editing substrate. The unbranched rod-like structure with base-pairing
domains of the HDV RNA minimal editing substrate is shown. ADAR-1 binding mediated by the
3 dsRNA-binding motifs (DRMBs) is drawn. The red arrow indicates the amber/W editing site with
the target adenosine for editing, while the A-C mismatch is highlighted. The color scale indicates
relative base-pairing probabilities from 0 (violet) to 1 (red).
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The color scale indicates the relative base-pairing probabilities from 0 (violet) to 1 (red).

Nine out of the 10 HDV-1 sequences analyzed showed similar secondary structure
patterns, composed of three long base-pairing motifs and two bulges (Figure 4A). By
contrast, analysis of the seven HDV-5 strain sequences showed one short base-pairing
motif followed by three long base-pairing motifs, separated by one large bubble and two
small bulges (Figure 4B). The five HDV-6 strains displayed three or four base-pairing motifs
interspersed with two or three bulges (Figure 4C). As shown in Figure 4D, four out of
the five HDV-7 sequences showed a similar pattern, composed of a repetition of two very
large base-pairing motifs separated by one bulge. However, the remaining one (dFr7024)
displayed a branched structure composed of two stem-loops flanking the base-pairing
motif, as has been previously described for HDV-3 [19,39], with a same free energy than
the other HDV-7 strains. Finally, the five HDV-8 strains showed no particular structural
characteristics (Figure 4E). The presence of an A-C mismatch at the amber/stop codon
editing site has been reported to be related to the editing efficiency of genotype HDV-1.
This mismatch was found in HDV-1 and HDV-5 strains in our work and was replaced in
HDV-7 strains by a large bubble at the same location. This A-C mismatch pair was absent
in HDV-6 and in most HDV-8 strains, suggesting an alternative transient conformation for
the editing site. The base located immediately 3′ downstream of the adenosine, known to
influence editing efficiency, was always a guanine, whatever the HDV genotype. Of note,
however, the number of dsRNA-binding motifs (DRBMs) did not seem to be associated
with the editing capacity (Table 2). Finally, when considering the 130 nucleotides located
upstream of the amber/W codon in these 32 full-length sequences, we did not find any
genotype-specific pattern [22].
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4. Discussion

RNA editing is responsible for the switch from viral RNA replication to virion pack-
aging and secretion. Indeed, early during the replication cycle, the virus produces the
s-HDAg protein, which is required for RNA synthesis as it ensures the recruitment of
BAZ2B-associated chromatin remodeling factors (BRFs) on the viral RNA by histone
mimicry, favors DNA-dependent RNA Pol 2 hijacking, and allows the Pol2 RNA elonga-
tion process to occur [23,40]. At later times in the life cycle, the virus produces the L-HDAg
as a result of editing at the amber/W codon, which inhibits RNA synthesis and favors
virion morphogenesis. HDV genome replication is highly dependent on the respective
proportions of the two forms of HDAg. Indeed, it has been shown in vitro that replication
was reduced by as much as 8-fold at a 10:1 s-HDAg/L-HDAg ratio [41,42]. Altogether,
HDV RNA editing is a key step in the virus life cycle that plays an important role in the
natural history and clinical outcomes of human infection.

In this study, we report the development and validation of a new NGS-based assay
using the MiSeq® Illumina device, together with a new in-house software, PyroEdit, which
allowed us to measure the viral editing rate in plasma samples from treatment-naïve
patients infected with different HDV genotypes. We also analyzed the predicted RNA
structural features of the editing region of several strains from this cohort according to
editing rate and HDV genotype.

Our results show that our assay was able to: (I) be robust in spite of the high variability
of the HDV genome, characterized by a nucleotide dissimilarity rate ranging from 20%
to up to 35% over the entire genome sequence between the different HDV genotypes; (II)
individualize the sequence of interest of 251 nt in length with a Phred Quality Score > 20%
and with 99% accuracy; (III) correctly align each consensus sequence; (IV) check which
nucleotide was present at the amber/W codon position and characterize the codon; and
(V) calculate the editing rate and provide a final report. With this quantitative method, the
editing rate values in clinical samples ranged from 7% to 69% in patients infected with HDV
genotypes HDV-1, -5, -6, -7 and -8. Previous in vitro (cell culture) and in vivo (plasma)
studies using HDV-1 strains found editing rates around 40% [34,35,43]. Remarkably, in
three samples from our study, we repeatedly observed very low editing rate values, lying
between the LLOD (1%) and the LLOQ (5%). These results indicate that very low amounts
of L-HDAg are sufficient for virion production. At the opposite, strains with high HDV-
RNA editing capacity (for instance HDV-5 strains which have a 69% editing capacity), the
presence of 31% of non-edited RNA encoding s-HDAg appears to be sufficient for the
initiation and continuation of genome replication and to ensure the subsequent steps of the
viral life cycle.

Another important result of our study is that the editing rate values differed signifi-
cantly between different HDV genotypes. Indeed, the African HDV-5 and HDV-7 strains
showed significant higher in vivo rates of editing than HDV-1, HDV-6 and HDV-8 (40% vs.
28%, p < 0.001). In addition, HDV-1 strains exhibited significantly higher editing capacities
than HDV-6 and HDV-8 (p < 0.05). Interestingly, in the HDV-1 group, no difference in
editing efficiency was seen between African and non-African strains. Because HDV-1 is the
most frequent, ubiquitously distributed genotype worldwide, this suggests that the in vivo
HDV-1 editing rate, around 30%, could be optimal for a most efficient spreading fitness,
with an optimal early-to-late phase of HDAg production ratio.

Based on our predicted structural analyses, our results are supported by at least two
RNA structural features described in Figure 4 and Table 2. First, the A-C mismatch pair
at the amber/W site, which is key in the editing process of HDV-1 strains, is also present
in HDV-5 and HDV-7 strains. Interestingly, this mismatch is accentuated in the HDV-7
amber/W codon, because it is located at the top of a large bulge, whereas the mismatch
is disrupted in HDV-6 and some HDV-8 sequences which have the lowest editing rates.
In addition, in the 25 nt-long-region downstream the editing codon, we found two or
three strict base-pairing motifs, allowing for optimal binding of the host ADAR-1 editing
enzyme. Surprisingly, the HDV-7 editing motif of one strain (dFr7024 strain) displayed a
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complex branched structure composed of two stem-loops flanking a base-pairing motif.
The editing capacity of this strain appeared to be lower than that of the four other HDV-
7 strains (Figure 4D). Such a structure with two stem-loop arms, has been previously
proposed to be a transient secondary structure of the HDV RNA used by HDV-3 strains to
improve their editing efficiency by ADAR-1 [19–21,39]. Therefore, we hypothesize that this
conformation observed in a single HDV-7 strain could be optimal for its editing capacity.
Whether different genotypes can transiently use this alternative conformation to up- or
down-regulate their RNA editing efficiency remains to be determined. Interestingly, HDV-6
and HDV-8 strains, which did not display the A-C mismatch pair at their amber/W site,
could use such transient conformation to increase the binding efficiency of host ADAR-1 to
its substrate.

L-HDAg synthesis and its accumulation in several cell compartments has been shown
to interfere with multiple cellular signaling pathways and alter the pathogenesis of the
infection [24–30]. Indeed, the overexpression of L-HDAg induces the transactivation of a
variety of heterologous promoters and upstream regulatory elements, notably by activating
serum response factor-associated transcription [24,25]. Park et al. showed that L-HDAg
is able to increase TNF-alpha-induced NF-kappa B transcriptional activation involved
in inflammation pathways [27]. In a previous work, we showed that L-HDAg induces
NADPH oxidase-4 gene expression, resulting in an increase in cellular reactive oxygen
species production, subsequently leading to oxidative stress and activation of pleiotropic
transcription factors, including STAT-3 or NF-kappa B [28]. Choi et al. showed that
L-HDAg modulates transforming growth factor-beta signaling cascades, arguing for a
possible induction of liver fibrosis [26]. Interestingly, we recently confirmed in a large
clinical study that patients infected with HDV-5 strains (n = 147) were more at risk of
developing cirrhosis than those infected with other African genotypes, such as HDV-1 [8].
We hypothesize that the high HDV-5 editing rates observed in vivo in this study could
contribute to this observation, encouraging additional experimentations comparing HDV-1-
and HDV-5-infected patients to confirm this hypothesis.

It has been reported that HDV proteins (s- and L-HDAg) are involved in immune-
mediated liver damage [44]. Data from in vitro experiments and in the chimpanzee model
suggested a direct cytopathic effect of s-HDAg on hepatocytes, while L-HDAg epitopes
render hepatocytes more susceptible to immune-mediated damages. Thus, cells expressing
high levels of L-HDAg are likely to be preferentially lysed by the immune system [45,46].
As a result, monitoring the relative production of HDV proteins by quantifying the RNA
editing rate could be relevant for patient management to monitor the natural history of the
disease associated with chronic infection.

It has been demonstrated in cell culture experiments that L-HDAg is involved in the
inhibition of HBV replication observed in HBV-HDV co- or super-infected individuals [47].
Activation of the human interferon alpha inducible MxA protein was one of the possible
explanations for this phenomenon [28,29]. Interestingly, we found a significant relationship
between high editing rates leading to L-HDAg synthesis in large amounts and low HBV
DNA viral loads in vivo.

Another known consequence of HDV RNA editing is the existence of HDV particles
containing edited genomes. Such particles are unable to be at the origin of full viral
replication cycles. In the event of a co-infection with virions containing genomes capable
of coding for both proteins, L-HDAg would likely inhibit the replication of otherwise
competent genomes. With our assay, we found that up to 69% of viral particles contained
such edited genomes. These edited particles could behave as defective interfering particles
(DIPs), as described for HBV and several other viruses [48]. DIPs are thought to serve
as decoys for the immune system, being targeted by immune effectors and/or lowering
the expression of their own genes. As a result, they can persist and favor fibrogenesis,
inflammation and carcinogenesis. Such a mechanism remains to be studied in chronic
HDV infection.
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The s-HDAg/L-HDAg ratio and its regulation govern the switch from genome repli-
cation to packaging, which seems to be unrelated to the HDV viral levels, as we found
no clear relationship between viral loads and editing rates. New treatments against HDV
will be available soon in addition to pegylated interferon alpha, including Myrcludex,
Lonafarnib, Replicor and others in clinical development. Longitudinal studies assessing
the kinetics of HDV editing rates on and after treatment could be particularly interesting
to better understand their mechanisms of success and failure. The NGS-based method
we have developed appears to be particularly well-suited to this endeavor. In addition,
the assay will be very useful to finely characterize the editing process control during the
natural history of the infection, both in in vitro and in in vivo studies.

In conclusion, our study provides a new specific tool dedicated to the in vitro or
in vivo quantification of HDV editing rates and novel insights into the genotype depen-
dency of this important step of the HDV life cycle. This tool will be useful in large-scale
clinical studies in the future to assess the role of editing rates as a predictive marker of the
natural history and treatment response of the infection.
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Appendix A

Table A1. Primers used in the different RT-PCR experiments.

Reaction Primer Sequence (5′-3′)

RT Delta 920 fw CATGCCGACCCGAAGAGGAAAG
Delta 1286 rv GAAGGAAGGCCCTCGAGAACAAGA

PCR Delta 920 fw TCGTCGGCAGCGTCAGATGTGTATAAGAGAAG
GCATGCCGACCCGAAGAGGAAAG

Delta N920 fw TCGTCGGCAGCGTCAGATGTGTATAAGAGAAG
NCATGCCGACCCGAAGAGGAAAG

Delta NN920 fw TCGTCGGCAGCGTCAGATGTGTATAAGAGACA
GNNCATGCCGACCCGAAGAGGAAAG

Delta NNN920 fw TCGTCGGCAGCGTCAGATGTGTATAAGAGACA
GNNNCATGCCGACCCGAAGAGGAAAG

Delta N1289 rv GTCTCGTGGGCTCGGAGATGTGTATAAGAGAC
AGNGAAGGAAGGCCCTCGAGAACAAGA

Primers were defined from previous studies [9], allowing to amplify the R0 region of HDV genome (nt 920 to
1289) encompassing the editing region. Fw (forward); rv (reverse).
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