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Abstract

Radiomics studies require large patient cohorts, which often include patients imaged using

different imaging protocols. We aimed to determine the impact of variability in imaging proto-

col parameters and interscanner variability using a phantom that produced feature values

similar to those of patients. Positron emission tomography (PET) scans of a Hoffman brain

phantom were acquired on GE Discovery 710, Siemens mCT, and Philips Vereos scanners.

A standard-protocol scan was acquired on each machine, and then each parameter that

could be changed was altered individually. The phantom was contoured with 10 regions of

interest (ROIs). Values for 45 features with 2 different preprocessing techniques were

extracted for each image. To determine the impact of each parameter on the reliability of

each radiomics feature, the intraclass correlation coefficient (ICC) was calculated with the

ROIs as the subjects and the parameter values as the raters. For interscanner comparisons,

we compared the standard deviation of each radiomics feature value from the standard-pro-

tocol images to the standard deviation of the same radiomics feature from PET scans of 224

patients with non-small cell lung cancer. When the pixel size was resampled prior to feature

extraction, all features had good reliability (ICC > 0.75) for the field of view and matrix size.

The time per bed position had excellent reliability (ICC > 0.9) on all features. When the filter

cutoff was restricted to values below 6 mm, all features had good reliability. Similarly, when

subsets and iterations were restricted to reasonable values used in clinics, almost all fea-

tures had good reliability. The average ratio of the standard deviation of features on the

phantom scans to that of the NSCLC patient scans was 0.73 using fixed-bin-width prepro-

cessing and 0.92 using 64-level preprocessing. Most radiomics feature values had at least

good reliability when imaging protocol parameters were within clinically used ranges. How-

ever, interscanner variability was about equal to interpatient variability; therefore, caution

PLOS ONE | https://doi.org/10.1371/journal.pone.0221877 September 5, 2019 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ger RB, Meier JG, Pahlka RB, Gay S,

Mumme R, Fuller CD, et al. (2019) Effects of

alterations in positron emission tomography

imaging parameters on radiomics features. PLoS

ONE 14(9): e0221877. https://doi.org/10.1371/

journal.pone.0221877

Editor: Ulas Bagci, University of Central Florida

(UCF), UNITED STATES

Received: April 4, 2019

Accepted: August 16, 2019

Published: September 5, 2019

Copyright: © 2019 Ger et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by University

Cancer Foundation via the Institutional Research

Grant program at The University of Texas MD

Anderson Cancer Center, https://www.

mdanderson.org/research/departments-labs-

institutes/departments-divisions/institutional-

research.html. Rachel Ger is supported by the

Rosalie B. Hite Graduate Fellowship in Cancer

http://orcid.org/0000-0003-1244-7160
http://orcid.org/0000-0003-4659-0766
http://orcid.org/0000-0001-7383-6122
https://doi.org/10.1371/journal.pone.0221877
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221877&domain=pdf&date_stamp=2019-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221877&domain=pdf&date_stamp=2019-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221877&domain=pdf&date_stamp=2019-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221877&domain=pdf&date_stamp=2019-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221877&domain=pdf&date_stamp=2019-09-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0221877&domain=pdf&date_stamp=2019-09-05
https://doi.org/10.1371/journal.pone.0221877
https://doi.org/10.1371/journal.pone.0221877
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.mdanderson.org/research/departments-labs-institutes/departments-divisions/institutional-research.html
https://www.mdanderson.org/research/departments-labs-institutes/departments-divisions/institutional-research.html
https://www.mdanderson.org/research/departments-labs-institutes/departments-divisions/institutional-research.html
https://www.mdanderson.org/research/departments-labs-institutes/departments-divisions/institutional-research.html


must be used when combining patients scanned on equipment from different vendors in

radiomics data sets.

Introduction

Radiomics involves evaluating images on a voxel level to extract quantitative image features

(i.e. texture). This process relies on the assumption that there is more information contained

within the images than the human eye can extract and these textures and patterns are related

to the gene microenvironment within that tumor or tissue.[1] Interest in radiomics has grown

as radiomics features have been shown to improve cancer survival models when combined

with conventional prognostic factors (e.g., age).[2–9]

While most radiomics studies originally focused on computed tomography (CT) images,

radiomics features from positron emission tomography (PET) images have also been corre-

lated with patient survival. For example, Fried et al. [3, 10] identified radiomics features that

were correlated with survival in patients with lung cancer, and they were able to identify fea-

tures that distinguished subgroups of patients received a clinical benefit from radiotherapy

dose escalation.

However, variability in imaging protocols can add noise to radiomics data in patient stud-

ies. For PET images, acquisition and reconstruction parameters have been shown to affect

radiomics features. In particular, the number of iterations, matrix size, and smoothing filter

produce variability in radiomics features.[11–21] In general, these studies have been per-

formed using only one scanner and have investigated only a few of the parameters that can be

altered in the imaging protocol. Those studies that used a phantom often used one with uni-

form spheres, such as the National Electrical Manufacturers Association phantom, which may

not be representative of the texture within patients’ tumors. Thus, although these studies have

provided valuable insight into particular issues, they may not be generalizable.

In this study, we aimed to fill this gap by using a phantom that provided radiomics feature

values similar to those found in patients. We used scanners from several different vendors and

investigated the effects of changing all of the parameters that could be changed for reconstruc-

tions. Filling this gap allows for more precise inclusion criteria in patient studies in order to

reduce the noise in radiomics features which may produce the best possible prediction studies.

Methods

Phantom scans

PET images of a 3-dimensional Hoffman brain phantom were acquired on GE Discovery 710

(GE Healthcare, Chicago, IL), Siemens mCT (Siemens Healthineers, Forchheim, Germany),

and Philips Vereos (Philips Healthcare, Eindhoven, The Netherlands) PET scanners. A stan-

dard-protocol scan was acquired on each machine, and then each parameter that could be

changed was altered individually. For example, to assess the impact of time per bed position,

the other standard-protocol parameters were held constant while the time per bed position

was set to 2 minutes for one reconstruction, 3 minutes for another reconstruction, 4 minutes

for another reconstruction, and 5 minutes for another reconstruction. The parameters that

could be changed and the settings investigated for each scanner are listed in Table 1.

The standard-protocol settings for the GE scanner were 70 cm field of view, 5 mm filter cut-

off, 2 iterations and 18 subsets, 192 matrix size, standard z smoothing, 6 minutes per bed posi-

tion, and VPFX-S reconstruction. The standard-protocol settings for the Siemens scanner
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were 82 cm field of view, 5 mm filter cutoff, 2 iterations and 21 subsets, 200 matrix size, 5 min-

utes per bed position, and TRUEX time-of-flight (TOF) reconstruction. As the Siemens scan-

ner also allows for continuous bed motion, this type of acquisition was also explored and

treated as an additional scanner. The standard-protocol settings were the same as the fixed

number of bed positions acquisition but with 0.4 mm/s as the bed speed. The standard-proto-

col settings for the Philips scanner were 60 cm field of view, 3 iterations and 15 subsets, 128

matrix size, no smoothing filter, and 5 minutes per bed position. The term “standard protocol”

here means that it was the baseline acquisition. The time per bed position was longer than that

used clinically and for the Siemens scanner, the standard acquisition used at MD Anderson is

continuous bed motion. The phantom was injected with 2.53–2.75 mCi of F-18 fluorodeoxy-

glucose for each scan and then imaged about 30 minutes later. The weight was set to 20 kg to

obtain standardized uptake values (SUVs) in the phantom that were similar to the SUVs in

patient tumors.

Patients

Data from a patient cohort were used to provide context to the variability observed between

scanners. For example, an interscanner variation of 0.4 for a given feature with a phantom

does not necessarily represent the impact of interscanner variation in a patient study. How-

ever, if the interscanner variation is computed relative to interpatient variation, the impact on

patient studies can be directly observed. In order to make interscanner comparisons that were

relative to interpatient variation in this study, PET studies of 224 patients with non-small cell

lung cancer (NSCLC) were retrospectively analyzed. The requirement for informed consent

was waived and approval for use of this data was given by the Institutional Review Board at

The University of Texas MD Anderson Cancer Center. This cohort consisted of 84 women

and 140 men with an average age of 65 years (range, 39–89 years), average height of 171 cm

(range, 147–195 cm), average weight of 82 kg (range, 39–151 kg), and average tumor volume

of 90 cm3 (range, 0.4–920 cm3).

Feature extraction

Each phantom scan was semiautomatically contoured with 10 cylindrical regions of interest

(ROIs) using in-house developed MATLAB (MathWorks, Natick, MA) scripts. Each ROI had

Table 1. Parameters changed to investigate impact on radiomics features.

Scanner

Parameters GE Discovery 710 Siemens mCT Philips Vereos

Field of view (cm) 25, 50, 70

Filter cutoff (mm) 1, 3, 5, 8, 10 1, 3, 5, 8, 10 None, 1, 3, 5, 8, 10

Iterations × subsets 1 × 4, 2 × 8, 4 × 8, 2 × 18, 4 × 32 Non-TOF: 1 × 4, 2 × 8, 4 × 8, 2 × 12, 4 × 24

TOF: 1 × 21, 2 × 21, 3 × 21, 4 × 21

1 × 4, 2 × 8, 4 × 8, 2 × 20,

3 × 15, 4 × 32

Matrix size 128, 192, 256 128, 200, 256, 400, 512

Time per bed position

(min)

2, 3, 4, 5 2, 3, 4, 5 2, 3, 4, 5

Type of reconstruction VPFX, VPFX-S, VPHD, VPHD-S,

QCFX-S, QCHD-S

Backprojection, backprojection TOF, iterative, iterative TOF,

TRUEX, TRUEX TOF

Z smoothing None, light, standard, heavy

TOF: time of flight

Types of reconstruction are proprietary names used by each vendor.

https://doi.org/10.1371/journal.pone.0221877.t001
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a diameter of 19.4 cm and a height of 1 cm. Some slices of the phantom with contours are

shown in Fig 1. A threshold of 0.4 SUV was used before feature calculation on the phantom

images to remove background noise or activity that had leaked to the edges of the phantom

container. The patient images were contoured using PET Edge in MIM (MIM Software Inc.,

Cleveland, OH). Forty-five features were extracted using 2 preprocessing methods: (1) a fixed-

bin-width of 0.5 SUV, as suggested by Leijenaar et al.,[22] and (2) rescaling to 64 levels, as sug-

gested by Hatt et al.[23] Both of these preprocessing methods were used as they extensively

evaluated robustness of features on PET SUV images and have been used in many PET patient

studies. Radiomics features were calculated using IBEX, a freely available radiomics tool.[24,

Fig 1. Slices of Hoffman phantom. Four slices of the Hoffman phantom are shown. Each slice is from a different ROI

among the 10 ROIs that were drawn in the phantom. The example slices shown here are from different regions within

the phantom: (a) near the bottom of the phantom, (b) between the bottom and the middle of the phantom, (c) between

the middle and the top of the phantom, and (d) near the top of the phantom. Additionally, there are (e) coronal and (f)

sagittal slices to show the placement of ROIs within the phantom.

https://doi.org/10.1371/journal.pone.0221877.g001
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25] The features used are listed in Table 2. More information about these features can be

found in a publication by Zhang et al.[24] The settings for each of the features were the same

as those listed in Fave et al.’s Supplemental Material [2], except for neighborhood gray tone

difference matrix, where we set the neighborhood to 3 owing to the large voxel size in PET

images.

Statistical analysis

The intraclass correlation coefficient (ICC) was used to determine whether changes in each

parameter affected the measured radiomics features. This was done separately for each adjust-

able parameter on each scanner, with the ROIs as the subjects and the different parameter val-

ues as the raters. The 2-way random effects, consistency, single rater/measurement ICC as

described by Shrout and Fleiss[26] was computed in R (version 3.4.3) using the psych package

(version 1.7.8).[27] To determine the level of reliability indicated by the ICC values, the guide-

lines published by Koo and Li[28] were followed: ICC values lower than 0.5 signified poor reli-

ability, those between 0.5 and 0.75 signified moderate reliability, those between 0.75 and 0.9

signified good reliability, and those greater than 0.9 signified excellent reliability.

Interscanner analysis was performed using the standard-protocol image from each scanner.

The standard deviation across the ROIs from the four scanners (GE, Philips, Siemens, and Sie-

mens using continuous bed motion) was compared to the standard deviation from the NSCLC

patient cohort. This was done separately for each feature and preprocessing technique. Addi-

tionally, the mean value for each feature and preprocessing technique combination from the

phantom standard-protocol images was compared to the mean value from the patient images

for the same combination. If the phantom mean was not within two standard deviations of the

Table 2. Radiomics features used in PET analysis.

Gray Level Co-occurrence Matrix Gray Level Run Length Matrix Intensity Histogram Neighborhood Gray Tone Difference Matrix

Auto Correlation Gray Level Nonuniformity Energy Busyness

Cluster Prominence High Gray Level Run Emphasis Entropy Coarseness

Cluster Shade Long Run Emphasis Kurtosis Complexity

Cluster Tendency Long Run High Gray Level Emphasis Skewness Contrast

Contrast Long Run Low Gray Level Emphasis Standard Deviation Texture Strength

Correlation Low Gray Level Run Emphasis Uniformity

Difference Entropy Run Length Nonuniformity Variance

Dissimilarity Run Percentage

Energy Short Run Emphasis

Entropy Short Run High Gray Level Emphasis

Homogeneity Short Run Low Gray Level Emphasis

Homogeneity 2

Information Measure Correlation 1

Information Measure Correlation 2

Inverse Difference Moment Norm

Inverse Difference Norm

Inverse Variance

Max Probability

Sum Average

Sum Entropy

Sum Variance

Variance

https://doi.org/10.1371/journal.pone.0221877.t002
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patient mean for a given feature, the feature was not included when calculating the interscan-

ner variation metric.

Results

For all scanners, most features had good (ICC> 0.75) to excellent (ICC> 0.9) reliability when

reasonable parameter choices were used. Here, “reasonable” refers to parameter values that are

used in clinics. For example, extremely low or extremely high effective iteration values

(iterations × subsets) were excluded, as these are not actually used in clinics. An example of an

extremely low effective iteration value is 4 (1 x 4), and an example of an extremely high effective

iteration value is 128 (4 x 32). The low effective iteration values are not used clinically as they do

not produce clear images and the high effective iteration values are not clinically used currently

due to computation time. Differences in effective iteration is demonstrated in Fig 2. The follow-

ing paragraphs summarize the results obtained using the reasonable parameters and give the

percentage of features in each of the reliability classifications described in the Statistical Analysis

section. The specific ICC values for each feature using all parameter values and the subset of

parameter values that were deemed reasonable are presented in the Supplemental Material.

For the GE scanner, when the pixel size was resampled, all features had excellent reliability

with both preprocessing types for field of view and matrix size. When only filter cutoff values

below 6 mm were included, 96% of features had excellent reliability, 3% of features had good

reliability, and 1% of features had moderate reliability (busyness calculated using fixed-bin-

width preprocessing). For iterations and subsets, when only effective iterations between 16

and 36 were included, 87% of features had excellent reliability, 12% of features had good reli-

ability, and 1% of features had poor reliability (complexity calculated using 64-level prepro-

cessing). When time per bed position was altered, all features had excellent reliability with

both preprocessing types. For the type of reconstruction, when Q.Clear was not included

(reconstruction types QCFX-S and QCHD-S), 92% of features had excellent reliability and 8%

of features had good reliability. For z smoothing, 89% and 11% of features had excellent and

good reliability, respectively.

Fig 2. Effect of effective iterations on phantom images. One slice from the different effective iteration values

(iterations × subsets) from the Philips scanner is used to demonstrate the impact of having (a) effective iterations of 4

(1 x 4), (b) effective iterations of 16 (2 x 8), (c) effective iterations of 32 (4 x 8), (d) effective iterations of 40 (2 x 20), (e)

effective iterations of 45 (3 x 15), and (f) effective iterations of 128 (4 x 32).

https://doi.org/10.1371/journal.pone.0221877.g002
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For the Siemens scanner, when only filter cutoff values below 6 mm were included, 80% of

features had excellent reliability, 19% of features had good reliability, and 1% of features had

moderate reliability (busyness calculated using fixed-bin-width preprocessing). For matrix size,

when the pixel size was resampled, 94% and 6% of features had excellent and good reliability,

respectively. For iterations and subsets using TOF, 83% of features had excellent reliability, 12%

of features had good reliability, and 4% of features had moderate reliability. For iterations and

subsets using non-TOF, when only effective iterations between 16 and 24 were included, 76% of

features had excellent reliability, 18% of features had good reliability, and 7% of features had

moderate reliability. For the time per bed position, all features had excellent reliability with both

preprocessing types. Similar results were found using continuous bed motion.

For the Philips scanner, when only filter cutoff values below 6 mm were included, 71% and

29% of features had excellent and good reliability, respectively. For iterations and subsets,

when only effective iterations between 16 and 45 were included, 92% and 8% of features had

excellent and good reliability, respectively. For the time per bed position, all features had excel-

lent reliability with both preprocessing types. The distribution of features in each reliability

grouping for each imaging protocol parameter and preprocessing technique for the Philips

scanner is shown in Fig 3. The data used to create this figure, as well as the data for the other

scanners, are detailed in the Supplemental Material.

Fig 3. Bar plots of features by reliability level for the Philips scanner. For each imaging-protocol parameter using

each of the 2 preprocessing techniques (fixed-bin-width and 64 levels), the number of features in each ICC reliability

level is shown: excellent reliability (green) is ICC> 0.9, good reliability (yellow) is 0.75< ICC< 0.9, moderate

reliability (orange) is 0.5< ICC< 0.75, and poor reliability (red) is ICC< 0.5. When parameters were limited to

values seen in clinics, most features had excellent reliability, regardless of preprocessing technique. The subset for filter

cutoff contains reconstructions for which the filter cutoff was below 6 mm. The subset for iterations and subsets

contains reconstructions for which the effective number of iterations was between 16 and 45.

https://doi.org/10.1371/journal.pone.0221877.g003
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Across all scanners, the average ICC was typically higher with fixed-bin preprocessing than

with 64-level preprocessing. This was the case for all of the imaging parameters on the Siemens

(both for the step-and-shoot and the continuous-bed-motion acquisition) and Philips

scanners.

One slice from the standard-protocol phantom scan used from each scanner in the inter-

scanner analysis is shown in Fig 4. The average ratio of the standard deviation across all fea-

tures from the standard-protocol phantom scans to the standard deviation from the NSCLC

patient scans was 0.73 using fixed-bin-width preprocessing and 1.0 using 64-level preprocess-

ing. With 64-level preprocessing, 7 features on the phantom scans had a mean value more

than 2 standard deviations from the patient-scan mean value for that feature. Excluding these

features, the mean ratio of the phantom-scan standard deviation to the patient-scan standard

deviation was reduced to 0.92.

Discussion

In this study, we investigated the impact on the variability of radiomics feature values of the

imaging protocol parameters that could be retrospectively changed on GE, Philips, and Sie-

mens PET scanners. We found that as long as reasonable parameter values were used (i.e.,

parameter values that are actually used in clinics), almost all features had at least good reliabil-

ity. These results demonstrate that on a given scanner, radiomics data for patients scanned

using different imaging protocols can be combined without adding significant noise.

Fig 4. Slice from standard-protocol phantom scan. One slice from the standard-protocol phantom scan is shown for

each scanner: (a) GE, (b) Philips, (c) Siemens, and (d) Siemens continuous bed motion.

https://doi.org/10.1371/journal.pone.0221877.g004

PET imaging protocol effect on radiomics feature values

PLOS ONE | https://doi.org/10.1371/journal.pone.0221877 September 5, 2019 8 / 12

https://doi.org/10.1371/journal.pone.0221877.g004
https://doi.org/10.1371/journal.pone.0221877


However, interscanner variability was about equal to interpatient variability. This implies

that caution should be used when combining data for patients scanned on equipment from dif-

ferent vendors for radiomics analysis as the observed stratification in a patient cohort may be

due to differences in scanners and not true patient differences. A phantom with radiomics fea-

ture values similar to those of patients, such as the one used here, should be used to verify

which features can be used in the patient analysis. If a phantom cannot be acquired, our full

interscanner analysis, which is provided in the Supplemental Material, can serve as a reference

on which features are robust enough to be included in the analysis and which features are too

variable and should be excluded.

We found that there was less variability in features when using the fixed-bin-width prepro-

cessing method than with the 64-level preprocessing method. Leijenaar et al.[22] also found

that using a fixed-bin-width was preferable in their interpatient and intrapatient comparisons

of two preprocessing techniques (fixed-bin-width and fixed number of levels) in 35 lung can-

cer patients.

When we included a large range of parameter values, our results agreed with those of previ-

ous studies that found that the parameters of filter cutoff, matrix size, and iterations and sub-

sets affect feature values.[11–21] We were also able to show that resampling the image in our

radiomics software prior to feature extraction removed the impact of matrix size on feature

values. Additionally, the impact of variations in filter cutoffs and iterations and subsets could

be removed if only parameter values that are commonly used in clinics were included.

This study has several limitations. First, only one scanner from each vendor was used;

therefore, the variability of different models from a given vendor could not be explored. Sec-

ond, only one acquisition per scanner was used for this study. We previously found the repeat-

ability of a particular acquisition on a scanner to be very high; thus, we do not believe

acquisition-level variability affected the results of this study. Third, this study was conducted

using a phantom, which allowed for consistency in subject material across scanners, but the

phantom is only a representation of patient texture. For this particular study, most features

from the phantom, including SUV values such as SUVmean and SUVmax, were within the range

of values found from the NSCLC patient cohort, showing that the phantom features were a

good representation of the features and SUV values of this patient cohort. However, the activ-

ity concentration was higher in our phantom than that seen in typical patient PET scans. This

could affect the convergence rate of the reconstruction algorithms. To assess the impact of

convergence rates, many scans with different activity levels would have to be acquired and the

whole analysis repeated, which is outside the scope of this paper. Additionally, we did not

relate different features to patient outcome. This was a phantom study that aimed to determine

the robustness of features to changes in PET scanner imaging parameters and not determine

which features are useful as that depends on the study goal, patient population, etc. Another

limitation is that, for practical reasons, we only examined a subset of the entire parameter

space. For example, the voxel size relative to the filter cutoff values may also have affected the

results. For the standard-protocol scan, the voxel size was 0.36 × 0.36 × 0.33 cm on the GE

scanner, 0.41 × 0.41 × 0.2 cm on the Siemens scanner, and 0.2 × 0.2 × 0.2 cm on the Philips

scanner. The small values of the cutoff value investigated (particularly 1 mm) would only rep-

resent part of a voxel and, would therefore, not affect the image. Smaller voxel sizes could be

affected more by these filter cutoff values and could result in lower ICC values. Finally, this

study used an adult NSCLC patient cohort; different adult patient cohorts may have different

interpatient variability levels and different ratios of the standard deviation of the phantom

measurements to that of the patients’ measurements. Results may be different in pediatric

patient cohorts where the average weight is much less than the average weight of the cohort in

this study.
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Conclusions

We found that all imaging-protocol parameters had good reliability across feature values when

the parameter values were within limits typically used in clinics. However, interscanner vari-

ability was about equal to interpatient variability. Therefore, caution must be used when com-

bining patients scanned using equipment from different vendors into single radiomics data

sets.
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