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Abstract: Ovarian cancer (OC) is one of the most diagnosed gynecological cancers in women. Due
to the lack of effective early stage screening, women are more often diagnosed at an advanced
stage; therefore, it is associated with poor patient outcomes. There are a lack of tools to identify
patients at the highest risk of developing this cancer. Moreover, early detection strategies, therapeutic
approaches, and real-time monitoring of responses to treatment to improve survival and quality
of life are also inadequate. Tumor development and progression are dependent upon cell-to-cell
communication, allowing cancer cells to re-program cells not only within the surrounding tumor
microenvironment, but also at distant sites. Recent studies established that extracellular vesicles
(EVs) mediate bi-directional communication between normal and cancerous cells. EVs are highly
stable membrane vesicles that are released from a wide range of cells, including healthy and cancer
cells. They contain tissue-specific signaling molecules (e.g., proteins and miRNA) and, once released,
regulate target cell phenotypes, inducing a pro-tumorigenic and immunosuppressive phenotype to
contribute to tumor growth and metastasis as well as proximal and distal cell function. Thus, EVs are
a “fingerprint” of their cell of origin and reflect the metabolic status. Additionally, via the capacity
to evade the immune system and remain stable over long periods in circulation, EVs can be potent
therapeutic agents. This review examines the potential role of EVs in the different aspects of the
tumor microenvironment in OC, as well as their application in diagnosis, delivery of therapeutic
agents, and disease monitoring.
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1. Introduction

Ovarian cancer is one of the most common gynecological cancers with a fatal outcome
when detected at an advanced stage, and this is partly due to the unambiguous nature
of the clinical symptoms. Globally, more than 295,000 women are diagnosed with this
cancer and 184,000 succumb to this disease every year [1]. The five-year survival rate
of high-grade OCs is 30%, with most deaths occurring within two years of diagnosis.
According to the Federation of Gynecology (FIGO) staging, stages IIIc and IV are the
most commonly diagnosed stages (75%) in OCs [2]. OCs can be classified into more than
10 distinct histological subtypes, and malignant epithelial ovarian carcinomas (EOCs)
comprise about 90% of the cases; therefore, this review focuses on EOCs. In 2014, the
World Health Organization (WHO) classified EOCs into five main subtypes: (a) High-grade
Serous Carcinoma (HGSOC); (b) Low-grade Serous Carcinoma (LGSOC); (c) Endometroid
Carcinoma (EC); (d) Clear Cell Carcinoma (CCC); and (e) Mucinous Carcinoma (MC) [3].
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Molecular characteristics associated with OC histologies typically range from mutations in
TP53 to KRAS. Briefly, HGSOC is characterized by mutations in TP53, LGSOC in KRAS
and BRAF [4], CCC in ARID1α, PIK3CA mutations and amplifications, EC in ARID1α, β
catenin and PIK3CA mutations, and PTEN loss of homozygosity [5–10].

Morphological and molecular profiles categorize epithelial ovarian cancers into two
main types [11]. Type I tumors are characterized by genetically stable mutations in genes,
such as PTEN, BRAF, KRAS, CTNNB1 and PIK3CA. Low-grade tumors, such as low-
grade serous, low-grade endometrioid, clear cell and mucinous carcinomas, are Type
I tumors. Type II tumors are rapidly growing, highly aggressive neoplasms that lack
well-defined precursor lesions. These include high-grade serous carcinoma, malignant
mixed mesodermal tumors (carcinosarcomas), and undifferentiated carcinomas. Type II
tumors are characterized by mutations of TP53 and CCNE1, and a high level of genetic
instability. The cellular origin of HGSOCs remains to be unequivocally resolved; both the
ovarian surface epithelium and fallopian tube epithelium have been reported to give rise
to HGSOC [12–15].

Pelvic ultrasonography and serum CA125 concentrations are used to diagnose OCs,
and a risk malignancy index is used to assess the risk of malignancy in the clinic. The
risk malignancy index is a combination score of serum CA125 concentration, menopausal
status and ultrasound findings. The risk malignancy index is reported to have a sensitivity
of 97% [16,17]. Although there are a lack of effective screening strategies for the early
detection of OCs, women with germline mutations in BRCA1 or BRCA2 (encoding for
the DNA repair pathway proteins) are known to be highly predisposed to developing
OCs. Interventions are available to reduce the risk for these patients in the form of elective
surgeries to remove the ovaries and fallopian tubes. Nonetheless, overall current screening
modalities have not demonstrated definitive improvements in patient mortality [18,19].

Cytoreductive surgery and platinum-based chemotherapy, including cisplatin or
carboplatin and taxanes (paclitaxel or docetaxel) in combinatorial or neoadjuvant formats,
remain first line treatments. Despite recent advances, interventions become ineffective over
time, and 80–85% of patients develop chemoresistance [20].

The exchange of molecular signals is a crucial characteristic in cell invasion and
metastasis [21–23]. Extracellular vesicles have been reported to play a significant role in
cell-to-cell communication and have been implicated in tumor formation and metastatic
disease. For example, pharmacological suppression of EV uptake at metastatic sites [24],
as well as reducing the release of EV from tumor cells [23,25], reduces the formation of
pre-metastatic niches and metastases. A review of the available evidence implicating EVs
the development and progression of ovarian cancer is, therefore, both warranted and timely
to inform further research and development.

1.1. Biogenesis and Release

Extracellular vesicles can be subdivided into three main groups: sEVs (50–150 nm),
microvesicles (50–1000 nm), and apoptotic vesicles (>1000 nm) [26]. These vesicles differ
not only in size, but also in their site of origin and biogenesis. Small EVs have an endosomal
origin and their biogenesis begins with an inward budding of the plasma membrane [27].
This leads to the formation of an endosome that eventually becomes a multivesicular
body through inward invaginations of its membrane. The multivesicular endosomal body
contains intraluminal vesicles, and these multivesicular bodies can either fuse with the
plasma membrane and release sEVs into the intercellular space or fuse with lysosomes
leading to degradation [28,29]. Evidence suggests that the packaging of biomolecules
into sEVs depends on the physiological state of the cell [27]. Overall, the biogenesis of
sEVs is complex and context-dependent, including the cell type, stimuli, and other signals.
Nonetheless, sEVs comprise various intra-vesicular components, as discussed below.



Cells 2021, 10, 2272 3 of 20

1.2. Intra-Vesicle Compartmentalization

Small EVs are enriched in a variety of biomolecules, ranging from nucleic acids
(RNA, DNA, miRNA and non-coding RNA) to lipids and proteins [26]. Originating from
endosomes, sEVs are enriched in intra-vesicular proteins, such as tetraspanins, Tsg101 and
Alix. Furthermore, they may be enriched in membrane-fusion proteins, such as annexins,
Rab, and flotillins and major histocompatibility complex proteins (MHC I and II). The lipid
contents range from phosphatidylserine to cholesterol, and most of these are essential for
maintaining sEV morphology and biogenesis. Small RNAs and non-coding RNAs have
distinctive roles in recipient cells; in addition, they differ according to the cell of origin
and pathophysiological states [30,31]. The enormous heterogeneity of the sEV content
led to recent work by Jepessen and colleagues, who performed high-resolution gradient
fractionation more comprehensively to define exosomal contents using proteomics and
RNA profiling [32]. Distinctive proteomic and RNA profiles were identified between
vesicular and non-vesicular compartments. This study challenged the current dogma
where most diverse molecules are thought to be part of the tetraspanin-enriched sEVs.
International adoption of standardized workflows and analytical procedures is requisite to
unequivocally elucidate the role of exosomal signaling in human health and disease. With
respect to cancer, this review primarily focusses on the role of sEVs in ovarian cancer.

2. Roles of Extracellular Vesicles in the Microenvironment of Ovarian Cancers

Tumor growth and survival depends upon microenvironmental conditions that pro-
mote metabolic reprogramming, angiogenesis and cellular invasion [33,34]. The extracellu-
lar matrix (ECM) and stromal cell types participate in the development of an appropriate
microenvironmental niche. The ECM contains chemokines, cytokines, matrix metallopro-
teinases (MMPs) and cell types including cancer-associated fibroblasts, endothelial cells,
and immune cells [33]. In ovarian cancer, exosomal signaling between cells regulates angio-
genesis and the reprogramming of the microenvironment to promote tumorigenesis and
pre-metastatic niche formation [35,36]. Indeed, the sharing of oncogenic molecules between
the tumor cells and its neighbors can be achieved by the transfer of sEVs. Specifically, the
ovarian cancer microenvironment is modulated through sEVs during dissemination, and
interaction with stromal cells and the immune system (Figure 1). We discuss the different
components of the TME and how sEVs synchronize this interplay of the cells and the ECM
to promote tumor growth and survival.

2.1. Ovarian Cancer Dissemination

The process of ovarian cancer metastasis remains to be fully elucidated, although known
pathways for metastatic spread include the lymphatic system [37], hematogenous transport [38],
and via the peritoneal cavity [39]. The shedding of cancer cells from the primary site to the
peritoneal cavity is one of the first steps in the dissemination of OCs. The cancer cells may
attach to the surface of peritoneal organs, such as the omentum, which is the underlying
stroma of the peritoneal cavity, covered by a lining of mesothelial cells [40]. The formation of
a premetastatic niche is facilitated by sEVs in various cancers, including ovarian cancer [41].
The peritoneal cavity invasion through ascites is one of the initial steps in the progression of
OCs. High concentrations of sEVs are found in ascites from OC patients, and the presence of
ascites in OCs is associated with poor survival [42]. Graves et al. reported that sEVs derived
from the ascites of OC patients induce an invasive phenotype in epithelial OC cells. This was
demonstrated via the expression of extracellular-matrix-degrading proteinases, MMP-2 and
9, and urokinase-type plasminogen activators, within the sEVs (Figure 1A) [43]. It was also
demonstrated that sEVs derived from ascites of OCs have potential as diagnostics, because
they express tumor-intrinsic biomarkers, such as CD24 and EpCAM (Figure 1A) [44]. RNA
sequencing of ascites-derived sEVs revealed miR-6780b-5p to be facilitating the epithelial to
mesenchymal transition of OC cells, in vitro and in vivo (Figure 1A) [45]. Exosomal promotion
of peritoneal dissemination in the microenvironment has also been observed by Nakamura
and colleagues. When OC-derived sEVs were fluorescently tagged and tracked upon co-
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culturing with peritoneal mesothelial cells, they transferred the cell surface glycoprotein, CD44,
and induced a mesenchymal morphology in these cells. They also demonstrated that those
cells acquired an invasive phenotype [46]. Similarly, exosome-derived miR-99a-5p has been
shown to promote peritoneal mesothelial cell invasion by increasing fibronectin expression
(Figure 1A) [47]. Furthermore, matrix metalloproteinase-1 (MMP-1) mRNA carrying EVs are
enriched in ascites from OC patients. MMP1-induced apoptotic cell death and destruction
of the peritoneal mesothelium barrier is now a known mechanism of EV-induced peritoneal
dissemination (Figure 1A) [48].

In ovarian cancer, the shedding of cancer cells and their dissemination through the
peritoneal cavity is highly impacted by sEVs, and evidence suggests that they play a central
role in the first step of OC dissemination. These findings suggest that the inhibition of
exosome release earlier in the cancer progression stage reduces metastatic burden. Perhaps
restraining the release of sEVs from the shedding cancer cells can inhibit the crosstalk and
transfer of information, leading to a reduction in tumor cancer spread. Another aspect of
the ovarian cancer microenvironment is the crosstalk occurring between different stromal
cells, which is discussed in detail below.

2.2. Stromal Cell Intercommunication

The tumor microenvironment is conditioned by various stromal cells, including cancer-
associated fibroblasts (CAFs), endothelial cells, adipocytes, and inflammatory cells. Small EVs
released from CAFs contain higher amounts of TGFβ1, an epithelial-to mesenchymal transition
(EMT) inducer, compared to normal fibroblasts. When ovarian cancer cells were exposed to
these sEVs, EMT was induced (Figure 1B) [49]. Furthermore, the reprogramming of normal fi-
broblasts, the most abundant cell type in the stroma to CAFs, is a well-known phenomenon [50].
When normal fibroblasts are treated with ovarian-cancer-cell-derived sEVs, they display a more
CAF-like phenotype [51]. Recently, Lee et al. compared ovarian cancer cell sEVs that were
constitutively released or induced by EDTA chelation. They performed functional character-
ization of the effect of these sEVs on CAFs. Investigation of biophysical properties revealed
that cellular adhesion was markedly increased in CAFs treated with chelation-induced sEVs, as
well as increased cell spreading. The molecular profile of sEV miRNAs was vastly different be-
tween constitutively released and chelation-induced sEVs [52]. This study highlights that sEVs
released under different conditions impact the phenotype of CAFs in the microenvironment.
CAFs have been shown to impart chemotherapy resistance in ovarian cancer. This interaction is
mediated by sEVs released from CAFs carrying miR-21 which, when transferred into cancer
cells, caused resistance to paclitaxel through reducing the expression of the apoptosis regulatory
protein APAF1 (Figure 1B) [53]. These studies highlight how interchange of exosome cargo
between CAFs, and the neighboring cells impacts ovarian cancer progression and response to
therapy. One of the important aspects of the ovarian cancer microenvironment is the presence
of various immune cells and their interaction with the tumor cells. Small EVs have been shown
to transfer information from tumor cells to help them evade the immune system.

2.3. Immune System Evasion

Release of sEVs from immune cells (e.g., by B-lymphocytes [54] and dendritic cells [55])
is well documented. Evasion from immune surveillance is a principal mechanism by
which tumors develop within microenvironments. SEVs function as carriers of various
immunomodulatory molecules for pro-tumorigenic activities. Exosomal cargo, such as
miRNA 222-3p derived from OCs, has been demonstrated to induce the polarization of M1
macrophages to the more pro-tumorigenic M2 phenotype, which is associated with induc-
ing the enhanced proliferation and invasion of cancer cells (Figure 1C) [56]. Moreover, the
STAT3 pathway was found to be highly upregulated in the TAMs [56], and was associated
with the immunosuppressive activity of these cells [57]. SEVs derived from ascites of OC
patients induce T cell suppression in vitro, via the Janus kinase signaling pathway, and they
also express FasL (Figure 1D) [58]. T cell apoptosis and cancer metastasis was promoted
by FasL expressing OC-derived sEVs through the upregulation of lysophosphatidic acid,
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a known T cell inhibitor (Figure 1D) [59]. Ascites-derived sEVs enhance the release of
interleukin-6 (IL-6) from monocytic precursor cells, activating NF-κB and STAT3 signaling
and permitting a pronounced immune evasive microenvironment (Figure 1D) [60].

The suppression of T cells is also mediated by sEVs carrying arginase-1 (ARG-1) (Figure 1D).
These sEVs are highly abundant in the ascites and plasma of OC patients. Moreover, these
sEVs travel through the draining lymph nodes and are taken up by dendritic cells to inhibit
antigen-specific T cell proliferation [61]. Ascites-derived sEVs are internalized by natural killer
(NK) cells and induce immunosuppression [62]. Furthermore, OC- and ascites-derived sEVs
impair NK2D-mediated cytotoxicity in NK cells (Figure 1D) [63]. Phosphatidylserine present
on the outer surface of sEVs induces T cell arrest, and hence creates an immunosuppressive
environment (Figure 1D) [64]. Furthermore, both dendritic cell and peripheral blood mononu-
clear cell apoptosis have been shown to be induced by ascites-derived sEVs carrying FasL and
tumor necrosis factor-related apoptosis-inducing ligands (TRAIL) (Figure 1D) [65]. Shenoy et al.
reported that tumor-associated sEVs suppress T cell function through various mechanisms.
This was demonstrated during T cell receptor-dependent activation in a few different ways,
including the translocation of NF-κB and NFAT into the nucleus, the upregulation of CD69
and CD107a, enhancing cancer cell proliferation, and producing cytokines that cause T cell
suppression (Figure 1D). Moreover, stimulation and activation of CD8+ T cells by cognate viral
peptides was suppressed by the sEVs. It was also reported that this change was simultaneous
with binding and internalization of the sEVs [66]. Overall, various reports in the literature indi-
cate a multifarious role of sEVs in the induction of an immunosuppressive microenvironment
in OCs. This also suggests that our increasing knowledge of these mechanisms may aid in the
design therapies to overcome this immunosuppression. Within the context of the ovarian cancer
microenvironment and the role of sEVs in imparting a tumor-conducive environment, many
model systems are being employed.
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3. Studies of Extracellular Vesicles in Ovarian Cancer Using Various Model Systems

Various physiologically relevant model systems are used to study the role of EVs in
ovarian cancer. These include 2D monolayers, animal models, and 3D models. Studies
indicate that the biogenesis, packaging, and release of EVs is highly dependent and sensi-
tive to the cellular microenvironment and on the in vitro and in vivo modelling systems
utilized [67,68]. Currently, the isolation of EVs from cell condition media (CCM) predomi-
nantly relies on the uses of conventional 2D-cultured cells obtained from the tissue culture
plastics [35,69,70]. Cells cultured in 2D monolayers, however, exhibit apical–basal polarity
and characteristic gene expression and miRNA splicing [71]. It is highly plausible that the
concentrations and/or contents of EVs released from cell grown in 2D cultures differ from
those in 3D culture systems.

3.1. Two-Dimensional (2D) Models in Ovarian Cancer

Over the past few decades, cancer research has relied on two-dimensional cell culture
to unravel the complexity of tumors. Two-dimensional monolayers are quick and cost-
effective and have been invaluable in elucidating numerous mechanisms involved in
tumorigenesis and used in in vitro drug discovery. The environmental conditions and
nutrient supply of 2D cultures can be easily regulated; there is extensive literature, which
enables comparisons of outcome measures. Furthermore, it is believed that immortalized
cancer cell lines may consistently display homogenous phenotypes over multiple passages,
which could be a golden standard in preclinical studies [72].

To date, studies using 2D cell culture models have identified factors involved in
ovarian cancer development, metastasis, and chemotherapy resistance. Of note, Metastasis-
Associated Lung Adenocarcinoma Transcript 1 (MALAT1) lnRNA has been identified as
an exosomal lnRNA that was found to be released from ovarian cancer cells and imparted
proangiogenic properties. In addition, elevated serum concentrations of MALAT1 were
associated with metastatic disease and poor overall survival [73]. Similarly, utilizing
in vitro and in vivo models, Alharbi and colleagues demonstrated that sEVs derived from
highly invasive cell line (SKOV3) enhanced metastasis in vivo compared to a low-invasive
cell line (OVCAR-3) [35]. Evidence suggests that sEVs released from certain ovarian
cancer cells can induce EMT in other cell types. For instance, HEK293 cells were found to
take up sEVs released from two different ovarian cancer cell lines, OV420 and IGROV1.
Small EVs from IGROV1, however, were found to induce EMT pertaining to the exclusive
elevated expression of the RNA-binding protein LIN28a [74]. Overall, 2D models have
incrementally increased our knowledge about ovarian cancer. The readily available assays
such as proliferation, migration and invasion can be easily performed in 2D monolayers,
and some of these can be quite cost-effective to run [75].

Although of utility in elucidating mechanisms involved in the development of ovarian
cancer and therapeutics, 2D models have shortcomings. In 2013, a genomic comparison
between cell lines and primary samples highlighted the importance of selecting cell line
models for studying ovarian cancer because many cell lines may not completely recapitulate
the primary disease subtype [76]. A key feature of metastatic cells is the capacity to respond
to stimuli generated by neighboring cells and ECM components [77]. Two-dimensional
monolayer systems (Figure 2), however, display limited capacity to mimic ECM interactions
and matrix degradations [77]. They also fail to mimic the physiological gradients of
nutrients, diffusion of gases, and waste products. Cells cultured in 2D monolayers do not
possess the same architecture as in vivo; therefore, it is difficult to predict the therapeutic
response based on 2D experiments. Although multiple attempts have been made to mimic
the physiological microenvironment in 2D model systems, wherein the plastic surfaces
of the tissue culture flasks are coated with the ECM components and cells are allowed to
grow in serum-free conditions [78], these efforts have never been completely successful in
mimicking the pathophysiological conditions of complex 3D microenvironments [78].
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3.2. In Vivo Model System in Ovarian Cancer

With regard to recapitulating the pathophysiology of ovarian cancers, mouse models
have been the most conventional in vivo models employed to study ovarian cancer, due to
their similarity to the human genome. Designing a physiologically relevant mouse model
depends on the following factors: (1) the source of induced tumor cells; (2) the location
of transplanted tumor cells; and (3) immune status of the mouse [79]. Hence, multiple
mouse models have been designed in recent years—orthotopic models, patient-derived
xenograft (PDX) models, humanized mouse models, genetically engineered mouse models
and syngeneic models. To date, however, the only model closely emulating HGSOC is PDX.
Due to its multiple benefits as an in vivo model, the PDX cell line has been a promising
avenue in anticancer treatment and drug discovery [80–83].
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Utilizing genetically engineered mouse models, Iyer and colleagues demonstrated
how these can be used to advance the study of ovarian cancer immunotherapy responses,
because the tumors formed in these mice closely recapitulate human disease and they also
identified new mechanisms of immune-checkpoint inhibitor resistance [83]. Similarly, when
the capability of a humanized mouse model of ovarian cancer to form tumors was tested
using dissociated ovarian cancer biopsies injected into NSG mice, widespread metastasis
was evident along with micrometastases [84]. Studies involving the role of tumor EVs
in vivo can be categorized into two different types. The first category of the experiments
involves the injection of genetically modified tumor cells tuned for EV secretion into animal
models. It can be used to study EV secretion from the tumor cells and track the tumor-
forming and metastatic capacity of these cells [23,25,85]. With respect to ovarian cancer,
Dorayappan et al. demonstrated this elegantly by injecting ovarian cancer cells co-cultured
with hypoxia-associated exosomes (HeX) into immunocompromised mice. Compared
to normoxia-associated exosome-exposed cells, HeX induction significantly increased
tumor metastatic burden. Furthermore, they observed increased serum concentrations of
exosomes along with protein expressions of pSTAT3 and MMP2/9. They also exposed
fallopian tube cells to HeX and injected them into the ovarian bursa and found that the
fallopian tubes showed hyperplasia [86]. This study is a great example of how using
in vivo models of ovarian cancer, the role of sEVs was elucidated in tumor growth and
metastasis. One of the drawbacks of this approach is that the genetic modifications affecting
the secretion of EVs can also affect the development and progression of cancer [23,25,87,88];
the second approach is the subsequent injection of EVs isolated from tumor cells directly
into animal models. In these sets of experiments, the EVs isolated from tumor cells can
be injected intraperitoneally or directly into the peripheral circulation, and subsequently
taken up by stromal cells locally or at a distant site [35,89]. Subsequent events, therefore,
can lead to local alterations in the TME or the formation of pre-metastatic niches at distant
sites [90]. Studies further suggested that these EVs can alter the immune response or the
phenotype of stromal cells [91,92]. In ovarian cancer, when we injected sEVs derived from a
highly invasive cell line compared to low-invasive capacity cell line, the highly invasive cell
line induced extensive metastatic niches. Proteomics analysis on these metastatic tumors
revealed these changes to be associated with the Wnt canonical pathway [35]. These studies
demonstrate how in vivo models assist in illuminating the role of sEVs in ovarian cancer.

Even though, in contrast to cell cultures, experiments conducted in vivo are more
physiologically relevant and better mimic tissue complexity, there are some limitations.
For example, animal models used in the in vivo studies are usually immunocompromised,
and thus lack a critical component of the tumor microenvironment—the immune system,
which plays a major role in anti-tumor and drug response modelling. Additionally, it is
not yet clear that murine TME precisely emulates the human system. Such differences
may compromise pre-clinical studies involving novel therapeutics. Furthermore, these
concepts are generally applicable for all cancers, including ovarian cancer. There are
high failure rates in human clinical trials even after obtaining promising results from
in vivo mice experiments. To date, only 5% of anticancer therapeutics evaluated in mice
models have been clinically licensed for human use, thus pointing to the necessity of an
improved modelling system [93,94]. One issue of utmost important in ovarian cancer is the
various histological subtypes which are molecularly distinct from each other. Therefore,
this calls for a more personalized approach, which may be achievable through a three-
dimensional model.

3.3. Three-Dimensional (3D) Models in Ovarian Cancer

Developing a three dimensional (3D) organotypic model that better mimics the tissue
complexity and circumvents the convolutions involved in in vivo experiments may have
significant utility in resolving the limitations of current in vivo and in vitro models [95]. An
ideal 3D cell culture model should better stimulate the pathological and pathophysiological
microenvironments, wherein the cells cultured should proliferate and differentiate. The
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model should be favorable for cell–cell and cell–extracellular matrix (ECM) interactions,
distributed oxygen tension, sufficient nutrient, metabolic waste gradient, and tissue-specific
stiffness. The 3D culture technique can broadly be classified into different types: (a) non-
scaffold-based (anchorage-independent); (b) scaffold-based (anchorage-dependent); and
(c) hybrid 3D cultures [96]. As a comparison, we have summarized the various advantages
and disadvantages of in vitro, in vivo and 3D models in ovarian cancer research (Figure 2).

To date, multiple studies have focused on unravelling the complexity of the TME using
3D culture models to closely recapitulate the in vivo environment and conditions amenable
for changes in gases and nutrient gradient, and cell-cell and cell-ECM interactions [97–101].

The application of 3D culture models for ovarian cancer research is relatively new;
therefore, it is germane to review recent seminal contributions, such as studies by Levanon
et al. and Lawrenson et al., which have contributed to unravelling mechanisms involved
in the carcinogenesis of ovarian tumors from the fallopian tube. In their ex vivo model,
Levanon et al. observed a high fidelity of the culture in recapitulating the in vivo cellular
environment. The model was also used to analyze the role of fallopian tube secretory
epithelial cells (FTSEC) in DNA repair when subjected to genotoxic stress [102]. Due to
the small-scale nature and short-term viability of ex vivo culture, in vitro models were
preferred [102].

In 2013, Lawrenson et al. employed an in vitro spheroid-based culture model de-
veloped from primary patient-derived FTSECs, to compare the variation in more than
1000 genes with that observed using monolayer models. Interestingly, they found that
the genomic profiles for the 3D model were identical to normal FTSECs in vivo and more
consistent compared to 2D monolayers, eventually indicating better mimicry of FTSECs
in vivo [103,104]. Other studies [104–108] have focused on the role of the extracellular
matrix in HGSOC metastasis. Barbolina et al. developed a 3D model using DOV13 ovarian
cancer cell lines cultured on a 3D collagen Type I matrix. This study indicated the majority
of fibroblasts and ECM in the progression and metastasis of ovarian cancer [105,106]. An-
other study, by Kenny et al. (2007), used a 3D organotypic culture model to elucidate the
role of omental fibroblasts in the adhesion, invasion and proliferation of primary ovarian
cancer cells during metastasis to the mesothelium [107]. An in vitro synthetic hydrogel-
based model was used for embedding ovarian cancer cells by Loessner et al., who reported
that cell-integrin adhesion and proteolytic remodeling regulates the proliferation of ovarian
cancer cells. When compared to 2D monolayer cultures, however, Loessner observed
higher survival rates in 3D spheroids when treated with paclitaxel [108,109].

With respect to EVs obtained from 3D cultures, data obtained from other cancers
indicate that these EVs may be more representative of patient-derived EVs [110]. Organoids
derived from a variety of cells release heterogenous EVs that accurately resemble the human
physiology [111]. In cervical cancer, a 96% similarity between the 3D culture-derived EV
miRNAs and patient-derived EV miRNAs was observed [67]. Furthermore, this study
also identified several microRNAs common to both 3D culture-derived EVs and EVs from
patient plasma [67].

Overall, 3D culture models were able to not only closely mimic the tissue complexity
and TME in ovarian cancer, but also were representative models for the development, pro-
gression, invasion, and metastasis of the disease. Three-dimensional models, nevertheless,
are not without limitations. The models lack method standardization and reproducibility
and have a lower throughput when compared to 2D models. Additional studies are re-
quired, which may compare all three models simultaneously to understand how each of
these may help us decipher the problems associated with ovarian cancer. Furthermore, a
comparative study on the sEVs secreted from each of these models and the analysis of the
content of the sEVs may aid in understanding how close the sEV contents are to each other.
This will help in selecting the most relevant model for understanding and developing
therapeutics for ovarian cancer.
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4. Clinical Applications and Outlook

Global incidence and mortality from ovarian cancer is increasing each year, and
there is a desperate need for advanced technologies to diagnose it earlier. Thus, sEVs
may have various clinical applications from biomarkers of earlier detection to therapeutic
interventions and the real-time monitoring of ovarian cancer (Figure 3). A list of biomarkers
and their sources with cited references for ovarian cancer is presented in Table 1. The
use of exosome-associated proteins, lipids and RNAs as biomarkers for ovarian cancer
have several advantages, including their resistance to degradation, cell of origin specificity,
potential for enrichment, and the ease of simultaneous isolation of different types of
biomarkers. sEVs released from cancer cells not only contain miRNA biomarkers, but
also circular [112–114] and long non-coding [115–117] RNA. Although it remains to be
unequivocally established that the exosomal RNA copy number is sufficient to alter target
cell phenotypes [118], exosomal RNA complements do appear fit-for-purpose as clinically
useful biomarkers. Here, we specifically discuss the applications of sEVs in earlier detection
as well as in the therapeutics of ovarian cancer.

4.1. Extracellular Vesicle Biomarkers for the Earlier Detection of Ovarian Cancer

The goal of population-based screening and earlier detection of OC is to identify
cancerous cells while they are still confined within the ovary (i.e., Stage 1) or before
migration from their primary site of origin, thus allowing intervention that improves
patient outcomes. Small EVs carrying specific signatures of cancerous growth can be
of clinical benefit as they circulate in the system and can be easily detected through
a non-invasive blood test. Detecting early biomarkers in sEVs may help in deciding
if oophorectomy or salpingectomy may be of clinical benefit. Consequently, bilateral
salpingo-oophorectomy has been proposed as a risk-reduction strategy in high-risk patients
with BRCA mutations [119]. The diagnosis of early stage ovarian cancer may be further
confounded by the presence of slow (Type I) and rapid (Type II) growing tumors and
the possibility that conventional biomarker discovery approaches which target Stage 1
ovarian cancer may be biased towards the detection of Type I cancers and miss the more
common and aggressive Type II cancers [120]. A more productive and clinically relevant
strategy may be to target stage-independent molecular biomarkers of low-volume Type II
carcinomas. Such biomarkers, either individually or incorporated into multivariate index
assays (MIAs), may aid in the earlier identification of OCs with the highest prevalence and
mortality rate, and afford a realistic opportunity to improve clinical outcomes.

Previous approaches to develop population-based screening and earlier detection
tests for OC have failed to deliver a specificity that is clinically acceptable [19,121–127].
A specificity of 99.6% or more is widely accepted as requisite for an OC population-
based screening test. Such a test would result in no more than nine women undergoing
unnecessary procedures consequent to false-positive results. It is axiomatic that in at-risk
subpopulations, where the prevalence of ovarian cancer is greater, a test of lower specificity
may be of utility.

To date, efforts to develop and validate tests to aid in the assessment of ovarian cancer
and adnexal masses have almost exclusively focused on soluble biomarkers, individually
(e.g., CA125, HE4, CEA, VCAM), in MIAs (e.g., FDA-approved tests, OVA1, Overa, Risk of
Malignancy Algorithm), or in combination with imaging modalities (e.g., Risk of Malig-
nancy Index). More recently, the potential for EV biomarkers to deliver more informative
ovarian cancer tests has been recognized [29,35,69,128–136]. With regard to diagnostics,
the miRNA profile of circulating EpCAM-positive sEVs is reflective of that observed in
ovarian tumor biopsies (Table 1) [137]. In this case, miRNA has been packaged into sEVs
that are released by ovarian cancer cells into extracellular fluids and is protected from
degradation by ribonucleases. This exosomal eight miRNA (miR-141, miR-21, miR-200a,
miR-200b, miR-200c, miR-214, miR-205 and miR-203) profile has also been reported to be
reflective of the stage of ovarian cancer (Figure 3A) [137]. Similarly, ovarian-cancer-derived
sEVs express CD24 and EpCAM, which are tumor-exclusive markers and therefore can
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differentiate between cancerous and non-cancerous lesions (Figure 3A) [44]. In addition,
miR-200a, miR-200b, miR-200c and miR-373 are elevated in the ovarian cancer patients
compared to healthy controls (Figure 3A) [138].

Table 1. Lists of EV biomarkers and their sources.

Biomarker Type Biomarker Sample Source(s) References

Protein EpCAM
Ovarian cancer patients with

benign and malignant ovarian
carcinomas

[137]

EpCAM Ovarian cancer cell lines—CaOV3,
OV90, OVCA429, OVCAR3 [44]

CD24 Ovarian cancer cell lines—CaOV3,
OV90, OVCAR3, UCI101 [44]

miRNA
miR-141, miR-21, miR-200a,

miR-200b, miR-200c, miR-214,
miR-205 and miR-203

Serum [137]

miR-23a and miR-92a Patients with EOC and ovarian
cysteadenoma [139]

miR-200b Plasma [139]

miR-200c, miR-93 and miR-145 Serum (HGSOC patients) [140]

miR-34a Serum [110]

Lipids
ChE, ZyE, Collagen Type V Alpha

2 chain (COL5A2), and
lipoprotein lipase (LPL)

SKOV3 cell line [132]

LBP (lipopolysaccharide-binding
protein), GSN (gelsolin), FGA

(fibrinogen alpha chain), and FGG
(fibrinogen gamma chain)

Plasma [12]

Long non-coding RNA MALAT1 SKOV3, HO8910, in vivo and
Serum [73]

Interestingly, Pan and colleagues reported higher concentrations of sEVs miR-23a and
miR-92a in patients with epithelial ovarian cancer when compared to patients with ovarian
cystadenoma (Figure 3A) [139]. Furthermore, sEV miR-200b expression was five times
greater in patients with epithelial ovarian cancer, and associated with increased ovarian
cancer cell proliferation, as well as poorer overall survival. Higher sEV miR-200c expression
was also noted in the serum of patients with HGSOC and non-HGSOC, compared to the
non-cancer group [140]. In addition, exosomal miR-93 and miR-145 expression was also
increased (Figure 3A) [140]. In contrast, miR-34a expression was increased in patients with
early stage disease compared to patients with advanced stage disease, patients with lymph
node metastases, and recurrence (Figure 3A) [141].

In addition to miRNAs, proteins and lipids associated with sEVs are informative of
the metabolic and metastatic status of the cell of origin. A lipidomic and proteomic analysis
comparing sEVs obtained from SKOV-3 cells showed greater expression of ChE and ZyE
lipid species compared to sEVs from an ovarian surface cell line (HOSEPiC), as well as
abundant expression of Collagen Type V Alpha 2 chain (COL5A2), and lipoprotein lipase
(LPL) (Figure 3A) [132]. Differential sorting of both protein and lipids into sEVs has been
observed in ovarian cancer cell lines (SKOV-3,) when compared to ovarian epithelial cell of
non-malignant origin (HOSEPiC) (Figure 3A) [132]. Zhang and colleagues identified LBP
(lipopolysaccharide-binding protein), GSN (gelsolin), FGA (fibrinogen alpha chain), and
FGG (fibrinogen gamma chain) as potential diagnostic exosomal proteins for ovarian cancer
(Figure 3A) [134], with FGA found to be the most promising diagnostic marker. These
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studies indicate that miRNA signatures from sEVs could be potential diagnostic biomarkers
for the early detection of ovarian cancer. Apart from earlier detection, circulating sEVs have
great potential as therapeutic delivery vehicles as well as treatment response monitoring,
because the signatures carried in these sEVs may be different in patients who respond
compared to patients who do not respond to therapy.

4.2. Small EVs as Therapeutic Delivery Vehicles and Therapy Response Monitors for
Ovarian Cancer

EVs have the potential to be clinically useful bio-carriers for gene and drug deliv-
ery [128,142], which can be leveraged for treating ovarian cancer; however, several key
factors have impeded their implementation, including batch-to batch variation due to the
inadequate standardization of protocols, a lack of large-scale production capabilities, and
time-consuming isolation protocols [143,144]. Nonetheless, due to their relative stabil-
ity and biocompatibility, research and development into their use as delivery vehicles is
expanding [145,146]. Recently, for example, mesenchymal-stem-cell-derived sEVs have
been efficiently produced in scalable quantity [147]. To date, few studies have investigated
the used of EVs to target ovarian cancer [148,149]. Triptolide-loaded sEVs were deliv-
ered in vitro and in vivo to test their efficacy against ovarian cancer. Although delivery
and bioavailability were successful, the drug itself had toxic effects on the kidneys and
the liver [148]. Encapsulation of doxorubicin in sEVs and tumor targeting using iRGD
peptides on sEVs surface led to reduced tumor burden compared to free doxorubicin
(Figure 3B) [150]. Exosomal doxorubicin was also found to increase its therapeutic index
in HGSOC mouse models (Figure 3B) [149].

Interestingly, a recent study proposed the use of immune-derived sEVs mimetics
(IDEM), another alternative to upscale production and increasing bioavailability. IDEMs
have a similar profile to sEVs, and when engineered to deliver doxorubicin utilizing 2D
and 3D models of ovarian cancer, they displayed higher yields and increased drug uptake
and cytotoxicity compared to free doxorubicin (Figure 3B) [151]. In xenografted mice,
CRISPR/Cas9 plasmid-loaded sEVs efficiently suppressed the expression of poly (ADP-
ribose) polymerase-1 (PARP-1), inducing apoptosis in ovarian cancer and making the cells
more sensitive to cisplatin (Figure 3B) [152].

Small EVs serving as potential biomarkers for predicting response to therapy have
been discussed in length by Zhou and colleagues. With respect to ovarian cancer, circu-
lating exosome concentrations may be indicative of chemotherapy responsiveness [153].
The authors reported that patients who responded to chemotherapy had increased or
decreased levels of exosomal proteins after chemotherapy compared to non-responders.
Exosomal cargo could potentially be used to predict chemotherapy resistance. For example,
Alharbi et al. observed that miR-21-3p, miR-21-5p and miR-891-5p imparted chemotherapy
resistance in ovarian cancer (Figure 3C) [69]. Development of better prognostic biomarkers
for ovarian cancer will lead to better and personalized treatment plans. This will not only
reduce the overtreatment of patients who might not respond to a particular therapy, but
also provide better care for patient who are likely to respond to a treatment. This will
ultimately have better outcomes for patients and reduce the economic and health burden
on the system.
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5. Conclusions and Perspectives

Market analysis reports predict that EV research and applications are projected to be a
high growth area. Grand view research, Inc. (San Francisco, CA 94105, USA) published a
market report in 2018, which estimated that exosome research and its clinical use will be
worth USD 2.28 billion by 2030, representing an annual growth rate of 18.8% [154]. Taking
this into account, and the recent discoveries that exosomal-signaling pathways regulate key
aspects of ovarian cancer metastasis and disease progression, EVs are an attractive avenue
to explore for ovarian cancer detection, therapeutics, and prognosis. Early detection of
ovarian cancer remains a significant analytical challenge and an important clinical need.
The development of tests for early detection would allow the impact of earlier detection
on disease outcome to be assessed [155]. If proven to be effective in increasing 5-year
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survival rates, the implementation of community-based screening programs, similar to
those currently available for breast cancer, would dramatically decrease mortality and
morbidity. A more complete understanding of the mechanisms regulating the packaging
of proteins, lipids, and nucleic acids into sEVs by both malignant and normal ovarian
cells is a requisite to realizing these opportunities. Furthermore, elucidating the effects of
ovarian-cancer-cell-derived sEVs on neighboring cells and their extracellular milieu will
provide new insights into the development of therapeutic modalities, including the use
of inhibitors of exosome release or repressors of exosomal RNA activity. To fully realize
the potential and clinical utility of exosomal biomarkers in the earlier identification of
ovarian cancer in women, and to monitor disease progression, robust and standardized
translation pathways must be implemented within research laboratories, including the
conduct of biomarker discovery and the development of in vitro diagnostics, in compliance
with appropriate regulatory guidelines (e.g., ISO13485 and 21CFR part 809). The lack of
compliance with such standards significantly contributes to the high rate of translational
failure for ovarian cancer diagnostic and prognostic modalities. The specialized and labor-
intensive methodologies of EV isolation also present a technical hurdle in the application
of EVs in a clinical diagnostic laboratory. Therefore, newer technologies that circumvent
the current practical limitations will be critical for implementation in the clinic, as will
standardized protocols for isolation and analysis. Nonetheless, the future holds a promising
avenue for EV applications in ovarian cancer diagnosis and monitoring.
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