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Emergent synchronous beating 
behavior in spontaneous beating 
cardiomyocyte clusters
Kazufumi Sakamoto1, Yoshitsune Hondo1, Naoki Takahashi1, Yuhei Tanaka1, Rikuto Sekine2, 
Kenji Shimoda1, Haruki Watanabe1 & Kenji Yasuda1,2*

We investigated the dominant rule determining synchronization of beating intervals of 
cardiomyocytes after the clustering of mouse primary and human embryonic-stem-cell (hES)-
derived cardiomyocytes. Cardiomyocyte clusters were formed in concave agarose cultivation 
chambers and their beating intervals were compared with those of dispersed isolated single cells. 
Distribution analysis revealed that the clusters’ synchronized interbeat intervals (IBIs) were longer 
than the majority of those of isolated single cells, which is against the conventional faster firing 
regulation or “overdrive suppression.” IBI distribution of the isolated individual cardiomyocytes 
acquired from the beating clusters also confirmed that the clusters’ IBI was longer than those of the 
majority of constituent cardiomyocytes. In the complementary experiment in which cell clusters 
were connected together and then separated again, two cardiomyocyte clusters having different IBIs 
were attached and synchronized to the longer IBIs than those of the two clusters’ original IBIs, and 
recovered to shorter IBIs after their separation. This is not only against overdrive suppression but also 
mathematical synchronization models, such as the Kuramoto model, in which synchronized beating 
becomes intermediate between the two clusters’ IBIs. These results suggest that emergent slower 
synchronous beating occurred in homogeneous cardiomyocyte clusters as a community effect of 
spontaneously beating cells.

Synchronization of beating interval is one of the essential dynamic characteristics of cardiomyocytes to provide 
the blood pumping function of the heart. Goshima explained this coordinated synchronous behavior as the faster 
firing regulation of heart beating1. This conducting regulatory mechanism can also suppress the spontaneous 
beating of cells such as Purkinje fibers and atrioventricular node (AVN) as subsidiaries to follow the conduct-
ing spontaneous contraction impulses from the upstream sinoatrial node (SA node) with its faster beating as 
the dominant pacemaker2,3. Hence, although Purkinje fibers have the ability to spontaneously fire at a lower 
beating rate when they are isolated, the contraction impulse from the upstream SA node having faster beating 
always stimulates Purkinje fibers and suppresses their ability to beat at their own speed. Finally, Purkinje fibers 
follow the faster beating rate of the upstream SA node. This faster firing regulation of heart beating is now called 
“overdrive suppression”4.

Overdrive suppression is explained electrophysiologically by the following simple and straightforward mecha-
nism with several regulatory factors5–8: An increase of intracellular sodium ions of a cardiomyocyte, which is 
caused by the depolarizing sodium ion currents of adjacent cardiomyocytes with faster spontaneous beating, 
stimulates the activity of the Na-K pump to expel more sodium from the cell in exchange for more potassium 
entering. This increased hyperpolarizing potassium current offsets the required depolarizing current, and hence 
membrane potential becomes more negative to prevent depolarization for the spontaneous beating. However, 
this interpretation alone cannot explain the mechanisms of human SA node dysfunction9 or phenomena in heart 
tissues such as subclinical atrial fibrillation10 and fatigue of the His–Purkinje system11. In this context, the fol-
lowing question arises: can overdrive suppression dominate and ensure that the synchronized beating interval 
of homogeneous cardiomyocyte clusters matches that of the fastest-beating constituent cell?

Mathematical models of synchronization phenomena such as the Kuramoto model12 or its extensions, describ-
ing synchronization phenomena caused by the interaction of oscillators, have played an essential role in explain-
ing biological phenomena such as cardiomyocyte synchronization13, neural networks14, and circadian rhythms15. 
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In these models, each oscillator is described only by its phase, and all oscillators are equally coupled. These sim-
plifying assumptions have helped to understand the synchronization of many-body nonlinear dynamic systems.

In our previous on-chip constructive cell network studies, the synchronization behavior of spontaneously 
beating single cardiomyocytes during stepwise cell-to-cell connection to form cell networks could not be 
explained only by a one-way upstream-to-downstream regulatory mechanism. In particular, the behavior of 
equal two-way network communication of cardiomyocytes in their small networks did not show the overdrive 
suppression phenomenon, but followed a transition from unstable cardiomyocytes to more stable ones, even 
though the beating of the more stable cardiomyocytes were slower than those of the unstable ones16,17. In addi-
tion, the tendency of entrainment of cardiomyocyte synchronization and synchronized beating intervals was 
shown to depend on the number of cardiomyocytes in the network18,19. These experimental results showing a 
regulatory mechanism that beating cardiomyocyts having larger IBI fluctuations tend to synchronize to the 
cardiomyocytes having smaller IBI fluctuations (the lower fluctuation regulation of synchronized heart beating) 
have been examined as in silico model simulations, which successfully explained the experimental results by 
employing the “fluctuation–dissipation theorem” in the phase-couple synchronization model20.

For cell-to-cell synchronization studies, a sufficient number of cells with a homogeneous phenotype are 
required to simplify interpretation of the experimental results. However, one of the problems of primary cell-
based research is quality control of the cells. Recent technological progress in the field of regenerative medicine 
has enabled us to provide cardiomyocytes of a single phenotype derived from pluripotent stem cells having the 
ability to beat just the same as in vivo cardiomyocytes and to substitute for cardiomyocytes that are absent for 
some reason such as aging21–23. Features including the action potential of cardiomyocytes derived from stem 
cells have also been widely studied to support this regenerative medicine approach24,25.

Cardiomyocyte clustering technologies have been developed by many groups to induce the efficient differ-
entiation of induced pluripotent stem cells (iPS cells)26, or for drug evaluation in an environment more closely 
resembling in vivo conditions27,28. For example, the production of cardiomyocytes from a small cluster of embry-
oid bodies using a fabricated micro-aggregation device was reported29.

In this study, we examined the origin of the synchronization behavior of cardiomyocytes in clustered form in 
order to understand the dominant rule determining beating synchronization, in terms of how the synchronized 
beating intervals are generated. We examined this from the perspective of overdrive suppression, by comparing 
the beating characteristics of clusters and isolated single cells experimentally via a constructive approach. The 
results indicated that the synchronized beating intervals of clusters did not match the interval of the constituent 
cardiomyocyte with the fastest beating, and hence overdrive suppression cannot explain the synchronization 
of clusters. We also compared the synchronization behavior of two cardiomyocyte clusters after their physical 
attachment and the further changes after their separation again. The results showed that the synchronized beating 
was slower than that of either of the two clusters, which could also not be explained by the faster firing regulation 
or well-known mathematical phase synchronization models like the Kuramoto model12. These results indicate 
the existence of a hidden rule of competitive synchronization behavior of cardiomyocyte clusters, not only by a 
one-way upstream-to-downstream regulatory mechanism but also in a manner dependent on the cell-network 
size and a geometry-dependent selection mechanism as an emergent community effect.

Results and discussion
Cluster formation in concave agarose microstructure well.  First, we examined the procedure of 
cardiomyocyte cluster formation, employing the concave agarose bottoms of cultivation wells (agarose-coated 
wells) containing mouse primary cardiomyocytes. Without agarose coating, the cells attached dispersedly to 
the bottom of the 35-mm collagen-coated dish and spontaneously started to beat (upper schematic drawing in 
Fig. 1a and lower micrograph in Fig. 1b). In contrast, the cardiomyocytes cultivated in the agarose-coated wells 
did not attach to the bottom (upper schematic drawing in Fig. 1c and lower micrographs in Fig. 1d). However, 
the cells remained isolated dispersedly, and no clusters were formed on the flat agarose substrates in the wells. 
Hence, the narrower agarose-coated wells having a concave curvature of agarose at the bottom were prepared for 
cluster formation (schematic drawings in Fig. 1e). First, 2.0µL/mm2 of sol state 2.5% (w/v) agarose solution was 
poured into each well (inner diameter 15.5 mm) of the 24-well plates. After agarose gelled with a concave shape 
at the bottom of each well, 1.0 mL of 5.0× 104 cells/mL primary cardiomyocytes were seeded and incubated 
with mild shaking of the cultivation buffer in the well. After 2 days of cultivation, the cells were rolled on the 
bottom of the concave curvature of the agarose layer and formed a large single cardiomyocyte cluster at the small 
flat area at the center of each well of the 24-well plate (Fig. 1f).

Next, we examined the cluster formation ability of human-stem-cell-derived cardiomyocytes (hES) in the 
same 24-well agarose-coated plates using the same method as described above. As shown in Fig. 2, after 2 days 
of cultivation, primary cells attached dispersedly in the collagen-coated 35-mm dish (Fig. 2a) and formed a 
large round cluster in the 24-well agarose-coated plate (Fig. 2b). Under the same conditions, hES cells were 
also attached dispersedly in the collagen-coated 35-mm dish (Fig. 2c), and a similar large round cluster of hES 
cardiomyocytes formed in the 24-well agarose-coated plate (Fig. 2d). The results indicate that the 24-well agarose-
coated plate can work well for the formation of stable large cardiomyocyte clusters.

Interbeat intervals of single cells and clusters for primary and hES cardiomyocytes.  To inves-
tigate the relationship between the interbeat intervals (IBIs) of single cardiomyocytes and those of their clusters, 
we prepared single dispersed cells in collagen-coated 35-mm dishes and their clusters in 24-well agarose-coated 
plates. For single-cell cultivation, 2.0 mL of 5.0× 104 cells/mL mouse primary and hES cardiomyocytes were 
cultivated dispersedly in the collagen-coated dishes. Moreover, 1.0 mL of the same mouse primary and hES 
cardiomyocytes at 5.0× 104 cells/mL were used for cluster formation in the concave agarose-coated wells. Then, 
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we measured six clusters and 73 single isolated cells for mouse primary cardiomyocytes, and 27 clusters and 125 
single isolated cells for hES cardiomyocytes.

As shown in Fig. 3a–d, the IBIs of clusters and isolated single cells were obtained from the displacements in 
their video images caused by their beating. To evaluate the relative fluctuation of IBIs, we utilized the coefficient 
of variability (CV) as described below:

where represents the ratio of the standard deviation σ(s) to the mean value µ(s) of IBIs.
Figure 3e shows the distribution of the mean IBIs and their coefficient of variability (CV) for mouse primary 

single cells (blue open circles) and clusters (red filled triangles). Figure 3f also shows a histogram of IBIs of mouse 
primary single cells (blue) and clusters (red). Blue and red arrows indicate the mean IBIs of all single cells and 
clusters, and error bars represent their standard deviations (SDs), 1.11± 1.17 s and 1.25± 0.168 s, respectively. 
As shown in these graphs, the mean IBI distribution of single isolated cells was widely dispersed from 0.12 to 
5.3 s, and 63% of dispersedly cultivated isolated single cells had shorter IBIs than the fastest-beating cluster.

For hES cells, Fig. 3g shows the distribution of the mean IBIs and the CV of IBIs in single cells (blue open 
circles) and clusters (red filled triangles), while Fig. 3h shows a histogram of the IBIs of single cells (blue) and 

(1)CV(%) =
σ

µ
× 100

Figure 1.   Formation of mouse primary cardiomyocyte clusters in agarose-coated wells. (a) Schematic 
drawing of the conventional dish cultivation of cardiomyocytes. The dispersed cells were cultured on the 
bottom of a 35-mm non-agarose-coated dish. After spread of the 2.0 mL of 5.0× 104 cells/mL isolated single 
cardiomyocytes, the cells attached on the bottom of the 35-mm cultivation dish dispersedly. The cells started 
to beat 2–3 days after cultivation started. (b) A micrograph of dispersed cardiomyocytes in a 35-mm non-
agarose-coated dish. (c) Schematic drawing of the cultivation of dispersed cells in a 35-mm agarose-coated 
dish. After spread of the 2.0 mL of 5.0× 104 cells/mL isolated single cardiomyocytes, the cells dispersed on the 
bottom of the agarose layer in the agarose-coated 35-mm cultivation dish. Even after 2–3 days of cultivation, 
the cells remained isolated with a round shape, and no clusters formed on the bottom. (d) A micrograph of 
cardiomyocytes in an agarose-coated 35-mm cultivation dish. (e) Schematic drawing of the cultivation of 
dispersed cells in a 15.5-mm agarose-coated cultivation well (in a 24-well cultivation plate). After spread of the 
1.0 mL of 5× 104 cells/mL isolated single cardiomyocytes, dispersed cells gathered and formed small clusters; 
finally, they gathered into a single large cluster in the 15.5-mm agarose-coated cultivation well. (f) A micrograph 
of a cardiomyocyte cluster in a 15.5-mm agarose-coated cultivation well.
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clusters (red). Blue and red arrows indicate the mean IBIs of whole single cells and clusters, and their error bars 
represent SDs, 1.57 ± 1.18 s and 1.57± 0.795 s, respectively. The IBIs of hES single cells ranged from 0.44 to 7.2 
s, while for clusters the range was 0.75 to 3.9 s; 12% of single isolated cells also had shorter IBIs than the fastest-
beating hES cluster.

These results indicated the possibility that the shortest IBIs of clusters were longer than the IBIs of the con-
stituent cells of the clusters. However, in this experiment, we did not compare the IBIs of constituent cells with 
those of the clusters directly. Hence, it remains a possibility that the clusters were formed from the slower-beating 
constituent cells, and the clusters’ IBIs were those of the fastest-beating constituent cells, even though 63% of 
isolated primary cells had shorter IBIs than the fastest-beating primary cluster.

We should also mention that the clusters’ fluctuation of IBI distribution was not smaller than the minimum 
fluctuation of single isolated cells. In our previous studies16,17, the CV of IBIs of cardiomyocytes decreased with 
increasing cell number. However, especially in primary clusters, the fluctuation of beating intervals was not 
reduced and was sometimes larger than that of the isolated single cardiomyocytes.

The recorded number of primary clusters was only six in this experiment. This does not actually mean that 
the number of clusters in the experiment on mouse primary cells was six, but most clusters ceased to beat dur-
ing cultivation and only six of them kept beating. In contrast, hES clusters continued to beat for a long period 
and could be recorded.

Interbeat intervals of isolated single cells acquired from hES clusters.  The above results indicate 
that clusters were formed from the faster-beating constituent cells, but the clusters’ rhythm of beating did not 
follow that of the fastest-beating constituent cells. However, one concern remained. The results for the single 
isolated cells did not match the results of the constituent cells of the clusters, even though the same samples were 
used for the isolated single-cell cultivation and the cluster formation. Hence, to confirm that the IBIs of constitu-
ent cells were shorter than those of clusters, we measured the IBIs of the isolated constituent cells after recording 
the IBIs of their clusters.

First, three hES cardiomyocyte clusters, formed from 1.0 mL of 5.0× 104 cells/mL in a 24-well agarose-coated 
plate (Fig. 4a–c), were cultivated for 3 days and their IBIs were recorded. Then, these clusters were trypsinized 
for isolation. Next, 1.0× 103 isolated single cells acquired from each cluster were re-cultivated dispersedly on a 
35-mm collagen coated-tissue culture dish for 3 days and the IBIs of 50 isolated single cells of each cluster were 
recorded.

Figure 4d–f shows the IBIs and the CV of IBIs in isolated constituent single cells (blue open circles) and 
their clusters (red filled triangles). Figure 4g–i also shows histograms of these three samples. The blue filled bars 
indicate the frequency of IBIs in 50 re-cultivated single cardiomyocytes; the blue arrows and their error bars 
indicate the corresponding mean value of 50 cells and their SDs, and were 1.42± 1.11 s (Fig. 4g), 1.38± 0.938 s 
(Fig. 4h), and 1.28± 0.652 s (Fig. 4i). The red arrows indicate the mean IBIs of each cluster, which were 1.62 s 
(Fig. 4g), 1.53 s (Fig. 4h), and 1.54 s (Fig. 4i).

These plots also show that the majority of isolated single constituent cardiomyocytes had shorter IBIs than 
their clusters. Statistical analysis indicated that the 95% confidence interval of the median IBI of the single 
constituent cardiomyocytes was 0.825–1.25 s in Fig. 4d. This means that at least 50% of the constituent cells had 
an IBI shorter than 1.25 s. As the mean IBI of the cluster was 1.62 s, more than 50% of the constituent cardio-
myocytes were expected to beat faster than the cluster. The IBI distributions of single cardiomyocytes in Fig. 4e,f 

Figure 2.   Micrographs of single cells and clusters of mouse primary and hES-derived cardiomyocytes. (a) 
Mouse primary cardiomyocytes (primary) in a 35-mm non-agarose-coated dish (single cell), (b) primary cells 
in a 24-well agarose-coated plate (cluster), (c) hES cardiomyocytes in a 35-mm non-agarose-coated dish (single 
cell), and (d) hES in a 24-well agarose-coated plate (cluster).
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also indicate that the 95% confidence intervals of the median IBI of the constituent single cardiomyocytes were 
1.00–1.28 s and 0.844–1.22 s, respectively. As the mean IBIs of their clusters were 1.53 s and 1.54 s, more than 
50% of constituent cells in these two clusters also had IBIs that were shorter than these clusters’ IBIs.

We also examined the influence of trypsinization on the IBIs of individual cardiomyocytes. We compared 
the IBIs of the dispersed single cardiomyocytes between before and after trypsinization. First, we measured the 
IBIs of single cardiomyocytes (n = 50 among 1.0× 103 cells ) 3 days after cultivation in a 35-mm dish; then, we 
added trypsin-EDTA to the dish and incubated it for 8 min at 37◦C . Next, we rinsed the treated cells, cultivated 
them again for 3 days in another 35-mm dish, and measured their IBIs (n = 50).

Figure 5a shows the distributions of the IBIs and the CV of IBIs in single hES cardiomyocytes before and after 
trypsinization. The blue open circles indicate the single cardiomyocytes before trypsinization, while the orange 
open circles indicate them after trypsinization. The distributions of the plots of the two samples showed similar 
tendencies, with no noticeable difference between them ( p = 0.31 , 95% confidence interval: 0.36 to 0.091), which 
indicates that the trypsinization did not influence the mean IBIs of single hES cardiomyocytes.

For statistical confirmation of this, we re-plotted these results. Figure 5b shows histograms of the IBI distribu-
tions of single cardiomyocytes before and after trypsinization. The blue filled bars indicate the frequency of IBIs 
of single cardiomyocytes before trypsinization; the blue arrow and error bar indicate the corresponding mean 
value and SD of those cells ( 1.26± 0.848 s). The orange filled bars indicate the frequency of IBIs of trypsinized 
single cardiomyocytes, and the orange arrow and error bar indicate the corresponding mean value and its SD 
( 1.30± 0.741 s).

We also statistically compared these isolated constituent cells with the single hES cardiomyocytes (plotted 
in Fig. 3g) using the Mann–Whitney U test. The results showed that the p value and 95% confidence interval of 
each cluster sample were p = 0.56 , 0.12 to 0.24 (Figs. 3g and 4d), p = 0.88 , 0.19 to 0.20 (Figs. 3g and 4e), and 
p = 0.69 , 0.14 to 0.27 (Figs. 3g and 4f), respectively. These results indicate that there was no significant difference 

Figure 3.   Analysis of interbeat interval (IBI) distribution of single and clustered mouse primary and hES 
cardiomyocytes. (a)–(d): Method of measuring interbeat interval (IBI) of single cardiomyocytes and clusters. 
Temporal change of luminance in the red square area for single cell (a) and cluster (c) caused by their beating 
was recorded, as shown in the time-course intensity profiles (b) and (d), respectively. IBIs of their beating 
were acquired from the time intervals between two neighboring peaks in the time-course intensity profiles. 
(e), (f): Distribution of IBIs of mouse primary cardiomyocytes. (e) The relationship between mean IBIs and 
fluctuations of beating [coefficient of variability (CV) of IBIs] of single isolated primary cardiomyocytes (blue 
open circles, n = 73) and primary clusters (red filled triangles, n = 6). (f) A histogram of all plots in (e). The blue 
filled bars indicate the frequency of IBIs of single cardiomyocytes; the blue arrow and the error bar indicate 
the corresponding mean value and standard deviation (SD) of single-cardiomyocyte IBIs, respectively. The red 
filled bars indicate the frequency of IBIs of clusters; the red arrow and the error bar indicate the corresponding 
mean value and SD of clusters. (g), (h): Distribution of IBIs in hES cardiomyocytes. (g) The relationship between 
mean IBIs and CV of IBIs in single isolated hES cardiomyocytes (blue open circles, n = 125) and hES clusters 
(red filled triangles, n = 27). (h) A histogram of all plots in (g). The blue filled bars indicate the frequency of IBIs 
of single cardiomyocytes; the blue arrow and the error bar indicate the corresponding mean values and SD of 
single cardiomyocytes, respectively. The red filled bars indicate the frequency of IBIs of clusters; the red arrow 
and the error bar indicate the corresponding mean value and SD of clusters.
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Figure 4.   Distribution of IBIs and fluctuation of IBI distribution of the hES cardiomyocyte clusters and their 
constituent cells. (a)–(c): Micrographs of hES cardiomyocyte clusters. (d)–(f): Distribution of IBIs and the CV 
of IBIs in the clusters (a)–(c) and isolated constituent cells from each cluster (n=50 from among re-cultivated 
1.0× 103 cells ). These plots (d)–(f) correspond to each cluster (a)–(c). The red filled triangles indicate the 
cardiomyocyte clusters, and the blue open circles indicate constituent cardiomyocytes of each cluster. Each 
cluster was measured 2 days after the beating started. Single cardiomyocytes were isolated from each cluster 
by trypsinization. IBIs of single constituent cardiomyocytes were measured 3 days after their isolation. Median 
and 95% confidence interval of single cardiomyocytes were 0.971 s and 0.825–1.25 s (d), 1.19 s and 1.00–1.28 
s (e), and 1.12 s and 0.844–1.22 s (f), respectively. (g)–(i): Histograms of IBIs of each cluster and its isolated 
constituent cells. The blue filled bars indicate the ratio of frequency for single constituent cardiomyocytes; the 
blue arrows and error bars indicate the mean IBIs and SDs, and the red arrows also indicate the mean IBIs of 
clusters.

Figure 5.   Influence of trypsinization on interbeat intervals in dispersed individual hES cardiomyocytes. 
(a) Distribution of the IBIs and the CV of IBIs in single hES cardiomyocytes before and after trypsinization. 
The blue open circles indicate the single hES cardiomyocytes (n = 50) before trypsinization. The orange 
open circles indicate the single cardiomyocytes (n = 50) after trypsinization. (b) Histograms of IBIs of hES 
single cardiomyocytes before and after trypsinization. The blue filled bars indicate the mean IBIs of single 
cardiomyocytes before trypsinization; the blue arrow and error bar indicate their mean value and SD. The 
orange filled bars indicate the frequency of mean IBIs of trypsinized single cardiomyocytes; the orange arrow 
and error bar indicate their mean value and SD.
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of IBI distribution between the isolated single hES cells cultivated dispersedly and the single constituent cells 
acquired from clusters subjected to trypsinization.

Interbeat intervals of two clusters after their connection and subsequent separation.  The 
above results show that the IBIs of clusters were within the IBIs of spontaneously beating constituent single cells 
and were also longer than that of the fastest-beating constituent cardiomyocyte. If isolated cardiomyocytes are 
connected, under the rule of “overdrive suppression,” the IBIs of the clusters should follow that of the fastest-
beating constituent cardiomyocyte. However, the IBIs of the clusters were near the mean value of the single 
cardiomyocytes. These single cells-to-cluster results suggest the possibility that the cluster-to-cluster connection 
also does not match what would be expected under “overdrive suppression,” but that a synchronized IBI that is 
the mean of those of two clusters develops after their contact.

To confirm this possibility, we connected two spontaneously beating clusters and compared their beating syn-
chronization behavior between before and after their connection. Two hES cardiomyocyte clusters were formed 
from 1.0 mL of 1.0× 105 cells/mL for the large cluster, and 1.0 mL of 1.0× 104 cells/mL for the small cluster, on 
the agarose concave structure in a 24-well plate. Figure 6a,b shows micrographs of the large and small clusters 
before their connection. After 7 days of cultivation, we recorded their IBIs as the “before contact” data. Then, 
using a micropipette, we manipulated the small cluster to move it adjacent to the large cluster to induce contact 
between these two clusters on the culture dish (Fig. 6c). After 3 days of cultivation after their contact, we recorded 
the synchronized IBIs of these two contacting clusters. Finally, we separated these two clusters using ophthalmic 
scissors and recorded the IBIs of these two clusters as the “after separation” data (Fig. 6d,e).

Figure 6f shows the distribution of IBIs and the CV of IBIs in two clusters under these three conditions: before 
contact, during contact, and after separation. The blue bars and green bars show the mean IBIs of the large and 
small clusters, respectively. The uncertainties are given by the SDs (error bars in Fig. 6f). Before contact of the 
two clusters, the mean IBIs and SDs of the large cluster and small cluster were 1.97 ± 0.0926 s and 1.21± 0.312 s, 
respectively (Fig. 6f (before contact)). After connection of the two clusters, they were synchronized to the same 
mean IBI and SD, 2.49 ± 0.379 s, which was 1.5 times longer than the IBI of the large cluster and was also more 
than twice as long as the IBI of the small cluster [Fig. 6f (during contact)]. After separation of the two clusters, 
the mean IBIs and SDs of the large cluster and the small cluster were recovered to shorter IBIs with smaller SDs, 
2.05± 0.0955 s and 1.59± 0.110 s, respectively (Fig. 6f (after separation)).

The results showed that the synchronized IBIs of the two connected clusters also contradicted the faster fir-
ing regulation or “overdrive suppression.” Moreover, they were not intermediate between the IBIs of the large 
cluster and the small cluster. This means that the emergence of slower synchronized beating from faster-beating 
elements was observed. This phenomenon cannot be explained by “overdrive suppression” or by the conventional 
oscillation models, even though the fluctuation–dissipation theorem is considered in the oscillation synchro-
nization phenomenon.

Figure 6.   Distributions of interbeat intervals (IBIs) and fluctuations of the two hES cardiomyocyte clusters 
before and after their connection and after re-separation. (a)–(e): Micrographs of cardiomyocyte clusters. 
Micrographs of the large cluster (a) and small cluster (b) before contact. These clusters were measured when 
they had been cultivated for 7 days. The two hES cardiomyocyte clusters were connected (c). The measurement 
was performed 3 days after the two clusters contacted each other. Micrographs of the large cluster (d) and small 
cluster (e) after separation. The measurements were taken within 5 min of separation. (f): Distribution of IBIs 
and fluctuations of two clusters before contact, during contact, and after separation. Blue filled bar and error bar 
indicate the mean IBIs and SD of the large cluster. Green filled bar and error bar indicate the mean IBIs and SD 
of the small cluster.
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Two characteristic phenomena were observed in this synchronization of two clusters. One is that the fluc-
tuation of the synchronized IBI distribution of the connected two clusters increased compared with that of the 
isolated clusters. This contrasts with the conventional understanding of the phenomenon of cardiomyocyte 
network synchronization. In our previous reports16,17,20, an increase in the number of connected cardiomyocytes 
contributed to decrease the fluctuation of IBI and increase its stability. However, upon cluster-to-cluster connec-
tion, this contribution of the number of connected cardiomyocytes to increased stabilization was not observed, 
which indicates that the “number increases stabilization” rule does not always dominate the synchronization 
of spontaneously beating cardiomyocytes. The other characteristic phenomenon is that the two synchronized 
clusters recovered to shorter IBIs in both of the two isolated clusters after their separation. The CV of IBIs of two 
isolated clusters was also decreased compared with that under the conditions of synchronized beating. These 
characteristics might explain that the synchronized slower beating of two clusters was not formed by harmonic 
oscillation synchronization but by the competitive suppression between two clusters.

Can overdrive suppression explain the synchronized beating intervals of cardiomyocyte clus-
ters?  Using the simple concave agarose structure-based clustering method, we examined whether faster fir-
ing regulation can explain the synchronized beating of cardiomyocyte networks. We formed cardiomyocyte 
clusters from isolated single cardiomyocytes and compared the IBIs of single isolated cells and these clusters. 
As shown in Figs. 3 and 4, the single cardiomyocytes showed a wider distribution of IBIs. However, once those 
cells were gathered into a cluster, the cluster had the original stable IBIs with a lower CV of IBIs than the isolated 
single cells. It had longer IBIs than the dispersed isolated single cardiomyocytes having shorter IBIs (Fig. 3). To 
confirm this, we also separated the constituent cells from the clusters and confirmed that the single constituent 
cells beat faster than their clusters did (Fig. 4). Hence, the faster-beating cells do dominate the IBIs of the clusters, 
which is discordant with the faster firing regulation of heart beating1 also known as “overdrive suppression”4.

The firing of spontaneously beating cardiomyocytes is induced electrically by the threshold potential of the 
cell membrane being reached with a very small net inward current of ions across it, which gives rise to action 
potential. As the membrane potential travels from the fastest firing cells to the resting (slower intrinsic beating) 
cells before their spontaneous firing, the faster firing regulation is thought to dominate the beating intervals of 
cardiomyocyte networks. Hence, from this local membrane potential-based perspective, our experimental results 
do not match the undisputed, specific membrane potential-based faster-firing regulation process.

In our previous on-chip studies, we found that the synchronization of cardiomyocytes was dominated by regu-
lation of the lower CV of IBI, rather than the faster firing regulation. This was determined experimentally using 
on-chip single-cell-based constructive synchronization observation16,17,19, and theoretically with in silico model 
simulations employing the “fluctuation–dissipation theorem” in the phase-couple synchronization model20. In 
this study, the single cells-to-cluster synchronization also showed the same tendency as our previous studies; 
IBIs of clusters were not regulated by the faster-firing cells within the cluster. The lower fluctuation regulation 
appears to be suitable to explain the synchronization behavior of clusters. Because the lower fluctuation regula-
tion reflects the hysteresis of the manner of connection of cells during clustering, it is caused by the community 
effect of cardiomyocytes; that is, the stability of cardiomyocyte beating increased with the increasing number 
of cells within the network.

In our previous report20, we discussed the limitation of conventional phase equations like the Kuramoto 
model to explain the regulation of the lower CV of IBIs of cardiomyocyte networks and included the “fluctua-
tion–dissipation theorem” in the phase-couple synchronization model to satisfy the lower CV of IBI regulation 
experimental results. If the cardiomyocytes are well described only by phase equations of the Kuramoto model, 
a cluster’s IBI equals the mean value of the IBIs of its constituents because:

where φi is the phase variable indicating the periodically changing state of the i-th cell and ωi is the natural 
angular velocity of the i-th cell. N is the number of constituent cells of a cluster, and K is a constant indicating the 
strength of connections between constituent cells. We assume that K is sufficiently strong so that all phases, φi , 
are locked into a certain type of distribution. Mutual interaction terms are dropped because sin is an odd func-
tion. Upon referring to Fig. 4, it is suggested that the gathering and beating synchronization of cardiomyocytes 
derived from primary and hES cardiomyocytes can be well described by simple phase equations because the 
mean of the single cells’ IBIs and the clusters’ IBIs are almost the same.

Moreover, as shown in Fig. 3f, IBIs of the primary cardiomyocyte clusters converged to a single sharp peak 
with a smaller SD. This means that the manner of cluster formation from a variety of different beating elements 
does not influence the IBIs of clusters. In other words, when the clusters are not sensitive to the process or 
order of cell-to-cell connection from single cells with different patterns of beating to form clusters, the IBIs of 
clusters should converge on the mean IBI of all of their constituent cells, as described in the above equation [Eq. 
(2)]. However, if the initial value and connection process does not make any difference to the characteristics of 
clusters, the results of cluster-to-cluster connection should also follow the mean value of these two clusters, the 
same as the above interpretation. Hence, the results of cluster-to-cluster formation indicate that the clustered 
cardiomyocytes should be different species from the isolated single cells. In addition, these sufficiently large 
clusters do not satisfy the rule that “cluster formation from a variety of different beating elements does not influ-
ence the IBIs of clusters” or “overdrive suppression.” In particular, the recovery process of shorter IBIs of two 
clusters after their separation supports the idea that some memorable individuality is conserved in the clusters 
when they reach a sufficient size.
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The findings reported in this paper indicate the importance of the community effect of cells, which can-
not be explained simply by expanding the knowledge from single-cell studies on membrane potentials, as 
described in our previous patch-clamp membrane potential measurement of clustered, spontaneously beating 
cardiomyocytes24. Clarification of the rules determining the obtained findings based on the higher complexity 
of cell networks should lead to the development of well-designed quasi-in vivo models as the community effect 
of cardiomyocytes.

In this study, we measured only homogeneous cell clusters, so the results and interpretation presented here 
should be considered as-yet unproven. In other words, as this study is just limited to IBI analysis of a network 
composed of cells with potentially different phenotypes at different stages of maturation, more accurate quality 
and quantity control of cells is desirable for further experiments. To overcome these limitations of homogeneity 
of prepared cells in practical experiments, in silico simulation should be one potential solution. The influence 
of contamination with different types of cell such as fibroblasts on the results should also be considered as a 
next step because such cells have been examined using on-chip cell-network assays, with the results indicating 
that the fibroblasts suppressed the synchronization ability30,31. Further study using a variety of other sources of 
cardiomyocytes and other cells like fibrobkasts with on-chip electrophysiological measurements would deepen 
our understanding of the slower synchronization phenomenon and its mechanism.

Conclusion
In conclusion, we examined the dominant rule determining the synchronized beating intervals of cardiomyo-
cyte clusters of mouse primary and hES cardiomyocytes by comparing the IBI and fluctuation characteristics 
of these single isolated cells and those in clusters. We also examined cluster-to-cluster connections for their 
synchronization. The results showed that the clusters directly formed from single cells synchronized not to the 
fastest-beating constituents but instead reached the mean IBI regardless of the order in which the different cells 
congregated into the cluster. Moreover, cluster-to-cluster formation emerged the slower synchronization beating 
behavior than original clusters. We confirmed that the beating synchronization of clusters does not match the 
faster firing regulation of heart beating or “overdrive suppression,” but can be explained by some other emergent 
synchronization regulatory pattern as a community effect of cells.

Methods
This study was carried out in strict accordance with the Act on Welfare and Management of Animals of the Min-
istry of the Environment, Japan. All animal experiments and protocols were approved by the Animal Experiment 
Committee of Waseda University (permission numbers: 2019-A072 and 2020-A022) and adhered to guidelines 
(ARRIVE 2.0) and regulations for animal experimentation.

Cells.  Two types of cardiomyocyte were used for this experiment. Embryonic mouse primary cardiomyo-
cytes (primary) were isolated and purified from 14-day-old ICR mouse embryos using a modified version of 
a method described in our previous reports16,17. In brief, 14-day-old ICR mice were purchased from Tokyo 
Laboratory Animals Science Co., Ltd. (Tokyo, Japan). The embryos were rapidly removed from pregnant mice 
anesthetized with pentobarbital sodium salt (15 mg/kg; Nacalai Tesque, Inc., Kyoto, Japan), which was intra-
peritoneally administered to the pregnant mice, and isoflurane ( < 2%; Wako Pure Chemical Industries, Osaka, 
Japan), which was volatilized by a vaporizer (NARCOBIT-E(II); Natsume Seisakusho Co., Ltd., Tokyo, Japan). 
The mouse embryos were removed from the uterus under anesthesia. The hearts of the embryos were obtained 
by trimming the embryos with tweezers and scissors and washed with phosphate-buffered saline (PBS; Takara 
Bio Inc., Kusatsu, Shiga, Japan) containing 0.9 mM CaCl2 and 0.5 mM MgCl2 to induce heart contraction and 
remove corpuscle cells. The hearts were then transferred to PBS without CaCl2 and MgCl2 and the ventricles 
were separated from the atria and minced into 1-mm3 pieces with scissors. After that, they were incubated at 
37◦C for 30 min in PBS containing 0.2% collagenase (Wako) to digest the ventricular tissue. After this diges-
tion step had been repeated twice, the cell suspension was transferred to primary cultivation buffer (Dulbecco’s 
modified Eagle’s medium: DMEM; Invitrogen, Carlsbad, CA, USA) supplemented with 10% heat-inactivated 
fetal bovine serum (FBS; Invitrogen), 100 U/mL penicillin, and 100µg/mL streptomycin (Invitrogen) at 4◦C . In 
the subsequent experiments, the above medium was used to handle embryonic mouse primary cardiomyocytes. 
The cells were filtered through a 40µm nylon mesh cell strainer (BD Bioscience, Franklin Lakes, NJ, USA) to 
remove debris that could not be digested and then centrifuged at 180 g for 5 min at room temperature. After 
precipitation of the cells, they were resuspended gently in Cell Banker I (Takara Bio Inc.), frozen, and stored 
in liquid nitrogen. For the measurement experiments, the stored frozen cells were thawed and cultivated in a 
primary cultivation buffer.

Human embryonic stem cell-derived cardiomyocytes (hES) (hES-CMCTM002, hES cell line SA002) were 
purchased from Cellectis (Gothenburg, Sweden)32,33. The hES cardiomyocytes were cultivated in hES-cultivation 
buffer (DMEM, high glucose; GlutaMAX) and pyruvate (Invitrogen) supplemented with 20% heat-inactivated 
fetal FBS, 100 U/mL penicillin, 100µg/mL streptomycin, 1.0% nonessential amino acids (Invitrogen), and 0.1 
mM β-mercaptoethanol (Invitrogen).

Cell culture.  For the pre-cultivation, a collagen-coated 35-mm dish was prepared with Cellmatrix Type 1-C 
(Nitta Gelatin Inc., Osaka, Japan) diluted 10-fold with 1 mM HCl. 200µL of the collagen solution was spread 
on a tissue culture dish (AGC Techno Glass Co., Ltd., Shizuoka, Japan) evenly and dried up. Then, it was thor-
oughly washed with cultivation buffer. Two types of cryopreserved cell (primary and hES cardiomyocytes) were 
thawed and thoroughly washed with cultivation buffer. The number of surviving cells was determined with an 
automated cell counter (TC-20; Bio-Rad, Hercules, CA, USA). To observe the behavior of single cells, 2 mL 
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of 2.0× 105 cells/mL of cardiomyocyte resuspensions (primary and hES cardiomyocytes) were cultivated in 
a collagen-coated 35-mm dish for 3 days at 37◦C in 5% CO2 . Then, the cardiomyocytes were isolated from the 
collagen-coated dishes with 0.25% trypsin-EDTA (Invitrogen) and harvested. After 4 min of incubation at 37◦C , 
the digestion reaction was stopped by each cultivation buffer containing serum and thoroughly washed. The 
cardiomyocytes were resuspended in each cultivation buffer at a concentration of 5.0× 104 cells/mL.

For the dispersed single-cell cardiomyocyte experiments, 2.0 ml of 5.0× 104 cells/mL cardiomyocyte resus-
pensions (primary and hES cardiomyocytes) were cultivated in a collagen-coated 35-mm dish for 3 days at 37◦C 
in 5% CO2 and their spontaneous beating was observed.

For the cluster experiments, cardiomyocyte clusters were formed in a concave agarose structure and their 
spontaneous beating was observed. First, 500µL of a melted 2.5% agarose (Promega, Madison, WI, USA) solution 
was applied to the bottom of 24-well microplates (AGC Techno Glass Co., Ltd.) and incubated at room tem-
perature for 2 h for gelation. Next, the concave-shaped agarose structures, formed on the bottoms of the micro-
plates, were washed and equilibrated for 30 min with each cultivation buffer. Then, 1.0 ml of 5.0× 104 cells/mL 
of cardiomyocyte suspension was applied to each of 24 wells, cultivated for 3 days at 37◦C in 5% CO2 , and the 
spontaneous beating of the formed clusters was observed.

Isolation and re‑cultivation of single cardiomyocytes from clusters.  After measurement of the 
spontaneous beating, cardiomyocyte clusters were digested with 0.25% trypsin-EDTA (twice for 4 min at 37◦C ) 
to acquire the constituent cardiomyocytes. The acquired isolated single cardiomyocytes were dropped into a 
collagen-coated 35-mm dish and cultivated at 37◦C in 5% CO2 for 3 days to observe their spontaneous beating.

Contact and separation of two cardiomyocyte clusters.  Large and small clusters were formed as 
follows. Large clusters were formed from 1.0 mL of 1.0× 105 cells/mL cardiomyocytes on the agarose concave 
structures in a 24-well plate, while small clusters were formed from 1.0 mL of 1.0× 104 cells/mL cardiomyocytes 
on the same agarose concave structures in a 24-well plate. A large cluster was placed on the bottom of a collagen-
coated 35-mm dish, and then a small cluster was manipulated with a micropipette (CellTram; Eppendorf, Ham-
burg, Germany) to make it contact the large cluster. After 3 days of cultivation and observation of beating, the 
two connected clusters were separated back into the original small and large clusters by cutting with ophthalmic 
scissors (Fine Science Tools Inc., North Vancouver, BC, Canada) and their beating was observed.

Interbeat interval (IBI) recording.  Interbeat intervals (IBIs) are the time intervals between individual 
beats of cardiomyocytes and were measured as the time course of luminance of cardiomyocyte images from 
beat to beat caused by their contraction with ImageJ (US National Institutes of Health, Bethesda, MD, USA). 
Incubated cardiomyocyte clusters or single cells were set under an inverted optical microscope (IX-71; Olym-
pus, Tokyo, Japan) equipped with a cooled charge-coupled-device (CCD) camera recording system (ORCA-ER; 
Hamamatsu Photonics, Hamamatsu, Shizuoka, Japan). Their temporal displacement of a portion of the cell sur-
face caused by the spontaneous contraction intervals was measured every 1/30 s with ImageJ. We regarded these 
intervals of time-course displacement as IBIs.

Statistical analysis.  All statistical values of IBIs and their fluctuations are presented as mean±standard 
deviation (SD) of 1-min recorded IBIs (unless stated otherwise). All IBIs of single cells and clusters were evalu-
ated using the Mann–Whitney U test when comparing multiple groups. p < 0.05 was considered statistically 
significant and the 95% confidence interval was also regarded as statistically independent and identically distrib-
uted. U test was performed using R (Ver. 4.0.3; R Core Team, R Foundation for Statistical Computing, Vienna, 
Austria).
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