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SUMMARY

The molecular mechanisms that govern the choreographed timing of organ development remain 

poorly understood. Our investigation of the role of the Lin28a and Lin28b paralogs during the 

developmental process of branching morphogenesis establishes that dysregulation of Lin28a/b 
leads to abnormal branching morphogenesis in the lung and other tissues. Additionally, we 

find that the Lin28 paralogs, which regulate post-transcriptional processing of both mRNAs 

and microRNAs (miRNAs), predominantly control mRNAs during the initial phases of lung 

organogenesis. Target mRNAs include Sox2, Sox9, and Etv5, which coordinate lung development 

and differentiation. Moreover, we find that functional interactions between Lin28a and Sox9 
are capable of bypassing branching defects in Lin28a/b mutant lungs. Here, we identify Lin28a 

and Lin28b as regulators of early embryonic lung development, highlighting the importance of 

the timing of post-transcriptional regulation of both miRNAs and mRNAs at distinct stages of 

organogenesis.
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Graphical abstract

In brief

The timing of organogenesis is poorly understood. Here, Osborne et al. show that the Lin28 

paralogs (Lin28a and Lin28b) regulate branching morphogenesis in a let-7-independent manner 

by directly binding to the mRNAs of Sox2, Sox9, and Etv5 to enhance their post-transcriptional 

processing.

INTRODUCTION

Evolutionarily conserved heterochronic genes regulate the developmental rate and timing 

of metazoans from worms to mammals. The RNA-binding protein LIN-28 was one of 

the first heterochronic regulators identified in Caenorhabditis elegans, in which lin-28 
mutations at larval stage two (L2) result in either reiteration (by gain of function) or 

precocious maturation (by loss of function) of the hypodermal seam cells (Ambros and 

Horvitz, 1984; Moss et al., 1997). The mammalian paralogs Lin28a and Lin28b contribute 

to multiple biological processes including maintenance of pluripotency, reprogramming, 

and tumorigenesis by post-transcriptional regulation of both micro-RNAs (miRNAs) and 

mRNAs (Shyh-Chang and Daley, 2013). The developmental feedback loop between LIN28 

and let-7 is evolutionarily conserved. Early in gestation, LIN28 binds to the stem loop 

of let-7 miRNA family members to inhibit their processing and subsequent expression; at 

later stages of development, let-7 binds to the 3′ UTRs of the LIN28 paralogs to suppress 
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their translation (Piskounova et al., 2008; Reinhart et al., 2000; Viswanathan et al., 2008). 

Although the LIN28 paralogs act as negative regulators of miRNAs, their association with 

mRNAs has been shown to increase mRNA stability and translation efficiency (Balzer et al., 

2010; Polesskaya et al., 2007). In C. elegans, it was shown that LIN-28 regulates cell fate 

by the following two distinct mechanisms: the first occurs by miRNA-independent means at 

L2 and the second directly through let-7 and its other family members at the larval stage two 

(L3) (Vadla et al., 2012).

Proper development of the mammalian lung relies on coordination of the spatial and 

temporal morphogenesis of epithelial progenitors to generate the airway tree. The lung 

epithelium is functionally divided into two divergent compartments, as follows: the 

bronchiolar conducting airways at the proximal regions and the alveolar sacs at the distal 

regions. The transcription factors Sox9 and Sox2 regulate and demarcate two waves of lung 

development (Alanis et al., 2014; Chang et al., 2013; Gontan et al., 2008; Tompkins et al., 

2009). The first wave, marked by Sox9, produces branches that develop into both proximal 

and distal lineages, whereas the second wave, marked by Sox2, regulates specification of the 

proximal region and demarcates the bronchoalveolar junctions (Alanis et al., 2014).

Autocrine and paracrine signaling originating from both the endodermal-derived epithelium 

and the mesodermal-derived mesenchyme coordinate lung development (Cardoso and Lü, 

2006; Herriges and Morrisey, 2014; Morrisey and Hogan, 2010). Thus, spatial expression 

of genes is important for delivery of the appropriate dose, duration, and transduction of 

signals. Crosstalk and feedback regulation between signal transduction pathways originating 

from the lung epithelium and mesenchyme such as Wingless-related integration 1 (WNT), 

(Bone morphogenetic protein) BMP, fibroblast growth factor (FGF), and Sonic Hedgehog 

(SHH) regulate proximal-distal patterning, branching morphogenesis, proliferation, and 

differentiation. Additionally, the SHH and FGF10 signaling pathways regulate branching 

morphogenesis through paracrine feedback loops, whereby FGF10 in the mesenchyme 

upregulates SHH in the epithelia and SHH feeds back to inhibit FGF10 (Bellusci et al., 

1997; Chuang et al., 2003; Herriges et al., 2015; Li et al., 2005; Pepicelli et al., 1998). 

We and others have found that Lin28a and Lin28b are highly expressed in the embryo 

from the beginning of gastrulation at embryonic Day 6.5 (E6.5) through the onset of lung 

organogenesis from E10.5 to E18.5 (Yang and Moss, 2003). In this study, we observed 

that the loss or gain of Lin28a/b in the lung epithelium led to defects in branching 

morphogenesis and perinatal lethality. We present evidence that Lin28a/b coordinate 

branching morphogenesis in a let-7-independent manner, by regulation of mRNAs that 

are not targets of let-7 such as Sox2, Sox9, and Etv5. We propose a model wherein 

Lin28a and Lin28b regulate branching morphogenesis by let-7-independent regulation of 

the transcription factor Sox9.

RESULTS

Expression of Lin28a and Lin28b in the whole embryo and mouse lung

Previously, we demonstrated that gene knockout of both Lin28a and Lin28b in the mouse 

results in lethality between embryonic E10.5 and E12.5 (Shinoda et al., 2013). To further 

understand this observation, we examined the expression patterns of both Lin28a and Lin28b 
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in several organs of the mouse embryo and in mouse embryonic stem cells (mESCs) by 

quantitative RT-PCR (qRT-PCR) and RNA in situ hybridization (Figures 1A and S1A–S1C). 

At E10.5, we found that Lin28b, as formerly shown for Lin28a, is expressed throughout the 

early embryo (Figure S1A); however, unlike Lin28a that decreased at subsequent time points 

of organogenesis, Lin28b mRNA expression persisted throughout embryogenesis (Figure 

1A; Moss and Tang, 2003; Yang and Moss, 2003). We also observed that Lin28b mRNA 

expression was higher than that of Lin28a in the organs examined from mid-late gestation 

(Figure 1A). Interestingly, in the embryonic lung, we detected a wave of re-expression of 

the Lin28a mRNA and protein in late gestation that was neither previously described nor 

observed in other organs (Figures 1A and 1B). Lin28a and Lin28b were detected by in situ 
hybridization in both epithelium and the mesenchyme of the lung at E13.5 (annotated by 

the dashed lines, Figure S1B). Protein expression of Lin28a at E11.5 was observed in the 

epithelia (co-expressed with Nmyc, an epithelial marker) and the surrounding mesenchyme 

(Figure 1C; Okubo et al., 2005; Wan et al., 2005). We quantitatively analyzed the expression 

of the paralogs in the lung epithelial cells (EpCAM+), endothelium (CD31+/CD45−), 

and circulating blood cells (CD31−/CD45+) and found that Lin28a was expressed in all 

fractions of wild-type lungs, whereas Lin28b was primarily expressed in the endothelial and 

circulating blood fractions with a lower level of expression in the epithelium (Figures 1D 

and S1D).

Lin28a and Lin28b are essential for branching morphogenesis and survival

To determine the necessity of Lin28a and Lin28b in the lung, we generated epithelial­

specific single- and double-gene knockouts by using an Nkx2.1creER construct to drive 

the loss of loxp-flanked (floxed) Lin28a and Lin28b alleles throughout the whole lung 

epithelium (Minoo et al., 1999), with temporal control of the Cre recombinase mediated 

by administration of tamoxifen (hereafter, strains are referred to as dKO for the double 

Lin28a−/− and Lin28b−/− knockout, aKO for the single Lin28a−/− knockout, and bKO for 

the single Lin28b−/− knockout) (Taniguchi et al., 2011). For all experiments, we used 

tamoxifen administration at E10.5–E11 to induce NKX2.1creER-mediated activation or 

inactivation of target alleles. We determined the efficiency of Cre-mediated recombination 

48-h post-tamoxifen administration by crossing the NKX2.1creER line to a reporter with a 

floxed stop-Tdtomato cassette and observed effective recombination throughout the whole 

epithelium including both tips and stalks (Figure S2A). We confirmed the loss of Lin28a by 

immunofluorescence. As previously noted, we observed that Lin28a was expressed in the 

epithelium as well as mesenchyme. Cre-mediated recombination led to a loss of Lin28a in 

the epithelium at 48-h post-tamoxifen administration (Figure S2B).

The mouse bronchial tree is formed by the following three distinct subroutines: domain 

branching, planar bifurcation, and orthogonal bifurcation (Metzger et al., 2008). We found 

that all three of the subroutines were used in the aKO and bKO knockouts (Figures 2 and 

S2). Mice with constitutive whole-body knockout of Lin28b alone are born normally, while 

constitutive whole body knockout of Lin28a alone results in increased perinatal lethality 

(Shinoda et al., 2013). We examined lungs from whole body, constitutive knockouts of either 

Lin28a alone or Lin28b alone, as well as the single epithelial-specific knockouts by virtue 

of NKX2.1creER. The lungs from both the whole-body and the epithelial-specific knockout 
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of Lin28b appeared normal (Figure S2C). Although we did observe smaller lungs in a 

small subset of the whole-body knockouts of Lin28a as well as with the epithelial-specific 

knockouts of Lin28a, we observed no defects that could be attributed to branching alone, 

as defects in lung growth and size are difficult to analyze in isolation of branching (Figure 

S2D).

Although the global patterning and branching subroutines were largely intact in the 

epithelial-specific dKO, we detected delayed lateral secondary branch formation and 

outgrowth in both left and right caudal lobes, without gross size differences (denoted with 

white arrows, Figures 2A, 2C, and 2E). We also observed branches with a larger diameter 

in several of the mutant lungs (denoted with red arrows) and increased thickness of the 

mesenchyme compared to the area of the whole lung across various litters at E12.5 (Figures 

2A, 2C, 2G, and S2E). Subsequently, we focused on the dKO mutants.

Examination of dKO mutant lungs at later developmental stages (E14, Figure 2B; E15.5, 

Figures 2D and 2F) revealed phenotypes consistent with the branching delay observed at 

E12.5, including significantly fewer branches, as well as enlarged terminal structures. Fifty 

percent of the mutant lungs exhibited comparable size compared with controls, whereas 

the other half were significantly smaller than controls (Figure S2F). Lin28a/b double 

heterozygous mutants also demonstrated similar phenotypes, consistent with a delay in 

branching, including decreased lateral secondary branches and enlarged cystic terminal 

branches, with slight differences between the different genotypes (Figures 2I, S2G, and 

S2H). At early time points, we observed an increased mesenchyme area, whereas at later 

time points in the dKO lungs, we observed decreased mesenchyme relative to the whole lung 

area (Figures 2D and 2H). These data indicate that a precise dose of both Lin28a and Lin28b 

in the epithelium is required for the proper timing of lung branching morphogenesis and can 

influence epithelial-mesenchymal communication in the lung.

Although it has been reported that haploinsufficiency of the endogenous NKX2.1 allele 

can lead to peri-natal defects (Herriges et al., 2017), in our experiments, we observed no 

branching defects in the single heterozygous animals harboring the NKX2.1creER allele in 

the absence of CRE induction by tamoxifen. Tamoxifen induction of NKX2.1creER between 

E10.5 and E11 caused decreased branching in only 10% (2 of the 20) of the lungs examined 

from strains carrying the floxed stop-Tdtomato cassette, aKO, or bKO alone (Figures S3C 

and S3D). These low-penetrance branching defects were different from those observed in the 

dKO, which manifested consistently decreased branching and dilated terminal branches at a 

rate of 100% (30 of the 30 dKO lungs examined at multiple time points).

Overexpression of Lin28a/b further established the requirement for precise dosing during 

early lung development. We examined the lungs of mice from doxycycline (dox)-inducible 

gain-of-function LIN28B (rtTA-LIN28B, no Cre used) and conditional gain of function 

(loxp-stop-loxp-rtTA) of both LIN28 paralogs (iLin28a and iLIN28B), again using the 

tamoxifen-induced Nkx2.1creER driver. Dox-inducible whole-body overexpression of 

LIN28B at E10.5 demonstrated larger organ size and, interestingly, thicker epithelial layers 

(Figure S4A). Induction of iLin28a and iLIN28B at E10.5 likewise led to aberrant branching 

morphogenesis, indicated in the iLin28a mutant by significantly fewer lateral secondary 
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branches and in both iLin28a and iLIN28B mutants by enlarged distal tips (Figures 3A 

and 3B). Although both loss-of-function and gain-of-function LIN28 affect branching, 

the airway epithelium of the iLin28a and iLIN28B mutants, like the constitutive mutant, 

appeared thicker (Figures 3C, 3D, S4A, and S4B). This overgrowth phenotype is reminiscent 

of previously described roles for both Lin28a and LIN28B in neoplasia (Nguyen et al., 2014; 

Tu et al., 2015; Urbach et al., 2014; Viswanathan et al., 2009; West et al., 2009). Notably, 

the similarity of the phenotype between gain and loss of function observed in our LIN28 

mutants, including the appearance of enlarged termini and decreased branching, has been 

observed for mutants of other genes involved in branching morphogenesis, such as Sox9 
(Rockich et al., 2013).

Morphogenetic pathways are used throughout development by multiple organ systems to 

increase size, surface area, and complexity. To investigate further whether manipulations 

of LIN28 could regulate branching morphogenesis in a second organ system, we examined 

the mammary gland from the dox-inducible rtTA-LIN28B mutant mice. Like the lung 

phenotype, dox induction of LIN28B in adult females at 3 weeks of age led to decreased 

branching in mammary glands (Figures S4C and S4D). These data demonstrate that precise 

levels of Lin28 are required for normal branching morphogenesis in the mammary gland as 

well as the lung.

We also examined the effects on post-natal survival in the mutants. We found that varying 

deficiencies of Lin28a/b in the lung epithelium led to significant decreases in the viability 

of pups at birth, without decreases in body size (Tables S1 and S2; Figure S5A). Several 

pups failed to take a single breath, whereas others showed labored breathing before dying 

(Tables S1 and S2), which is consistent with a role for Lin28a and Lin28b in proper lung 

development.

Mature let-7 is not expressed during early lung development

To investigate the role of the let-7 family of miRNAs in branching morphogenesis, we 

conducted qRT-PCR for all eight mature let-7 family members throughout the course of lung 

development. Although qualitative expression of Let-7a has been shown in the developing 

bronchial epithelium by in situ hybridization, we observed low expression of all individual 

mature let-7 miRNAs until about E13.5 with incremental increases of let-7a, let-7d, let-7g, 

and let-7i until E18.5, during which time there was a decrease in expression that returned 

moderately during adulthood (Figures 4A, and S6A; Johnson et al., 2007). Similar to what 

has been shown in worms, we observed inverse patterns of expression between Lin28a/b 
and eight of the let-7 family members, with Lin28a/b expression decreasing by E13.5 and 

let-7 miRNAs expression commencing around E13.5 and persisting thereafter (Figure 4B 

and S6A). let-7 family members in both vertebrates and invertebrates have been shown to 

regulate stem/progenitor cell differentiation, and thus, timing of its expression is extremely 

important for the coordinated exit of cells from periods of growth during organogenesis to 

terminal differentiation at the end of embryogenesis (Roush and Slack, 2008). To examine 

the functional consequences of mistimed let-7 miRNA expression at earlier stages of lung 

development when Lin28a/b is present, we ectopically overexpressed let-7S21L, a Lin28a/

b-resistant form of let-7g, starting at E10.5 (Figure S6B; Zhu et al., 2011). Induction 
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of let-7S21L caused abnormal branching morphogenesis with fewer branches and cystic 

terminal structures, phenotypically mimicking the genetic loss of Lin28a/b (Figures 4C, 4D, 

and 4E). LIN28 is a known target of let-7, indicative of a developmental feedback loop 

(Pasquinelli et al., 2000; Reinhart et al., 2000; Roush and Slack, 2008; Xu et al., 2009). 

As expected, ectopic expression of let-7S21L suppressed Lin28a mRNA expression (Figure 

4F). Moreover, we found that the aberrant branching caused by ectopic let-7S21L could be 

rescued by simultaneous overexpression of Lin28a (denoted with white arrows and numbers 

indicating lateral branches, Figures 4E and 4F). These data show that mistimed expression 

of let-7S21L, which was used here as an alternative experimental means of suppressing 

Lin28a, disrupts lung branching morphogenesis, highlighting the temporal importance of the 

expression of the LIN28/let-7 axis during development.

Lin28 regulates pathways involved in branching morphogenesis

To study in an unbiased manner the potential downstream targets of LIN28/let-7 during 

branching morphogenesis, we conducted RNA sequencing (RNA-seq) on whole lungs at 

E12.5 from control and double knockout mice. Exon mapping of Lin28a and Lin28b 
in three knockout samples used for RNA-seq confirmed deletion of the paralogs (Figure 

S7A). Comprehensively, we identified changes in 1,662 genes in the dKO lungs compared 

to controls (910 upregulated; 752 downregulated; Figure 5A). To understand pathways 

impacted by Lin28a/b ablation, we analyzed gene regulatory networks (GRNs) that were 

enriched in the dKO lungs compared to controls (Figure 5B; Cahan et al., 2014). Gene 

Ontology (GO) analysis of the GRNs identified transcriptional regulators involved in cell 

cycle and double-strand break repair to be the most decreased, and those involved in 

endoderm development, epithelial tube branching, and differentiation to be among the 

most increased (Figure 5B). Gene set enrichment analysis (GSEA) of hallmark gene sets 

detected dysregulation of several canonical signaling pathways known to regulate lung 

development, including increased expression of genes regulated by the Wnt/β-catenin and 

BMP signaling pathways and decreased expression of genes in the SHH and FGF pathways 

(Figures 5C–5F). To further analyze the genes directly regulated by the LIN28 proteins, we 

investigated the transcript levels of several of the mature let-7 family members but found 

no increase in these mature let-7 miRNAs in Lin28a/b-deficient lungs (Figure 5G). Based 

on this result, we next conducted an unbiased analysis of known targets of both let-7 and 

Lin28a/b (Figures 5H and 5I). Of the 752 genes that were reduced in our RNA-seq data, 

we found 13 let-7 targets (Figure 5I). Within this subset was downregulation of Hmga2, a 

direct target of both let-7 and LIN28, which is known to play a role in lung proliferation 

and distal epithelia differentiation by enhanced WNT signaling (Hafner et al., 2013; Mayr 

et al., 2007; Singh et al., 2014). We next examined the direct targets of Lin28b identified 

from previously published in vivo crosslinked immunoprecipitation sequencing (CLIP-seq) 

data (Madison et al., 2013). Of the downregulated genes, 321 (42.6%) were direct Lin28b 

targets (Figures 5H and 5I). Interestingly, all but 1 of the 13 differentially expressed 

let-7 targets, including Hmga2, were also Lin28b direct targets (Figure 5I). Moreover, 

several differentially expressed direct Lin28b targets are known regulators of branching 

morphogenesis, including Etv5 and Sox9 (Figure 5I). The downregulated direct targets of 

Lin28b were also enriched for functions in cell cycle and proliferation (Figures 5B, and 5J). 

Interestingly, our analysis also identified Wnt5b, a ligand of non-canonical Wnt signaling 
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that controls the cell cycle and maintains epithelial polarity during branching morphogenesis 

in other organs (Figure 5J; Kadzik et al., 2014; Kessenbrock et al., 2017; Li et al., 2005; 

Patel et al., 2011). Taken together, these results suggest that during early lung development, 

Lin28a and Lin28b coordinate genes specifically involved in cell cycle, proliferation, and 

lung branching morphogenesis predominantly through direct regulation of mRNAs.

Lin28a and Lin28b coordinate feedback between SHH/FGF10

To uncover the mechanisms underlying LIN28-mediated regulation of branching 

morphogenesis, we further explored the signaling pathways implicated by the GSEA in 

Lin28a/b-deficient lungs. The data from the double knockouts demonstrated that expression 

of the Shh ligand and its downstream effectors Gli1 and Gli2 were reduced, whereas 

the Hedgehog pathway inhibitor HIP1 was unchanged relative to controls (Figure S7B). 

Moreover, expression of the FGF pathway ligands FGF9 and FGF10 were increased, 

whereas levels of the pan-receptor tyrosine kinase inhibitor Sprouty1 and the downstream 

effector Etv5 were reduced (Figure S7B). Interestingly, we also found expression levels 

of the transcription factors Sox2 and Sox9 to be dramatically decreased in the dKO 

lungs (Figure S7B). In the aKO, several of the genes examined in the dKO were also 

altered at various time points, including Shh, Fgf10, Sox2, and Sox9. Additionally, the 

majority of let-7 family members remained largely unperturbed (Figure S7C). Together, 

these data identified genes downstream of the SHH and FGF signaling pathways, as well as 

transcription factors Sox2 and Sox9 as targets of Lin28a and Lin28b.

The SHH-FGF10 signaling pathways are particularly interesting due to known negative 

feedback mechanisms that regulate branching morphogenesis (Bellusci et al., 1997; 

Chuang et al., 2003; Pepicelli et al., 1998). Moreover, the FGF10 downstream effector 

Etv5 can positively regulate the Shh enhancer (Bhuiyan et al., 2013; Herriges et al., 

2015). To investigate whether the signaling activity of FGF10 was impacted in our Lin28­

deficient mice, we examined the expression and localization of the downstream targe, 

phosphorylated-ERK (pERK) and the downstream effector Etv5. We observed that pERK 

was increased in both the epithelium and mesenchyme of Lin28a/b-deficient lungs by almost 

2-fold, which is consistent with an increase in FGF10 activity (Figures 6A and S7D). 

Etv5 expression was localized strictly to the nucleus in the distal epithelium of the control 

lungs (indicated by the white arrows), whereas its expression was decreased and not strictly 

localized to the nucleus in the Lin28a/b-deficient lungs (indicated by the yellow arrows, 

Figure 6B). This result is consistent with the recent finding that increased pERK in the 

epithelium can be observed with decreased Etv5 expression (Herriges et al., 2015).

To examine whether regulation of these pathways by Lin28 could occur by direct binding 

to mRNA targets, we used whole-organ lysates to conduct RNA-immunoprecipitation (RIP) 

of genes in pathways previously shown to be dysregulated in our GSEA (Figure 6C). 

RIP-qPCR was conducted on the mRNA for the signaling ligands Bmp4, Shh, and Fgf10 
and their respective downstream effectors Smad1, Gli1, and Etv5 across several wild-type 

organs known to use these pathways early during organogenesis for proliferation, branching 

morphogenesis, or differentiation (Figures 6C and S7E). Lin28a bound to Etv5 mRNA in 

the lung, brain, kidney, and liver and to Gli1 in the lung and brain (Figures 6C and S7E). 

Osborne et al. Page 8

Cell Rep. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We did not observe binding of Lin28a to Shh and Fgf10 mRNA in any of the organs tested. 

Although Lin28a was able to bind Bmp4 mRNA, we did not observe a change specifically 

in this gene within our RNA-seq data, and interestingly, Gli1 is solely expressed in the 

lung mesenchyme (Grindley et al., 1997). Thus, these data suggest that Lin28a and Lin28b 

coordinate lung branching morphogenesis through regulation of the feedback loop between 

SHH and FGF10 by direct binding to Etv5 mRNA (Figure 6C).

Lin28a regulates expression of Sox9

Further interrogation of direct targets of Lin28 identified from the overlay of the RNA­

seq and CLIP-seq datasets revealed the transcription factor Sox9. Sox9 is an interesting 

candidate because, like Etv5, it is activated downstream of the FGF10 pathway in lung 

epithelia. Furthermore, Sox2 and Sox9 demarcate and regulate proximal and distal lung 

epithelial compartments, respectively (Alanis et al., 2014; Chang et al., 2013; Gontan et 

al., 2008; Hashimoto et al., 2012; Que et al., 2009; Rockich et al., 2013; Tompkins et 

al., 2009). Lungs deficient for both Lin28a/b as well as Lin28a alone in the epithelium 

have significantly decreased Sox2 and Sox9 mRNA (Figures S7B and S7C). We then 

imaged the dKO lungs by whole-mount immunofluorescence staining for Sox2 and Sox9 

to visualize any defects in proximal and distal compartmentalization. Mutant lungs with 

branching defects retained normal proximal and distal compartment boundaries (Figure 6D). 

Consistent with mRNA expression, we observed a greater than 40% decrease in Sox2 and 

Sox9 protein expression in the epithelium of the mutant lungs as compared to controls 

(Figures 6D and S7F). To test whether regulation of Sox2 and Sox9 occurred by mRNA 

binding, we performed RIP-qPCRs in various organs shown to express Lin28 and found that 

Lin28a was able to bind directly to both Sox2 and Sox9 in the heart, lung, brain, and kidney 

but not the liver (Figures 6E and 6F). Next, we wanted to understand whether the decrease 

we observed was due to less Sox2 and/or Sox9 expressed in the whole lung or a decrease in 

Sox2 and/or Sox9 expression at the single-cell level. To answer this question, we performed 

immunofluorescence on serial sections of control and double-knockout lungs and counted 

the number of Sox2- and Sox9-positive cells. We observed fewer Sox2- and Sox9-positive 

cells in the double-knockout lungs that those in the control rather than an overall decrease 

in the expression of Sox2 and Sox9 throughout the whole lung (Figures 6G and 6H). Thus, 

the decrease in the dKO mutant of the total amount of Sox2 and Sox9 protein expression is 

consistent with there being fewer epithelial cells expressing Sox2 and Sox9. Taken together, 

the data suggest that Lin28a and Lin28b are capable of regulating lung development through 

binding and regulating Sox2 and Sox9 mRNA.

Previous reports of a loss of Sox9 in the epithelia by using a ShhCre noted defects in 

both branching morphogenesis and alveolar differentiation (Chang et al., 2013; Rockich 

et al., 2013). We have demonstrated that overexpression of both LIN28 paralogs leads to 

decreased branching and enlarged distal tips (Figures 3A and 3B). Interestingly, induction 

of Lin28a in the epithelium leads to increased expression of Nmyc and Sox9 but not Sox2; 

thus, we focused primarily on the regulation of Sox9 (Figure 7A). Because we established 

that Sox9 is a potential direct target of LIN28 in the lung (Figure 6F) and overexpression 

of Lin28a leads to increased Sox9 expression (Figure 7A), we next investigated whether 

a heterozygous loss of Sox9 (using NKX2.1creER) could rescue branching defects or the 
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enlarged distal tips observed in the iLin28a mutant. Indeed, we found that a heterozygous 

loss of Sox9 could rescue the enlarged distal tip phenotype but not the branching defects 

(Figure 7B). Additionally, we confirmed that overexpression of Lin28a in the heterozygous 

Sox9 mutant rescued mRNA expression of Sox9 but not Sox2 (Figure 7C). LIN28A and 

LIN28B have been shown to directly control mRNA processing and translation efficiency 

independent of let-7 regulation (Cho et al., 2012; Tan et al., 2014, 2019; Wilbert et al., 

2012). To further understand how Lin28a regulates Sox9 expression, we examined the 

mRNA half-life of Sox9, hypothesizing that these interactions would result in an increased 

mRNA half-life. Because we demonstrated that Lin28a was able to bind to Sox9 mRNA in 

the embryonic kidney at E13 (Figure 6F), during the onset of kidney branching (Costantini 

and Kopan, 2010), we expressed a GFP control, wild-type human LIN28A, or a human 

mRNA-binding mutant of LIN28A together with Sox9 in human embryonic kidney cells 

(which express neither Sox9 nor LIN28A). Overexpression of wild-type LIN28A led to a 

6-fold increase in mRNA half-life of Sox9 as compared to the mRNA-binding mutant, and 

a 3-fold increase compared to the GFP control (Figures 7D and 7E). Taken together, these 

findings suggest that Lin28a in part controls branching morphogenesis by direct regulation 

of Sox9 mRNA stability.

DISCUSSION

Mammalian organogenesis relies on the interaction of complex signaling pathways and 

their downstream effectors to ensure accurate timing of stem/progenitor cell self-renewal, 

proliferation, and differentiation. These signaling pathways entail elaborate feedback and 

crosstalk mechanisms to achieve the appropriate timing of morphogenic events. Here, we 

describe a role for LIN28-mediated post-transcriptional regulation of mRNAs involved in 

several signaling pathways during lung branching morphogenesis.

At early time points, the delay in branch formation observed with Lin28 deficiency is 

reminiscent of a delay in development similar to the heterochronic phenotype observed in 

worms with the loss of LIN-28 (Ambros and Horvitz, 1984). In addition to the lung, we 

found that manipulations of Lin28a/b in the mammary gland caused branching defects. 

Similarly, we have recently published data showing a role for Lin28b during kidney 

branching morphogenesis (Yermalovich et al., 2019), suggesting a broader role for the 

LIN28 paralogs in branching morphogenesis of multiple organs. Contrary to what was 

observed in the overexpression mutant of LIN-28 in the worm, we found a decrease in 

lung branching morphogenesis similar to the epithelial knockout, suggesting that precise 

doses of Lin28a and Lin28b are required for proper organogenesis. Although roles for 

Lin28a, Lin28b, and let-7 have been investigated in the stem/progenitor cells of mammalian 

neural lineages, other cells and tissues analogous to worm hypodermal seam cells such as 

the lungs and skin have not been extensively studied (Balzer et al., 2010; Nishino et al., 

2013; Rybak et al., 2008; West et al., 2009). A recent finding also suggested a role for 

Lin28a overexpression at later time points during lung development, implying effects on 

differentiation (Komarovsky Gulman et al., 2019).

The phenotype associated with the loss of Lin28a/b in the lung epithelium could be 

explained at least in part by direct regulation of the transcription factor Etv5. It has been 
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demonstrated that the feedback regulation to and from FGF10 and SHH is mediated by Etv5 

regulation of the Shh enhancer (Herriges et al., 2015). Interestingly, we observed that Lin28 

is capable of binding Gli1, a lung mesenchymal transcription factor, suggesting LIN28 may 

regulate the feedback between the SHH and FGF10 pathways in multiple compartments 

of the lung. Although SHH and FGF are associated with branching morphogenesis and 

proliferation in the lung, the signaling molecules and their downstream targets, such as 

Sox9 and the ETVs, are also involved in branching morphogenesis and proliferation of 

other organs, including the kidney, emphasizing the importance of further investigation 

of transcriptional and post-transcriptional regulation of these developmental signaling 

pathways (Chen et al., 2014; Kuure et al., 2010; Reginensi et al., 2011; Seymour et al., 

2007).

We found that LIN28 is capable of binding to and controlling the expression of Sox2 
and Sox9 by increasing mRNA stability and/or translation. Although previous reports 

using the NKX2.1creER demonstrate a mosaic pattern of recombination, we found little 

indication of this in our model (Chang et al., 2013). In vivo data from the loss-of-function, 

gain-of-function, rescue, and RNA-binding experiments together with the in vitro data from 

the half-life experiment suggest that Sox9 may be a bona fide direct target of LIN28. 

Although several of the phenotypes suggested here could be accounted for through the direct 

interaction of LIN28 and Sox9, direct regulation of a number of other targets including 

Etv5 cannot be ruled out. Several different classes of mRNAs bound by Lin28a/b are 

known, including cell cycle regulators, RNA-splicing factors, histones, and genes involved 

in glucose metabolism, but these mRNAs have also been characterized as let-7 targets 

(Tsialikas and Romer-Seibert, 2015). Although our data show that the effects of Lin28 

expression on early stages of lung development are largely let-7 independent, we cannot 

exclude the possibility of a let-7-dependent role for Lin28a/b in the regulation of transcripts 

during later time points of lung development, when both let-7 miRNAs and Lin28a/b are 

expressed. However, we find it compelling that many of the major regulators of early 

development and branching morphogenesis, such as Sox9 and Etv5, do not contain known 

let-7 binding sites and are bound by Lin28a/b in multiple organs. The findings presented 

here establish an early role for the LIN28 proteins during the process of lung branching 

morphogenesis through the post-transcriptional control of Sox9 and potentially Etv5 and add 

to our mechanistic understanding of the development of this complex organ.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for all original resources and reagents 

presented in this manuscript should be directed to and will be fulfilled by the Lead contact, 

George Q. Daley (george.daley@childrens.harvard.edu).

Materials availability—This study generated two new reagents: human pBABE-LIN28A 

mutant (with the cold shock domain (CSD) and the zinc knuckles domain (ZKD) mutated 

to abolish RNA binding capacity. These plasmids are available upon request to the Lead 

contact.
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Data and code availability—The published article includes all datasets generated and 

analyzed during this study. The RNA-seq data described in this study are deposited to the 

Gene Expression Omnibus (GEO) repository. The accession number for the RNA-seq data 

reported in this paper is GEO: ID GSE93571. The previously published LIN28B CLIP data 

was obtained from, Madison et al., 2013. Predicted Let-7 targets were found via TargetScan 

(http://www.targetscan.org/vert_72/).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal studies

Gene Nomenclature: Lin28a/Lin28b (Mouse gene-RNA/DNA); Lin28a/Lin28b (Mouse 

protein); LIN28A/LIN28B (Human gene-RNA/DNA); LIN28A/LIN28B (Human protein); 

Use of Lin28 or LIN28 refers to both human and mouse Lin28a/A and/or Lin28b/B ; LIN-28 

(Worm protein); lin-28 (Worm gene-RNA/DNA).

Mice: All mouse experiments were conducted in accordance with the Institutional Animal 

Care and Use Committee at Boston Children’s Hospital that is accredited by AAALAC. 

Generation of the Lin28b knockout conditional double and single knockout, inducible 

let-7S21L, Lox-stop-Lox-TetOn- Lin28a and LIN28B mice were as previously described 

in Shinoda et al. (2013) and Zhu et al. (2010, 2011). The NKX2.1-creER (JAX no. 

014552), Lox-stop-Lox-tdTomato (JAX no. 007914), and Sox9 mice (JAX no. 013106) 

were purchased from Jackson Laboratories. The whole body Lin28a knockout mice were 

generated using male floxed Lin28a mice crossed to female Ddx4-cre (JAX no. 006954) 

mice, note that female Ddx4-cre mice can be used for global recombination; paternally 

inherited alleles are germ-line specific, see Jackson website for more details. The mice used 

in the study were embryonic ages E11.5-E18.5 (except for the TetO-LIN28B mice used for 

mammary studies). Tamoxifen (Sigma) was diluted in corn oil to 20mg/ml administered 

intraperitoneally at a dose of 0.068mg/g per mouse weight in grams and at E10.5-11. For 

inducible mice doxycycline was also administered ad lib in drinking water at a concentration 

of 1g/L.

Cell lines—HEK293 cells were purchased from ATCC. HEK293 cells were cultured at 

37°C, 5% CO2 atmosphere, in DMEM supplemented with 10% FBS.

METHOD DETAILS

Flow cytometry and FACS analysis—Whole lung was dissociated in collagenase/

dispase (Roche 10 269 63) and stained for the following markers of lung endothelium 

anti-mouse, CD31 PE (Biolegend); blood cells, anti-mouse CD45 PerCP-Cyanine5.5 and 

(Ebioscience) epithelium cells, CD326 (EpCAM) PECy7 (Biolegend). Staining was done 

with 0.1- 0.5 million cells with antibody dilutions of 1:100 for 20 minutes in the dark at 

room temperature. Cells were sorted on the BD Aria cytometer.

Tissue preparation, immunostaining, and quantification of images—At various 

stages, embryos were removed from timed pregnant mice anaesthetized with ketamine/

xylazine and lungs were dissected and fixed in 4% PFA (0.5% for whole mount 

Sox2/Sox9 staining) in PBS at 4 degrees for one hour or 10% formalin overnight. 
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For sectioned immunofluorescent staining, they were fixed either in PFA or formalin. 

Lungs fixed in formalin used for immunofluorescent staining were processed using same 

protocol for immunohistochemical staining as below excluding peroxidase step. Lungs were 

cryoprotected in PBS with 30% sucrose at 4 degrees overnight and then embedded in OCT 

(4583, Tissue-Tek). For sectioned immunohistochemical staining, fixed lungs were fixed 

then moved to 70% ethanol. The protocol for immunohistochemical staining was performed 

as previously published (Tu et al., 2015). For immunofluorescent staining, frozen sections 

at were first incubated in blocking serum (PBS with 5% normal donkey serum (Sigma), 

5% BSA, and 0.5% Triton X-100) for 1 hour and then incubated with primary antibodies 

diluted in blocking serum 4 degrees overnight. The following day, the sections were washed 

with PBS three times at room temperature and then incubated with secondary antibodies 

and DAPI diluted in blocking serum for 1 hour at room temperature. The sections were 

then washed as described above and mounted with Aquamount mounting medium (18606, 

Polysciences). For whole-mount immunostaining, the lungs were dehydrated through a 

methanol/PBS gradient and bleached with 6% hydrogen peroxide in methanol overnight. 

The lungs were rehydrated through a methanol/PBS gradient. Lungs were then washed once 

in 25% methanol/PBT (PBS with 0.1% (vol/vol) Tween-20), once in 50% methanol/PBT, 

once in 75% methanol/PBT, and twice in 100% methanol. Dehydrated specimens were 

stored at −20 degrees in 100% methanol. On day 1, dehydrated lungs where rehydrated 

through an inverted methanol/PBT series (5 min washes in each of 75%, 50% and 25% 

methanol/PBT, followed by 2 × 5 min washes in PBT). Cells were then stained for Sox2 

and Sox9 as previously described in Alanis et al. (2014). For quantification of Sox2+ and 

Sox9+ cells, a total of twelve serial slices of either control and a−/−b−/−;NKX2.1creER lungs 

were stained for Sox2 (green) or Sox9 (red). Using ImageJ (Schindelin et al., 2012), the 

fluorescent signals for each channel were integrated over selected regions of interest (lung 

epithelial cell layers). Integrated DAPI signals of regions where the cell density was low 

enough to enable cell counting were used to calculate the average signal per cell, allowing 

us to estimate the cell numbers of cell-dense regions and the Sox2/Sox9 mean fluorescent 

intensities per cell.

For mesenchyme quantification we used the negative images to take the areas of the 

epithelia subtracted from the area of the whole lung. For mammary glands analysis, mice 

with constitutive doxycycline (Dox) inducible LIN28B were at 4 weeks of age were treated 

with and without dox. At 6 weeks of age the fourth mammary glands were removed fixed in 

PFA and stained with neutral red staining.

qRT-PCR—RNA was isolated from various tissues and organs (from E12.5 to adulthood) 

using TRIzol (Life Technologies). For mRNA and miRNA analysis, cDNA was prepared 

from 2 μg RNA using miSCRIPT II RT Kit (QIAGEN). Absolute quantification PCR was 

performed by using DNA standards purchased from IDT for amplicons of Lin28a primers 

(forward- AGC TTG CAT TCC TTG GCA TGA TGG; reverse- AGG CGG TGG AGT TCA 

CCT TTA AGA) and Lin28b primers (forward-TTT GGC TGA GGA GGT AGA CTG CAT; 

reverse-ATG GAT CAG ATG TGG ACT GTG CGA). cDNA standards for Let7 molecules 

were as previously described in Powers et al. (2016). Linear regression analysis of the cDNA 

standards for Let-7, Lin28a and Lin28b qPCR cycle threshold values and total RNA per cell 
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values were used to calculate copies per cell for each let-7 family member and Lin28a and 

Lin28b. Primers for mRNAs: Shh, Sox2, Sox9, Bmp4, Smad1, β catenin, and MycN were 

from BioRad (PrimePCR SYBR), primers for FGF10, ETV5, and Gli1 were as previously 

described in Herriges et al. (2015).

Measurement of Sox9 mRNA Half-life—Using Lipofectamine 2000, HEK293 cells 

were transfected once with the following constructs: Either pBabe-GFP, human pBabe­

LIN28A wild-type, or a human pBABE-LIN28A mutant (with the cold shock domain (CSD) 

and the zinc knuckles domain (ZKD) mutated to abolish RNA binding capacity) and Sox9 

(Gift from J. Rajagopal, MGH). On the third day after transfection, 293 cells were treated 

with actinomycin D to stop transcription (Sigma, 10ug/mL) and collected at 0,4, and 6 hr. 

RNA was isolated with TRIzol and cDNA was made. mRNA half-life/ was calculated using 

data analysis program in GraphPad Prism (Ratnadiwakara et al., 2018). Briefly, Ct values 

were normalized to t = 0, mRNA abundance was calculated using 2(−ΔCT). mRNA decay 

rates were determined by non-linear regression curve fitting (one phase decay) in GraphPad 

Prism.

Immunoblot analysis and antibodies—Whole lungs were dissected (from E11.5 to 

adulthood) and lysed in RIPA buffer (50mM Tris, 150mM, NaCl, 1%NP-40, 1%Sodium 

deoxycholate, 0.1%SDS) with protease and phosphatase inhibitor cocktail (Thermo 

Scientific). Lysates were then loaded on the gel in 5x Laemmli sample buffer. Gels were run, 

transferred to membranes that were next blocked in 5% milk. Membranes were incubated 

with primary antibodies and HRP-conjugated secondary antibodies. Proteins were visualized 

using ECL with film. Antibodies used throughout manuscript unless otherwise specified: 

Lin28a (Rabbit, Cell Signaling, A177) and mouse specific Lin28b (Rabbit, Cell Signaling), 

α/β tubulin (Rabbit, Cell Signaling), E- cadherin (Rat, Zymed), Sox2 (Goat, Santa Cruz), 

Sox9 (Rabbit, Millipore, AB5535).

In situ hybridization—Probes of approximately ~450-550 base pairs for mouse Lin28a 

and Lin28b were designed to the coding and 3′UTR regions. Digoxigenin-labeled (DIG) 

antisense cRNA probes made using T7 RNA polymerase provided in the T7 in vitro 
transcription kit (AM1333). Frozen sections from wild-type CD1 mice at various ages were 

air-dried, washed in in PBS then acetylated in acetylation buffer (0.01% triethanolamine 

solution in DEPC-water with 0.125 mL of acetic anhydride to 50 mL of triethanolamine 

solution). Slides were permeabilized in PBT (0.1% triton in phosphate-buffered solution, 

PBS) for 30 minutes. Slides were washed and prehybridized for in hybridization buffer 

(4mL-50% dextran, 4 mL- 20X SCC, 10mL formamide, 0.4mL- 50X Denhardt’s solution, 

1 mL fish sperm DNA) for 2 hours. Probes were diluted in hybridization buffer (0.2ng/μl) 

and incubated overnight at 72 degrees. Next day slides were incubated in 0.2x SCC and then 

washed in PBS. Slides were blocked in 20% sheep serum diluted in TTBS (Tween 20) for 

one hour then incubated with anti-DIG antibody at 4 degrees overnight. Slides were washed 

in TTBS and color reaction performed using BM Purple (Roche).

RNA immunoprecipitation (RIP)—Organs (yolk sac, lung, heart, kidney, liver, and 

brains (including skulls)) were dissected from E12.75 wild-type CD1-timed pregnant mice. 
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Lysates were homogenized in lysis buffer (HEPES 50mM, NaCL 150mM, EDTA 20mM, 

Triton X-100 1%, and protease inhibitor cocktail (Roche)) on ice, then spun at 4 degrees 

for 15 minutes at 13K. RNaseOUT inhibitor (Invitrogen) was added to spun lysates. LIN28 

(Abcam) and IgG (SantaCruz) antibodies were conjugated to magnetic Dynabeads. 100 

mg of total protein was added to bead/antibody complex to IP protein/RNA complexes 

overnight at 4 degrees. Genes were detected using qPCR. Data analysis (ΔΔCt method) was 

normalized first equal nanograms of cDNA from 1% input to achieve (ΔCt), then to IgG 

(also normalized to input) to achieve ΔΔCt.

RNA-sequencing and analysis—Lin28a and b double knockout was achieved in the 

lung using tamoxifen to induce recombination of exon 2 flanked with loxP sites. Total 

RNA was collected using TRIzol (Invitrogen) according to the manufacturer’s instructions. 

RNA-seq libraries were constructed following the standard protocol (The SMARTer® 

Ultra Low Input RNA Kit by Clontech). From the raw reads, we removed adaptor 

sequences using a Cutadapt tool, allowing some mismatches (the specific parameters we 

used were -n 2 -e 0.02 –o 15). Then, the cleaned reads were aligned to the mouse 

genome/transcriptome (mm10 and corresponding UCSC gene model) using TopHat2 

software with the following parameters (–library-type = fr-unstranded–min-intron-length 

= 10–coverage-search–microexon-search–min-isoform-fraction = 0) (Kim et al., 2013). To 

estimate expression levels for each gene, we counted aligned reads per gene using a 

htseq-count tool with the following parameters (–stranded = no–idattr = gene_id -t exon 

-i transcript_id) (Anders et al., 2015). Transcription factor networks were defined via the 

CellNet (Cahan et al., 2014) global gene regulatory network (GRN) and assessed for 

differential regulation via Gene Set Enrichment Analysis (GSEA), as an inference-based 

surrogate for changes in transcriptional activity. The up- and downregulated transcription 

factors (FDR < 0.25) were analyzed for conserved biological functions via Gene Ontology 

(GO) classifications. GSEA was also conducted on Hallmark gene sets. In both cases, GSEA 

was run with pre-ranked gene lists based on fold changes over wild-type. Expression was 

further analyzed within subsets of genes selected from the TargetScan database (Agarwal 

et al., 2015) and previously published LIN28B CLIP data (Madison et al., 2013). The raw 

and analyzed data in detailed method is available through Gene Expression Omnibus (GEO) 

with the ID GEO: GSE93571.

QUANTIFICATION AND STATISTICAL ANALYSIS

‘n’ values are equal to animal number of biological replicates of each experiment (which 

includes number of litters examined) and the number of biological in vitro experiments for 

half-life measurement. Statistical analyses for mRNA half-life were performed by GraphPad 

Prism Software, decay rates were quantified by non-linear regression curve fitting (one 

phase decay). Statistics for double knockouts and LIN28B and Lin28a overexpression were 

calculated via one-way ANOVA. Statistics for RIP were compared to IgG via t test. More 

statistical details can be found in the figure legends. All graphs represent means ± SEM, a p 

value of ≤ 0.05 was considered significant (* < 0.05, ** < 0.01). Quantification and analysis 

of RNA-seq and its comparison to CLIP-seq and Let-7 targets via TargetScan is detailed in 

Methods details.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Lin28a and Lin28b control the timing of branching morphogenesis

• Mature Let-7 family members are not highly expressed until mid-gestation in 

lung

• Lin28a binds and controls expression of Sox2, Sox9, and Etv5 mRNA
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Figure 1. Expression of Lin28a and Lin28b in the whole embryo and mouse lung
(A) qRT-PCR was conducted on two independent cohorts of the intestine, stomach, liver, 

heart, and brain from ages E12.5 to E18.5 (minus E16.5) and on three cohorts of lungs 

from ages E11.5 to adult by using DNA standards designed to amplify exon 2 for Lin28a 
and Lin28b. Error bars represent technical replicates of two independant biological samples 

for intestine, staomach, liver, heart, brain. Error bars represent biological replicates of three 

independant biological samples for lung

(B) Immunoblots for protein expression were done with one of three cohorts of lung 

mentioned above from ages E12.5 to E18.5 by using mESCs as the control, conducted 

for Lin28a, Lin28b, and tubulin.

(C) Immunofluorescence was conducted on an E11.5 wild-type (WT) frozen lung section for 

Lin28a, MynN, and DAPI.

(D) We conducted qRT-PCR for Lin28a and Lin28b by using standards that amplify exon 

2 of Lin28a and Lin28b from sorted lung fractions, n = 3 at E12.5. Error bars represent 

biological replicates of three independant biological samples. Scale bar, 0.5 mm.
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Figure 2. Loss of Lin28a and Lin28b leads to aberrant lung branching morphogenesis
(A and B) Whole-mount immunostaining in control (without NKX2.1creER allele) and 

double Lin28a and Lin28b knockout (dKO) lungs at E12.5 (A) and E14.0 (B); lungs 

were stained for E-cadherin to show the epithelium. Tamoxifen was injected at E10.5. 

White arrows point to specific differences in the branch pattern of the cranial most lateral 

secondary branch in left lobe (L.L1) and the L.L1.A1 branch that did not formed in the 

mutant lung. Right: Red arrows denote abnormalities in bronchi size.

(C and D) Whole left lungs imaged in brightfield together with images in negative-contrast 

channels to show distinction of the mesenchyme in control and dKO lungs at E12.5 (C) and 

E15.5 (D). The n = 30 of all time points examined (E12.5, E13.0, E14.0, E15.5, and E18.5) 

of the double knockouts with abnormal phenotype for the dKO compared to the control (no 

cre, littermates); n = 34 across 11 litters.

(E and F) Graphs quantifying lateral secondary branches of a subset of E12.5 and E15.5 

lungs from different litters; E12.5, n = 4 lungs from 3 different litters, *p < 0.05 (E); E15.5, 

n = 4 lungs from 2 different litters, **p < 0.01 (F). All controls are littermates.

(G and H) Graphs quantifying area of mesenchyme at E12.5 and E15.5 compared to whole 

lung area; E12.5, n = 7 lungs from 2 different litters (G); E15.5, n = 6,3 lungs in Figure S2F 

(H).

(I) Whole left lungs imaged in brightfield (left to right) from 

control, Lin28a−/−Lin28b+/−+/−;NKX2.1creER, Lin28a+/−Lin28b+/−+/−;NKX2.1creER, and 

Lin28a+/−Lin28b−/−+/−;NKX2.1creER.

(J) Graph quantifying the number of lateral branches in (I); n = 2 lungs from 2 different 

controls, Lin28a−/−Lin28b+/−; NKX2.1creER, and Lin28a+/−Lin28b−/−; NKX2.1creER; and n = 
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3 lungs from 2 different litters for Lin28a+/−Lin28b+/−NKX2.1creER. Statistics for double 

knockouts were calculated by one-way ANOVA. All scale bars, 0.5 mm.
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Figure 3. Gain of Lin28a or LIN28B leads to aberrant lung branching morphogenesis
(A and B) Left: Whole left lungs imaged in brightfield together with images in negative­

contrast channels to show contrast for mesenchyme in control and inducible LIN28 

(iLin28a; Nkx2.1CreER or iLIN28B; Nkx2.1CreER). (A) The mouse Lin28a gene. (B) The human 

LIN28B gene. Genes induced by the addition of doxycycline and tamoxifen at E10.5. Right: 

Graphs quantifying the number of lateral branches in left panels; n = 3 lungs from control, 

iLin28a, and iLIN28B; *p < 0.05, **p < 0.01. Statistics for knockout were calculated by 

one-way ANOVA.

(C and D) Mouse (C) and human (D). Left panels: Sections of lungs at E13.5 stained by 

immunohistochemistry for the epithelial marker FOXA2. Right panel: Graphs quantifying 

number of Foxa2+ airways in the left panel *p = 0.05, **p = 0.01. Analyses of stats for 

inducible data used one-way ANOVA. Scale bar, 0.5 mm for (A) and (B). Scale bars for (C) 

and (D), 50 μm.
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Figure 4. Mature let-7 is not expressed during early lung development but is sufficient to impair 
branching morphogenesis by regulation of Lin28
(A) Heatmap representing qRT-PCR conducted on two cohorts of lungs for quantitative 

analysis of all let-7 family members.

(B) Graph of absolute expression levels of Lin28a, Lin28b, and all let-7 family members 

across lung development.

(C) Whole left lungs were imaged in bright field together with images in negative-contrast 

channels to show contrast for mesenchyme in control and inducible let-7S21L; Nkx2.1CreER at 

E14.0.

(D) Left: Sections of lungs at E15.5 immunostained by using immunohistochemistry for the 

epithelial marker FoxA2. Right: Quantification of the FoxA2+ airways in the right panel. 

Scale bar, 0.5 mm.

(E) Whole left lungs imaged in bright field together with images in negative-contrast 

channels to show contrast for mesenchyme in control (left panel), inducible let-7S21L 
(middle panel), and inducible let-7S21L together with inducible Lin28a (right panel) at 

E13.5. White number indicates lateral branches, and white arrows point to rescue of an 

individual branching defect.
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(F) Lin28a expression in lungs from the control (left panel), inducible let-7 
S21L (let-7S21L; middle panel), and inducible let-7S21L together with inducible 

iLin28a; Nkx2.1CreER (right panel) from (E). Scale bars, 0.5 mm for (C) and (E). Scale bars, 

50 μm for (D).

Osborne et al. Page 27

Cell Rep. Author manuscript; available in PMC 2021 August 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Lin28a/b regulate pathways involved in branching morphogenesis
(A) RNA-seq on control and dKO whole lungs at E12.5. The plot represents global gene 

expression levels.

(B) Gene regulatory networks that were differentially expressed in the RNA-seq were 

identified using CellNet framework (Cahan et al., 2014). Enriched transcription factors were 

then further annotated using Gene Ontology (GO) terminology.

(C–F) Gene set enrichment analysis (GSEA) of pathways changed relative to the WT.
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(G) RT-qPCR was conducted on Lin28a+/−Lin28b−/−; NKX2.1creER and 

Lin28a−/−Lin28b+/−; NKX2.1creER whole lungs for the expression of Lin28a and Lin28b and 

let-7a, let-7c, and let-7d at E12.5.

(H) Cumulative distribution function of mRNA changes for let-7 targets (predicted from 

Target Scan) and reported physical Lin28b targets (CLIP-sequencing) (Madison et al., 

2013).

(I) Venn diagram of differential genes (>1.5-fold downregulated) identified for all 856 

predicted let-7 targets, of which 13 genes were changed (1.7% overlap; p = 0.002 for 

depletion), and 6,357 physical targets of Lin28b, of which 321 were changed (p = 1.3 × 

10−12 for over-representation).

(J) Significant GO terms that were enriched in the differential CLIP targets of Lin28b.
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Figure 6. Lin28a and Lin28b coordinate feedback loops between SHH/FGF10
(A and B) Immunofluorescence for phosphorylated ERK (pERK) at E14.0 (A) and ETV5 

at E12.5 (B) from sectioned control and Lin28a/b-deficient lungs Lin28a+/−b+/−;NKX2.1creER, 

Lin28a+/−b−/−;NKX2.1creER, and Lin28a−/−b−/−;NKX2.1creER.

(C) RNA immunoprecipitation (RIP) using antibodies against Lin28a. RIPs were done in 

WT CD1 mice from E13.0 lung. RT-PCR was done from mRNAs bound to LIN28 (all 

within coding regions) of Etv5, Fgf10; Bmp4, Smad1; and Shh, Gli1. The analysis is 

represented as percentage of input. *p < 0.05 compared to immunoglobulin G (IgG).

(D) Right: Brightfield images of whole left lungs from control and Lin28a−/−/

Lin28b−/−; NKX2.1creER lungs Left: Whole-mount lung immunostaining done for control 

and Lin28a−/−/Lin28b−/−; NKX2.1creER lungs at E13.5 stained for Sox2 and Sox9 to show 

proximal and distal epithelium.

(E and F) RIP using antibodies against Lin28a. RIPs were done in WT CD1 mice from 

E13.0 heart, lung, brain, kidney, and liver. RT-PCR was done from mRNAs bound to LIN28 

(within coding regions) of Sox2 (E) and Sox9 (F). The analysis is represented as percentage 

to input. *p < 0.05 compared to IgG by t test.

(G) Representative images of immunofluorescence for Sox2, Sox9, and DAPI at E12.5 from 

sectioned control and Lin28a−/−Lin28b−/−;NKX2.1creER lungs.
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(H) Quantification of immunofluorescence from (G), for Sox2 and Sox9 at E12.5 from 

sectioned control and Lin28a−/−Lin28b−/−;NKX2.1creER lungs. A total of 12 slices from each 

sample was used to quantify either Sox2 or Sox9 positivity per cell (as measured by DAPI). 

*p < 0.05. Scale bars, 0.5 mm for (A( and (D); scale bars, 200 μm for (B) and (G).
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Figure 7. Lin28a regulates expression of Sox9
(A) Relative qRT-PCR done for Lin28a, Nmyc, Sox2, SHH, FGF10, ID2, and Sox9 mRNA 

from control and inducible Lin28a (iLin28aNKX2.1creER) lungs. Tamoxifen and doxycycline 

were added at E10.5; lungs were dissected at E13.5.

(B) Whole left lungs imaged in brightfield together with images in negative­

contrast channels to show contrast for mesenchyme in control, inducible Lin28 

(iLin28aNKX2.1creER), and inducible Lin28a together with heterozygous loss of Sox9 

(iLin28a; Sox9+/−; NKX2.1creER). Tamoxifen was injected at E10.5, and mice were sacrificed 

at E14; control and iLin28a, n = 4 lungs from 2 different litters; iLin28a; Sox9+/−;, n = 3 

from 2 different litters.

(C) Relative qRT-PCR done for Sox9 and Sox2 from control, Sox9+/−; NKX2.1creER, and 

iLin28a; Sox9+/−; NKX2.1creER.

(D) Relative qRT-PCR was done of HEK293 cells expressing GFP (control), WT LIN28A, 

or an RNA-binding mutant (MUT) LIN28A that was then treated with actinomycin D for 0, 

4, or 6 h. Representative plot of n = 4 experiments.

(E) Measurements of mRNA half-life following qRT-PCR for data in (D).
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(F) Model of LIN28 binding to transcriptions factors Sox2, Sox9, and Etv5 in the epithelia 

and Gli1 in mesenchyme. Scale bars, 0.5 mm.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PE anti-mouse CD31 BioLegend cat#102508; RRID:AB_312915

PerCP-Cy5.5 anti-mouse CD45 eBioscience cat#103132; RRID:AB_469717

PECy7 anti-mouse EpCAM BioLegend cat #118216; RRID:AB_1236471

anti-rabbit Lin28a Cell Signaling #A177 RRID AB_2297060

anti-mouse specific Lin28b Cell Signaling cat#5422S; RRID:AB_10697489

anti-rabbit α/β tubulin Cell Signaling cat#2148S

anti-mouse Ecadherin Novex (Life Technologies) Clone: ECCD2 Cat#13-1900

anti-goat SOX2 Santa Cruz (Discontinued) cat#SC-17320 ; RRID AB_2286684

anti-rabbit SOX9 Millipore cat#AB5535; RRID AB_2239761

anti-rabbit LIN28 (used for IP) Abcam cat#ab63740 and #ab46020

anti-rabbit IgG (used for IP) Santa Cruz cat# SC-2491; RRID:AB_628495

AP conjugate anti-sheep digoxigenin Roche cat#50-100-3276; RRID:AB_514497

Chemicals, peptides, and recombinant proteins

Tamoxifen Sigma cat# T5648

Doxycycline Sigma cat#D9891

Collagenase/Dispase Roche cat#1026963

TRIzol Life Technologies cat#15596026

RNaseOUT inhibitor Invitrogen cat#10777019

Actinomycin D Sigma cat# A9415

RIPA buffer Sigma cat#R0278

Halt-Protease and Phosphatase Cocktail in Thermo Scientific cat# 78442

OCT freezing medium Tissue-Tek cat#4583

Donkey Serum Sigma cat#D9663

Critical commercial assays

SMARTer ULTRA Low Input RNA Kit Clonetech cat#634936

miSCRIPT II RT Kit QIAGEN cat#/ID: #218161

T7 in vitro transcription Kit Life Technologies cat#AM1333

DAB Substrate Vector Labs cat# SK-4100

Deposited data

RNA-seq This manuscript GEO: GSE93571

LIN28B Clip-Seq Madison et al., 2013 N/A

Experimental models: Cell lines

HEK293 Sigma cat#85120602

Experimental models: Organisms/strains

Wild Type, CD-1mice Charles River Crl:CD1(ICR)

Col1a-TRE-Lin28a mice N/A Zhu et al., 2010
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REAGENT or RESOURCE SOURCE IDENTIFIER

Col1a-TRE-LIN28B mice N/A Zhu et al., 2011

Col1a-TRE- let-7S21L mice N/A Zhu et al., 2011

Lin28bfl/fl mice N/A Shinoda et al., 2013

Lin28afl/fl mice N/A Shinoda et al., 2013

Nkx2.1creER mice Jackson Laboratories no. 014552

Sox9fl/fl mice Jackson Laboratories no. 013106

Lox-stop-LoxTdtomato Jackson Laboratories no. 007914

Ddx4-cre Jackson Laboratories no. 006954

Oligonucleotides

See Table S2 for Primer Sequences and catalog 
numbers

N/A

Recombinant DNA

a human pBABE-LIN28A mutant This Manuscript N/A; available upon request from Lead Contact

human pBabe-LIN28A wildtype This Manuscript N/A; available upon request from Lead Contact

human pBabe-GFP This manuscript N/A; available upon request from Lead Contact

Software and algorithms

GraphPad Prism 7 GraphPad https://www.graphpad.com/scientific-software/
prism/

ImageJ (Fuji) https://imagej.net/software/fiji Schindelin et al., 2012

TopHat2 Kim et al., 2013 N/A

CellNet https://github.com/pcahan1/
CellNet_Cloud

Cahan et al., 2014

TargetScan Agarwal et al., 2015 N/A
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