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Currently, many people are afflicted by cerebral diseases that cause dysfunction in the
brain and perturb normal daily life of people. Cerebral diseases are greatly affected by
cerebral metabolism, including the anabolism and catabolism of neurotransmitters,
hormones, neurotrophic molecules and other brain-specific chemicals. Natural
medicines (NMs) have the advantages of low cost and low toxicity. NMs are potential
treatments for cerebral diseases due to their ability to regulate cerebral metabolism.
However, most NMs have low bioavailability due to their low solubility/permeability. The
study is to summarize the better bioactivity, cerebral metabolism and pharmacokinetics of
NMs and its advanced version. This study sums up research articles on the NMs to treat
brain diseases. NMs affect cerebral metabolism and the related mechanisms are revealed.
Nanotechnologies are applied to deliver NMs. Appropriate delivery systems (exosomes,
nanoparticles, liposomes, lipid polymer hybrid nanoparticles, nanoemulsions, protein
conjugation and nanosuspensions, etc.) provide better pharmacological and
pharmacokinetic characteristics of NMs. The structure-based metabolic reactions and
enzyme-modulated catalytic reactions related to advanced versions of NMs alter the
pharmacological activities of NMs.
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INTRODUCTION

Cerebral diseases are usually caused by abnormal cerebral metabolism (anabolism and catabolism) of
neurotransmitters, hormones, neurotrophic molecules, and other brain-specific chemicals (Graf
et al., 2013). Alzheimer’s disease (AD), depression, cerebral injury and brain tumors are four major
brain pathologies that induced by aberrant cerebral metabolism. AD is mainly caused by
neuroinflammation (Angeloni et al., 2019), loss of neurons, and the accumulation of
phosphorylated tau protein and amyloid plaques (Aβ) in the brain (Karch and Goate, 2015).
AD has affected over 50 million people worldwide (Najm et al., 2020), leading to the progressive and
irreversible loss of memory and other cognitive functions in patients (Nho et al., 2020). Depression
results from dysregulated release of neurotransmitters. Depression has been found to occur in 14.8%
of males and 14.1% of females worldwide (Kyu et al., 2018). It has become the third leading cause of
disability (Corriger and Pickering, 2019). Traumatic brain injury (TBI) remains a common cause of
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disability and death worldwide (VanItallie, 2019) and leads to
increased neuroinflammation (Karve et al., 2016). TBI is always
accompanied by secondary injuries such as spastic cerebral palsy
(Enslin et al., 2020), attention deficit hyperactivity disorder
(Narad et al., 2018) and cerebral ischemia (Kaur and Sharma,
2018). Glioma, a malignant glial tumor, is the most common
tumor in the central nervous system. Glioma has a higher rate of
mortality than other tumors (Anjum et al., 2017) and is the
second leading cause of death among central nervous system
diseases (Bilmin et al., 2019). Targeting uncontrolled tumor
proliferation in the brain (Shah and Kochar, 2018) by
inhibiting tumor growth or engendering tumor apoptosis
would be the most potent gliomas treatment.

Natural medicines (NMs) are known for their high availability,
clear efficacy, and low toxicity and economic cost (Yang et al.,
2020). Some NMs have been proven to have positive effects by
regulating cerebral metabolism to ameliorate brain diseases.
However, most NMs that affect cerebral metabolism (NMCs)
have low solubility, low permeability and poor pharmacokinetic
characteristics. Hence, loading NMCs with advanced drug
delivery systems such as exosomes, nanoparticles and
liposomes, provides ways to solve this problem.

Here, the relationships between NMCs found through
available databases and cerebral metabolism are investigated.
The solubility, permeability, molecular structure and molecular
weight characteristics of various NMCs are presented. Drug
delivery systems that enhance the pharmacokinetic and
pharmacodynamic characteristics features of NMCs are
reviewed. The structure-based in-vivo metabolic reactions
modulated by metabolic enzymes and metabolites of NMCs
are summarized.

EFFECTS OF NMCS ON CEREBRAL
METABOLISM

NMCs have effects on neurotransmitters. Neurotransmitters are
chemicals released by axons to transfer information between
neurons. Because of the substantial and unique roles
neurotransmitters play in brain function, targeting
neurotransmitter metabolism is considered a potent approach
to treat neurological and psychiatric disorders (Hyman, 2005).
Artemisinin, cannabidiol, geniposide and ginsenoside Rb1 are
neuroprotective agents (Supplementary Table S1) (Liu W. et al.,
2015; Watt and Karl, 2017; Zhao J. et al., 2018; Qiang et al., 2018).
They treat AD and traumatic cerebral injuries and attenuate
secondary injuries by inhibiting nitric oxide (NO) release. NO is a
gas neurotransmitter. NO regulates the release of
proinflammatory molecules, interacts with reactive oxygen
species (ROS), promotes the formation of reactive nitrogen
species (RNS), and ultimately causes cellular death (a hallmark
of many neurodegenerative diseases and cerebral injuries)
(Asiimwe et al., 2016). Evodiamine, icariin, curcumin and
ferulic acid mitigate depressive symptoms by raising the levels
of serotonin, norepinephrine, monoamine or dopamine (He et al.,
2018; Jin et al., 2019; Sasaki et al., 2019; Fusar-Poli et al., 2020; Xie
et al., 2020; Zhao et al., 2020; Xu et al., 2021). Baicalin controls

symptoms of attention deficit hyperactivity disorder (ADHD) by
increasing dopamine levels. Dysfunction of catecholamine and
particular dopamine neuronal systems is considered a cause of
ADHD (Zhou et al., 2019).

NMCs have effects on hormones. NMCs such as ferulic acid
and icariin effectively relieve depressive-like behavior by decreasing
the concentrations of corticosterone, adrenocorticotropic hormone
(ACTH) and cortisol, which are also called the primary stress
hormones. These NMs treat stress-induced depression caused by
impaired regulation of the hypothalamic-pituitary-adrenal (HPA)
axis (Jin et al., 2019; Zheng et al., 2019).

NMCs have effects on neurotrophic molecules. Neurotrophic
molecules (also called neurotrophic factors) are molecules
(mostly proteins) derived from neurons that facilitate the
survival/differentiation of neurons (Unsicker, 2013). They are
composed of neurotrophins, neuroregulatory cytokines, the
fibroblast growth factor (FGF) family, the transforming growth
factor-β (TGF-β) family, the insulin-like growth factor (IGF)
family and other growth factors, such as vascular endothelial
growth factor (VEGF). The metabolism of neurotrophic
molecules affects the brain metabolism and thus affects
neurodegenerative diseases and cerebral injuries.

NMCs have effects on neurotrophins. Neurtrophins are
proteins that regulate the survival, growth and programmed
cell death of neurons (Unsicker, 2013). Nerve growth factor
(NGF) and brain-derived neurotrophic factor (BDNF) are two
neurtrophins that play critical physiological roles in
peripheral/central nervous system function. NGF and BDNF
signaling also regulate neuropathic pain through receptors
such as tropomyosin receptor kinase A (TrkA) and B
(TrkB) (Khan and Smith, 2015). NMCs such as baicalin,
curcumin and ferulic acid augment the levels of BDNF or
the receptor TrkB to assuage depressive-like behaviors (Liu
et al., 2017; Lu et al., 2019; Sasaki et al., 2019; Fusar-Poli et al.,
2020), since depressive patients in the clinic are always found
to have reduced BDNF levels in the peripheral system (Liu
et al., 2017). Rutin mitigates cerebral ischemia injury by
activating estrogen receptor-mediated BDNF-TrkB/NGF-
TrkA signaling (Liu et al., 2018), and chlorogenic acid
mitigates ischemic injury by increasing the level of NGF in
brain tissue (Miao et al., 2017). Oleandrin has a
neuroprotective effect in antitumor treatment by enhancing
BDNF (Garofalo et al., 2017).

NMCs have effects on neuroregulatory cytokines.
Neuroregulatory cytokines such as interleukin-6 (IL-6), ciliary
neurotrophic factor (CNTF), leukemia inhibitory factor (LIF),
cardiotrophin-1 and cardiotrophin-2 (CT-1 and CT-2),
oncostatin-M and neuropoietin are useful in the treatment of
neurodegenerative diseases and trauma (Unsicker, 2013). Anti-
inflammatory cytokines prohibit the inflammation process, while
pro-inflammatory cytokines promote the inflammation cascade
(Boshtam et al., 2017). Artemisinin, cannabidiol, oxymatrine and
geniposide treat AD by decreasing the expression of IL-6 (Liu
et al., 2015b; Watt and Karl, 2017; Qiang et al., 2018; Chen Y.
et al., 2019). Overexpression of proinflammatory cytokines
provokes neurodegeneration induced by activated microglia,
which are thought to clear the Aβ protein. Accordingly,
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accumulated Aβ leads to neuroinflammation, neuronal synapse
loss and eventually AD (Kaur et al., 2019). The proinflammatory
cytokines are released after middle cerebral artery occlusion
(MCAO) catalyzed by focal cerebral ischemia/reperfusion (I/R)
damages of blood brain barrier, cerebral edema and acute
inflammation. Salvianolic acid B relieves cerebral injury by
reducing IL-6 expression (Fan et al., 2018) Leonurine, baicalin,
geniposide and ferulic acid (Jia et al., 2017; Zhao Y. et al., 2018;
Guo et al., 2019; Zheng et al., 2019) reduce IL-6 expression to treat
depression (Kim et al., 2016).

NMCs have effects on TGF-β and VEGF. TGF-β is involved in
the development, differentiation, angiogenesis, apoptosis and
survival of body cells. Anomalous expression or dysregulation
of TGF-β leads to neurodegenerative disease, cancers, and so on
(Cabello-Verrugio, 2018). TGF-β may act as a pro- or anti-
inflammatory cytokine in different contexts. Salvianolic acid B
increases TGF-β (acting as an anti-inflammatory factor) to
palliate depressive-like behaviors in depressive patients (Zhang
et al., 2016), whereas icariin reduces TGF-β (acting as a
proinflammatory factor) to treat cerebral ischemia (Jin et al.,
2019). VEGF is essential for vascular and nervous system
development, and tanshinone IIA activates VEGF to prompt
angiogenesis, axon growth, and neuronal survival and to
protect nerve cells and resist apoptosis after brain damage
(Zhang W. et al., 2017). Leonurine augments VEGF
expression, which is conducive to the formation of nuclear
factor erythroid 2-related factor 2 (Nrf-2), to treat cerebral
ischemic stroke (Xie et al., 2019).

NMCs have effects on other brain-specific chemicals. These
chemicals usually participate in regulating neurotransmitters,
hormones, and neuroregulatory cytokines to modulate cerebral
metabolism. In the treatment of AD, tanshinone IIA, ginsenoside
Rd, cannabidiol, oxymatrine, cholic acid, vitamin A, puerarin,
icariin, geniposide and curcumin prevent and ameliorate AD by
diminishing Aβ deposition and tau protein phosphorylation (Liu
et al., 2015a; Karch and Goate, 2015; Zeng J. et al., 2017; Tang and
Taghibiglou, 2017; Watt and Karl, 2017; Yan et al., 2017; Yao
et al., 2017; Chen Z. et al., 2019; Jin et al., 2019; Majid et al., 2019;
He et al., 2020; Fu et al., 2021). Cannabidiol disrupts the Wnt/β-
catenin pathway to inhibit tau protein phosphorylation (Watt
and Karl, 2017). Ginsenoside Rd, salvianolic acid B and icariin
can also treat AD by increasing the expression of α-secretase and
soluble amyloid precursor protein alpha (sAPPα), which are
negatively related to Aβ formation, or by decreasing the
expression of β-secretase, γ-secretase, BACE1, sAPPβ, and
amyloid precursor protein (APP), which stimulates Aβ
production (Tang et al., 2016; Yan et al., 2017; Jin et al.,
2019). Rhynchophylline treats AD by inhibiting
erythropoietin-producing hepatocellular A4 (EphA4), which is
key in synaptic loss and dysfunction and mediates Aβ (Fu et al.,
2021). Capsaicin and salvianolic acid B inhibit AD by inhibiting
glycogen synthase kinase 3 beta (GSK-3β), leading to a decrease in
inflammatory signaling molecules and preventing tau
hyperphosphorylation (Tang et al., 2016; Xu et al., 2017).
Neuronal apoptosis plays crucial roles in AD treatment.
Tanshinone IIA and ginsenoside Rb1 are AD medicines that
upregulate the ratio of Bcl-2 (an antiapoptosis protein) to Bax (a

proapoptotic protein) and downregulate caspase-3 (an effector of
the main initiator in the apoptotic pathway) (Wang C. et al., 2018;
He et al., 2020). Butylphthalide inhibits mitogen-activated
protein kinases (MAPKs), which accelerate brain tissue
apoptosis, to treat AD (Song et al., 2017). Tanshinone IIA
prevents AD by preventing the abnormal expression of glucose
regulated protein 78 (GRP78), eukaryotic initiation factor 2-alpha
(eIF2α), inositol-requiring enzyme 1α (IRE1α) and activating
transcription factor 6 (ATF6) to prevent endoplasmic
reticulum (ER) stress, which would induce apoptosis and
eventually AD through the CCAAT/enhancer-binding protein
homologous protein (CHOP) and c-Jun N-terminal kinase (JNK)
pathways, which are also hindered by tanshinone IIA (He et al.,
2020). Geniposide activates the GLP-1R/AKT signaling pathway,
which exerts neuroprotective effects against AD and depression
by preventing apoptosis and inflammatory processes and
promoting neurite outgrowth (Liu W. et al., 2015; Zhao
J. et al., 2018). Moreover, as mentioned before, the
proinflammatory process accelerates AD and the associated
deterioration. Artemisinin, tetrandrine, cannabidiol,
oxymatrine, and geniposide directly reduce the expression of
proinflammatory cytokines such as IL-6, IL-1β, IL-17A, and
TNF-α (Liu et al., 2015b; Watt and Karl, 2017; Qiang et al.,
2018; Chen Y. et al., 2019; Ren et al., 2021) to control AD. Nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB),
which is suppressed by artemisinin, tetrandrine, cannabidiol, and
scutellarein (Watt and Karl, 2017; Qiang et al., 2018; Huang et al.,
2019; Ren et al., 2021), and cyclooxygenase, which is impeded by
geniposide (Liu et al., 2015b), are always involved in the control of
proinflammatory cytokines and inflammatory responses to
promote AD. Artemisinin reduces the expression of MyD88, a
transducer in the proinflammatory pathway, to alleviate AD
(Qiang et al., 2018). Artemisinin and geniposide suppress Toll-
like receptor 4 (TLR4) to inhibit the NF-κB and MAPK signaling
pathways to ameliorate AD (Liu W. et al., 2015; Qiang et al.,
2018). Capsaicin restores the PI3K/AKT signaling pathway to
treat T2D-induced AD, since damage to brain insulin signaling
might cause AD (Xu et al., 2017). Cannabidiol inhibits
S100 calcium-binding protein B (S100B), inducible nitric oxide
synthase (iNOS) and glial fibrillary acidic protein (GFAP) to
reduce reactive gliosis induced by Aβ (Watt and Karl, 2017).

Leonurine, salvianolic acid B, baicalin, geniposide, and ferulic
acid (Zhang et al., 2016; Jia et al., 2017; Zhao Y. et al., 2018; Guo
et al., 2019; Zheng et al., 2019) decrease the proinflammatory
cytokines IL-1β and TNF-α or increase the antiinflammatory
factors IL-10 and TGF-β to assuage depressive-like behavior.
Leonurine and curcumin inhibit NF-κB (Jia et al., 2017; Fusar-
Poli et al., 2020). Baicalin reduces TLR4 while augmenting the
PI3K/AKT/FoxO1 pathway to mitigate depression (Guo et al.,
2019). Icariin and curcumin decrease the level of corticotropin-
releasing factor (CRF), a protein that leads to the release of
cortisol and monoamine oxidase A and B and catalyzes the
metabolism of norepinephrine, serotonin, and dopamine (Gu
et al., 2017; Jin et al., 2019; Fusar-Poli et al., 2020). Icariin also
restores the glucocorticoid receptor (GR) and serotonin 1A
receptor levels, facilitating antidepressive behavior by
improving HPA axis function (Jin et al., 2019). Baicalin and
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ferulic acid increase the levels of synaptic proteins, including
postsynaptic density protein 95 and synapsin I, which are
inactivated in depressive patients (Liu et al., 2017; Lu et al., 2019).

In addition to leading to AD and depression, the
proinflammatory process also contributes to TBI and
secondary injuries. Ginsenoside Rb1, salvianolic acid B, and
icariin directly decrease the levels of proinflammatory factors,
such as IL-1β and TNF-α (Zhao J. et al., 2018; Fan et al., 2018; Jin
et al., 2019). Tanshinone IIA suppresses p-NF-κB, p-p38MAPK
and iNOS to mitigate SCP (Zhang X. et al., 2017). Ginsenoside
Rb1 decreases iNOS, and evodiamine and icariin reduce NF-κB to
treat cerebral injury (Zhao et al., 2014; Zhao J. et al., 2018; Jin
et al., 2019). Icariin also inhibits the degradation of NF-κB light
polypeptide gene enhancer in B-cells inhibitor alpha (IκB-α, an
inhibitor of NF-κB), and increases peroxisome proliferator-
activated receptor-alpha (PPARα) and peroxisome proliferator-
activated receptor-gamma (PPARγ) to upregulate
antiinflammatory cytokines and downregulate
proinflammatory factors (Morotti et al., 2017; Jin et al., 2019).
Leonurine upregulates Nrf-2, which improves oxidative stress in
cerebral ischemic stroke and benefits brain tissues by increasing
VEGF levels (Xie et al., 2019). Ginsenoside Rb1 inhibits high-
mobility group box 1 (HMGB1), a proinflammatory mediator, to
disrupt the inflammatory signals (Zhao Y. et al., 2018).
Tanshinone IIA activats the PI3K/AKT/mTOR pathway to
protect HT-22 cells from oxidative stress injury (Zhu et al.,
2017). Ginsenoside Rb1 is neuroprotective against cerebral
ischemia by activating the P-AKT/P-mTOR signaling pathway
and inhibiting the P-PTEN protein, which is an inhibitor of the
PI3K/AKT signaling pathway (Guo et al., 2018). Rutin boosts the
levels of estrogen receptor alpha and beta (ERα and ERβ), which
modulate the growth, survival and metabolism of cells by
regulating downstream targets and activating the BDNF-TrkB
and NGF-TrkA signaling pathways, to mitigate cerebral ischemia
injury (Liu et al., 2018). Chlorogenic acid increases hypoxia-
inducible factor alpha (HIF-1α), which is neuroprotective against
cerebral ischemia reperfusion injury by regulating erythropoietin
(EPO), VEGF, glucose transporter 1 (GLUT-1) and
adrenomedullin (ADM) (Miao et al., 2017). Evodiamine
upregulates pAkt and pGSK3β by activating the AKT/GSK
signaling pathway to exert anti-inflammatory effects against
cerebral ischemia (Zhao et al., 2014). Salvianolic acid B
reduced GFAP, ionized calcium-binding adaptor molecule 1,
and caspase-3 to suppress astrocyte activation, which
diminishes brain cell apoptosis (Fan et al., 2018).

Regarding glioma treatment, Δ9-tetrahydrocannabinol binds
to G protein-coupled cannabinoid receptors 1 and 2 (CB1, CB2)
to stimulate MAPK and endoplasmic reticulum stress-related
pathways to reduce tumor growth (Scott et al., 2014). Salvianolic
acid B stimulated intracellular ROS production and eventually
caused apoptotic cell death in glioma U87 cells (Wang et al.,
2013). Flavokawain B activated the ATF4-DDIT3-TRIB3-AKT-
mTOR-RPS6KB1 signaling pathway in human glioblastoma
multiforme cells to promote autophagy in glioma cells (Wang
J. et al., 2018).

Although some of the mechanisms of effects of NCMs on these
diseases remain unclear, and animal experiments are mainly

performed for these NCMs, they have shown remarkable
impact on the mitigation and prevention of AD, depression,
TBI and its following injuries, and glioma.

SOLUBILITY, PERMEABILITY AND
STRUCTURAL PROPERTIES OF NMCS

NMC absorption is largely contingent on solubility and
permeability. Usually, higher solubility and permeability results
in better absorption (Zeng M. et al., 2017; Mo et al., 2018; Yang
et al., 2020). The dose number (D0) and oil-in-water partition
coefficient (Log p) numerically represent the solubility and
permeability, respectively. The D0 and Log p of a drug
determine its biopharmaceutical classification in the
Biopharmaceuticals Classification System (BCS) (Yang et al.,
2020).

Most NMCs belong to BCS II, III, or IV, which tend to include
drugs with low solubility, permeability, or both (Supplementary
Table 2) (Charalabidis et al., 2019). NMCs with relatively low
solubility, such as some terpenes, alkaloids, acids and esters,
vitamins, flavonoids and phenylpropanoids, belong to BCS II,
while NMCs with low permeability, such as other alkaloids,
flavonoids, glycosides and phenylpropanoids, belong to BCS
III. In addition, flavonoids such as puerarin and glycosides
such as icariin belong to BCS IV since they have low
solubility/low permeability. Obviously, NMCs with limited
absorption would lead to further consequences such as poor
pharmacokinetic properties and metabolism. Suitable drug
delivery systems for NMCs are required to fix this dilemma.

IMPROVED PHARMACOKINETICS AND
BIOACTIVITY OF NMC DELIVERY
SYSTEMS
The blood-brain barrier (BBB) helps to establish andmaintain the
microenvironment of the central nervous system (CNS) (Tsou
et al., 2017; Liebner et al., 2018). The BBB only allows essential
nutrients and certain molecules, such as O2, CO2, glucose and
ethanol to enter (Tsou et al., 2017; Battaglia et al., 2018; Sharma
et al., 2019). In the treatment of CNS diseases, it is a major
challenge to make enough drug to across the BBB and achieve an
effective concentration in the brain. NMC drug delivery systems
(NMC-DDSs) have been developed to facilitate drug transport
across the BBB and accumulation in the brain and to improve
their efficacy in the CNS (Tables 1, 2) (Auffinger et al., 2013;
Battaglia et al., 2018). The main NMC-DDSs include exosomes,
nanoparticles, liposomes, lipid polymer hybrid nanoparticles
(LPHNPs), nanoemulsions, protein conjugation and
nanosuspensions.

Exosomes are cell-derived nanovesicles (Kojima et al., 2018),
currently considered to be specific secretory vesicles for
intercellular communication (Milane et al., 2015). Exosomes
can disrupt the intact BBB by transcytosis (Morad et al.,
2019), easily penetrate the BBB and safely delivers therapeutic
drugs (Zhu et al., 2019). In addition, exosomes might have
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TABLE 1 | Characteristics of NMCs-DDS.

Drug DDS Administration
route

Advantage Main excipient Preparation method Characterization References

Particle
size (nm)

Zeta
potential

(mV)

EE (%) DL (%)

Artemisinin Nanostructured
lipid carrier

— Increase water solubility,
site specificity, selective
targeting, efficient
penetration, glioma cell
distribution and
internalization, and effective
delivery

Transferrin Solvent evaporation method 145 ± 12.5 24.3 ± 1.5 82.3 ±
7.3

— Emami et al.
(2018)

Tanshinone IIA Nanoparticle i.v. Prolong circulation time,
increase plasma
concentration, and have
better brain delivery efficacy

Cationic albumin Double emulsion/solvent
evaporation method

122 ± 16 −17.8 ± 1.6 85.6 ±
3.2

5.86 ±
0.8

Liu et al.
(2013)

Nanoemulsion i.v. Prolong in vitro and vivo
circulation time, and
enhance the bioavailability

Tetramethylpyrazine Shear stirring method 32.5 −2.78 95.26 — Chen Y et al.
(2019)

Nanoparticle i.v. Better delivery efficacy Cationic bovine serum
albumin

Emulsification and solvent
evaporation method

118 ± 14 −19.6 ± 1.4 83.2 ±
2.6

5.69 ±
0.6

Liu et al.
(2013)

Capsaicin Nanoparticle i.v. Be able to cross the blood-
brain barrier and inhibit the
growth of U251 cells

mPEG-PCL Solvent diffusion method 121.3 ±
2.5

−9.1 ± 2.8 96 ± 5.1 9.4 ± 2.3 Jiang et al.
(2015)

Salvianolic
acid B

Nanoparticle Brain injection Sustain and prolong the
in vitro release

Poly (ethyl-
cyanoacrylate) coated
with Tween 80

Emulsion polymerization
method

288 ± 1.00 −8.38 ±
3.87

— — Grossi et al.
(2017)

Nanoparticle Brain injection Sustain and prolong the
in vitro release

Poly (ethyl-
cyanoacrylate)

Emulsion polymerization
method

205 ± 2.00 −7.18 ±
2.84

98.70 ±
0.45

53.3 ±
0.24

Grossi et al.
(2017)

Rutin Lipid polymer
hybrid
nanoparticle

i.v. Higher rutin bioavailability Tween 80 coated PEG Single-step nanoprecipitation
technique

272.50 ±
3.39

−5.03 ±
0.18

64.32 ±
1.11

— Ishak et al.
(2017)

Lipid polymer
hybrid
nanoparticle

i.v. Higher rutin bioavailability TPGS coated PEG Single-step nanoprecipitation
technique

203.00 ±
2.20

−2.52 ±
0.52

74.23 ±
2.14

— Ishak et al.
(2017)

Lipid polymer
hybrid
nanoparticle

i.v. Higher rutin bioavailability Solutol HS 15
coated PEG

Single-step nanoprecipitation
technique

232.4 ±
4.01

−1.76 ±
0.33

68.06 ±
1.50

— Ishak et al.
(2017)

Nanoparticle i.v. Higher bioavailability;
enhanced neurobehavioral
activity, histopathology and
reduced infarction volume
effects

Chitosan Ionic gelation method 92.28 ±
2.96

31.04 ±
1.91

84.98 ±
4.18

39.48 ±
3.16

Ahmad et al.
(2016a)

Baicalin Liposome i.v. Prolong the retention time in
vivo, and increase the drug-
concentration in the brain

— Reverse evaporation method 160–190 −5.7 42 ± 1 — Li et al. (2018)

(Continued on following page)

Frontiers
in

P
harm

acology
|w

w
w
.frontiersin.org

June
2022

|V
olum

e
13

|A
rticle

937075
5

Xie
et

al.
B
ioactivity,

C
erebralM

etabolism
and

P
harm

acokinetics

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


TABLE 1 | (Continued) Characteristics of NMCs-DDS.

Drug DDS Administration
route

Advantage Main excipient Preparation method Characterization References

Particle
size (nm)

Zeta
potential

(mV)

EE (%) DL (%)

Cationic solid lipid
nanoparticle

i.v. Improve uptake of Baicalin OX26 antibody Emulsion
evaporation–solidification at
low temperature method

47.68 ±
1.65

−0.533 ±
0.115

83.03 ±
0.01

2.90 ±
0.01

Liu et al.
(2015b)

Curcumin Nanosuspension i.v. Improve the biodistribution
of curcumin in the brain

TPGS Probe sonicator technique 199 ± 2.5 −15.2 ± 3.3 — — Dibaei et al.
(2019)

Nanosuspension i.v. Improve the biodistribution
of curcumin in the brain

Tween 80 High-pressure homogenizer
technique

193 ± 8 −12.9 ± 1.7 — — Dibaei et al.
(2019)

Nanoparticle i.n. Enhance bioavailability PNIPAM Free radical polymerization 92.46 ±
2.8

−16.2 ±
1.42

84.63 ±
4.2

39.31 ±
3.7

Ahmad et al.
(2016b)

Exosome i.v. Enhance solubility,
bioavailability, and stability
and increase drug
penetration across the BBB

— — 117.4 ±
10.5

−4.9 84.8 15.1 Wang H et al.
(2019)

Exosome i.v. Improve safety and
efficiency

c (RGDyK) peptide — 145 −26.1 — — Tian et al.
(2018)

Exosome i.v. Increase drug penetration
across the BBB

Superparamagnetic
iron oxide

— 122.7 ±
6.5

−24.1 ± 2.2 — — Jia et al.
(2018)

Rhynchophylline Nanoparticle i.v. Better solubility and
bioavailability and prolong
circulation time

mPEG-PLGA Nanoprecipitation method 145.2 — 60 10.3 Xu et al.
(2020)

Abbreviations: c(RGDyK) peptide, cyclo(Arg-Gly-Asp-D-Tyr-Lys) peptide; DL, drug loading; EE, encapsulation efficiency; i.n., intranasal injection; i.p., intraperitoneal injection; i.v., intravenous injection; mPEG-PCL, methoxy polyethylene
glycol-poly(caprolactone); PNIPAM, ploly-N-isopropylacrylamide; Solutol HS 15, polyethylene glycol-15-hydroxy stearate; TPGS, D-a-Tocopherol polyethylene glycol 1000 succinate; Tween 80, polyethylene glycol sorbitan monooleate.
Note: — refers to not reported.
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TABLE 2 | | Pharmacokinetic characteristics of NMC-DDS.

NMCs Formulation Administration
route

Dosage
(mg/kg)

Animal
(number)

Pharmacokinetics parameters References

AUC0-t

(μg·h·ml−1)
AUC0-∞

(μg·h·ml−1)
Cmax

(μg·ml−1)
Tmax (h) t1/2 (h) MRT0-t (h) MRT0-

∞ (h)
Cl

(L/h·kg)

Tanshinone IIA Nanoparticle i.v. 10 Rats (6) — 4.83 ± 0.49 — 0.54 8.29 ±
1.37

— 7.96 ±
0.68

0.31 ±
0.06

Liu et al. (2013)

Nanoemulsion i.v. 5 Rats (6) 4.55 (0–6 h) 8.03 3.52 ± 0.75 — 5.77 1.96
(0–6 h)

7.35 — Chen Y et al.
(2019)

Nanoparticle i.v. 10 Rats (10) — 4.71 ± 0.58 — — 8.17 ±
1.28

— 7.89 ±
0.74

0.28 ±
0.05

Liu et al. (2013)

Capsaicin Nanoparticle i.v. — — — — — — — — — — Jiang et al.
(2015)

Salvianolic
acid B

Nanoparticle i.p. — — — — — — — — — — Grossi et al.
(2017)

Nanoparticle i.p. — — — — — — — — — — Grossi et al.
(2017)

Rutin Tween 80-lipid polymer
hybrid nanoparticle

i.v. 5 Rats (6) 1.14 ± 0.27a

(0–48 h)
1.59 ± 0.56a 0.57 ±

0.13b
0.25 ±
0.00

— — 4.41 ±
1.18

— Ishak et al.
(2017)

TPGS-lipid polymer hybrid
nanoparticle

i.v. 5 Rats (6) 1.11 ± 0.31a

(0–48 h)
1.80 ± 0.41a 0.67 ±

0.34b
1.17 ±
0.42

— — 6.26 ±
4.25

— Ishak et al.
(2017)

Solutol HS 15-lipid
polymer hybrid
nanoparticle

i.v. 5 Rats (6) 1.31 ± 0.53a

(0–48 h)
1.50 ± 0.47a 0.66 ±

0.33b
1.17 ±
0.44

— — 3.52 ±
0.78

— Ishak et al.
(2017)

Nanoparticle i.n. 10 Rats (6) 0.35 (0–24 h) — 1.45 2.00 43.68 ±
11.63

— — — Ahmad et al.
(2016a)

Nanoparticle i.v. 10 Rats (6) 8.50 E-02
(0–24 h)

— 0.39 2.00 39.01 ±
7.41

— — — Ahmad et al.
(2016b)

Baicalin Liposome i.v. 18 Rats (5) 88.27 (0–8 h) 103.61 52.48 ±
8.18

— 3.17 2.33
(0–6 h)

3.84 2.91 ±
0.25c

Li et al. (2018)

Cationic solid lipid
nanoparticle

i.v. 4.42 Rats (3) — 2.68E-02 2.32E-02 0.94 ±
0.43

— — — — Liu et al.
(2015b)

Curcumin TPGS-nanosuspension i.v. 10 Rats (6) 0.89 (0–6 h) 0.96 1.12 0.50 1.45 ±
0.180

0.61 ±
0.050
(0–6 h)

— 0.011 ±
0.001d

Dibaei et al.
(2019)

Tween 80-
nanosuspension

i.v. 10 Rats (6) 1.79 (0–6 h) 1.87 1.31 0.75 1.94 ±
0.292

0.76 ±
0.194
(0–6 h)

— 0.006 ±
0.001d

Dibaei et al.
(2019)

PNIPAM- Nanoparticle i.n. 0.1 Rats (6) 2.43e (0–24 h) — 2.36 E-03 1.00 7.70 — — — Ahmad et al.
(2016a)

Exosome i.v. 0.4 Rats (3) 9.03 (0–24 h) — 0.91 — 9.02 — — 3.67 E-02 Wang X et al.
(2019)

cRGD-Exosome i.v. — — — — — — — — — — Tian et al.
(2018)

RGE-Exosome-SPION i.v. — — — — — — — — — — Jia et al. (2018)
Rhynchophylline Tween 80- Nanoparticle i.v. 1 Rats (6) — 0.41 0.67 — 1.48 — — 1.94 Xu et al. (2020)

Abbreviations: cRGD, cyclo(Arg-Gly-Asp-D-Tyr-Lys)-conjugated; i.n., intranasal injection; i.p., intraperitoneal injection; i.v., intravenous injection; PNIPAM, ploly-N-isopropylacrylamide; RGE, neuropilin-1-targeted peptide; Solutol HS 15,
polyethylene glycol-15-hydroxy stearate; SPION, superparamagnetic iron oxide nanoparticles; TPGS, D-a-Tocopherol polyethylene glycol 1000 succinate; Tween 80, polyethylene glycol sorbitan monooleate.
Note: — refers to data not reported.
amg·g−1·h.
bmg·g−1.
cml/(min·kg).
d(mg/kg)/(ng/ml)/h.
e(ng·min/ml).
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targeting capabilities after cell source selection and membrane
modification (Zhu et al., 2019). Curcumin-primed exosomes
secreted by mouse macrophage cells were fabricated to prevent
neuronal death and alleviate AD symptoms (Wang H. et al.,
2019). Curcumin-primed exosomes led to curcumin acumination
6.5 times higher than that of free curcumin in the brain, 2.5 times
higher in the liver and 2.0 times higher in the lung (Wang X et al.,
2019). Curcumin and superparamagnetic iron oxide
nanoparticles were loaded into exosomes and conjugated with
neuropilin-1-targeted peptide by click chemistry to obtain
glioma-targeting exosomes with imaging and therapeutic
functions (Jia et al., 2018). Compared with free exosomes,
target ligand-modified exosomes markedly improved the brain
targeting and circulation time of curcumin in the body (Jia et al.,
2018). A functional ligand, (cyclo (Arg-Gly-Asp-D-Tyr-Lys)
peptide, was conjugated with the bioorthogonal copper-free
azide alkyne cyclo-addition (click chemistry) method to form
mesenchymal stromal cell-derived exosomes to deliver curcumin
to the brain (Tian et al., 2018).

The mechanism by which nanoparticles penetrate the BBB is
still not very clear. Currently, the relative theories are listed as
follows (Morad et al., 2019; Akel et al., 2021; Alotaibi et al., 2021;
Han and Jiang, 2021; Hou et al., 2022): 1) The phagocytosis of
nanoparticles by cerebral vascular endothelial cells allows the
drug to be released and diffused into the brain; 2) The adsorption
of capillary walls prolongs the residence time of drugs in the
brain, thereby increases the amount of drugs entering the brain;
3) Nanoparticles open the tight junctions of capillary epithelial
cells, and drugs penetrate into the brain from the open gaps; 4)
The effect of some modifications of nanoparticles such as
polysorbate 80, can efficiently inhibit the efflux pump p-gp
glycoprotein. Rutin-encapsulated chitosan nanoparticles were
fabricated via an ionic gelation method. After nasal
administration, the Cmax, t1/2 and AUC in the brain of these
nanoparticles were 6-, 1- and 7.3-fold higher than those of free
rutin, respectively, the drug targeting efficiency increased by 2.3-
fold, and the therapeutic effect increased accordingly (Ahmad
et al., 2016b). Poly-N-isopropylacrylamide nanoparticles
containing curcumin, demethoxycurcumin and
bisdemethoxycurcumin were prepared by free radical
polymerization. These nanoparticles increased the Cmax, t1/2
and AUC of the three drugs in the brain by approximately 4-,
9- and 5-fold, respectively (Ahmad et al., 2016a). A biodegradable
methoxy polyethylene glycol-poly (caprolactone) amphiphilic
block copolymer was used to prepare nanoparticle-loaded
capsaicin for targeted treatment of glioma. These nanoparticle
s had satisfactory slow-release features (Jiang et al., 2015).
Rhynchophylline-loaded methoxy poly (ethylene glycol)-poly
(DL-lactide-co-glycolic acid) nanoparticles coupled with
Tween 80 were used for brain-targeted delivery (Xu et al., 2020).

Liposomes are nontoxic and have good biocompatibility and
biodegradability (Pattni et al., 2015). Their phospholipid bilayer
structure made them compatible with the lipid layer of the BBB
and helped the drug enter the brain (Pattni et al., 2015; Agrawal
et al., 2017). In addition, liposomes can be modified with different
substances to achieve the ability to cross the BBB. By attaching
lipid molecules to neurotransmitters, the resulting

neurotransmitter lipidoids can be incorporated into drug-
encapsulating liposomes, and give the liposomes ability to
penetrate the BBB (Ma et al., 2020). There are various
apolipoproteins in plasma that can cross the BBB, and one of
the clearance mechanisms of Aβ protein in the brain is through
the lipid binding of various apolipoproteins (such as ApoE,
ApoA1 and ApoJ). When the receptor-binding region is
exposed, it is mediated by the corresponding receptor on the
BBB to the periphery. Because the related receptors can be
transported in both directions, the peripheral ligands can also
be transported to the brain, so that the drug can be transported to
the brain to play a role (Zhang et al., 2019). Liposomes improved
the lipophilicity of baicalin and further improved its
pharmacokinetics in the brain. The Cmax and AUC values of
MCAO rats administered with baicalin-loaded liposomes were
significantly greater than those of rats administered with baicalin;
moreover, the MRT increased 2.14-fold, the t1/2 increased 2.87-
fold, and the renal clearance rate decreased 8.08-fold. The
pharmacokinetic parameter improvements led to prolonged
retention time and enhanced therapeutic efficacy (Li et al., 2018).

LPHNPs are highly scalable, biodegradable nanocarriers
composed of a layer of lipid-coated polymeric cores
(polylactic-co-glycolic acid, polyglutamic acid, polylysine, PEG,
etc.) (Dehaini et al., 2016; Ishak et al., 2017; Mukherjee et al.,
2019). LPHNPs combined with liposomes and nanoparticles have
advantages. Rutin delivered by LPHNPs coated with three
surfactants, Tween 80, D-α-tocopheryl polyethylene glycol
1000 succinate (TPGS) and Soluted H55 had 160-, 98- and
159-fold higher bioavailability than free rutin, respectively
(Ishak et al., 2017).

Nanoemulsions are nanosized droplets with high surface areas
(Espinoza et al., 2019), so they have been used to solve drug
solubility and stability problems (Bonferoni et al., 2017). The
nanoemulsion mainly delivers drugs to the brain by adding
excipients that increase BBB permeability or inhibit efflux
proteins. The oil-in-water nanoemulsions for codelivery of
tanshinone IIA and tetramethylpyrazine had the ability to pass
through the BBB and target the brain. The AUCs of tanshinone
IIA/tetramethylpyrazine or tanshinone IIA nanoemulsions were
6.98- and 5.83-fold higher than those of tanshinone IIA solution,
respectively. The MRTs of two formers (117.68 and 123.29 min)
were much longer than the latter (56.66 min). The t1/2 of the two
nanoemulsions were 7.8- and 6.48-fold longer than that of the
solution (Chen Z. et al., 2019). The resveratrol nanoemulsion was
prepared by adding non-ionic surfactants Pluronic and
Cremophor EL as emulsifier. The nanoemulsion was
administered through nose to target the brain for AD
treatment. The nanoemulsion increased the intracranial
concentration of resveratrol by ~87% and the AUC value by
~92% (Kotta et al., 2021).

Proteins such as specific receptors (e.g., transferrin receptor)
(Emami et al., 2018; Johnsen et al., 2018) and transporters
expressed on the luminal side of brain endothelial cells help
drugs cross the BBB through receptor-mediated endocytosis
(Zuchero et al., 2016; Johnsen et al., 2018). Transferrin-
coupled nanoliposomes were prepared to deliver artemisinin
to the brain in a targeted manner (Emami et al., 2018). OX26
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monoclonal antibody-conjugated cationic solid lipid
nanoparticles were fabricated to improve baicalin distribution
within the brain. The AUC and Cmax values of baicalin
nanoparticles were 11.08- and 7.88-fold higher than those of
baicalin solution, respectively (Liu et al., 2015). Bovine serum
albumin-conjugated cationic PEGylated nanoparticles containing
tanshinone IIA had a 3.4-, 2.95- and 2.37-fold higher AUC, t1/2
and MRT than free tanshinone IIA, respectively (Liu et al., 2013).

Tween 80 and TPGS were separately used to coat on the
surface of curcumin nanosuspensions by physical adsorption
using a high-pressure homogenizer and a probe sonicator. The
curcumin delivered by the nanosuspensions had almost 2-fold
higher bioavailability than free curcumin (Dibaei et al., 2019).

METABOLIC PATHWAY AND METABOLIC
ENZYMES

It is vital to review the reactions and metabolites of NMCs
(Supplementary Table 3). Most NMs are metabolized through
chemical reactions by enzymes, which can cause them to become
more active, less active, inactive, innocuous, or even noxious (Mo
et al., 2018). Sometimes multiple metabolites are formed
simultaneously, further experiments for the metabolism of
NCMs are still needed.

In NMC metabolism, phase I reactions are involved in
oxidation, reduction, and hydrolysis and are mediated by
enzymes such as cytochrome P450 enzymes. Nonpolar
functional groups on NMCs are changed into polar molecules
(Iyanagi, 2007). Reactions in phase I include the followied
chemical reaction (Eq. 1):

O2 + NADPH + H+ + RH → NADP+ + H2O + ROH

(1)
Oxidation reactions result in the addition of oxygen or the

removal of hydrogen and encompass hydroxylation,
dehydrogenation, and demethylation, among which
hydroxylation is the most common reaction. Hydroxylation
involves the addition of hydroxyl groups to aromatics, alkanes,
or cycloalkanes. In the case of tanshinone IIA, two hydroxyl
groups are directly added to the parent drug molecule, and the
metabolite has been shown to be favorable in treating AD (Liang
et al., 2019). Under catalysis by the metabolic enzyme CYP3A4,
Δ9-tetrahydrocannabinol is oxidized to 8α (or β)-OH-Δ9-
tetrahydrocannabinol, and further oxidized to 8-keto-Δ9-
tetrahydrocannabinol (Dinis-Oliveira, 2016). The alkyl side
chain of capsaicin is oxidized to a hydroxyl chain (Rollyson
et al., 2014). Each phenyl group of evodiamine is oxidized to
hydroxyl groups (Wang Y. et al., 2018). The metabolic enzymes
CYP3A4 and CYP2E1 are the primary enzymes that hydroxylate
butylphthalide (Diao et al., 2013; Diao et al., 2015). Additionally,
dehydrogenation of hydroxyl groups to carbonyl groups or alkyl
groups to alkenyl groups is found in NMC metabolism. The
hydroxyl group on the cyclohexane of cholic acid is
dehydrogenated to a carbonyl group by the enzyme CYP3A4
(Funabashi et al., 2020); the hydroxyl side chain of vitamin A is

oxidized to a carbonyl group (Libien et al., 2017), and vitamin A
was oxidized to all-trans-retinoic acid by retinal dehydrogenases
(Clugston and Blaner, 2014). Leonurine is demethylated, which
converts the methoxy group to a hydroxyl group (Zhu et al.,
2014). Conversely, the addition of hydrogen or the removal of
oxygen results in increased reduction reactions. Hydrogenation
occurs to salvianolic acid B and ferulic acid when a double carbon
is broken due to the addition of hydrogen (Wang et al., 2016;
Zhang et al., 2022). Dehydroxylation entails the removal of
hydroxyl groups, to further reduce the reduced metabolites of
Salvianolic acid B (Zhang et al., 2022). The alkenyl group of
ferulic acid is reduced to an alkyl group (Zhao et al., 2015);
oxymatrine is reduced by CYP3A4 to matrine (Liu et al., 2015b).
In hydrolysis, when reacting with water, compound bonds are
broken to produce two compounds: one is bound with hydrogen
cleaved from water molecules, and the other is bound with
hydroxide. Ginsenoside Rb1 and Rd and puerarin are
deglycosylated to lose one or two glucose molecules (Shang
et al., 2017; Zhang et al., 2021); baicalin undergoes
deglycosylation to form baicalein (Wang et al., 2017).
Capsaicin is hydrolyzed to vanillylamine in the liver and skin
(Rollyson et al., 2014); rutin undergoes hydrolysis to form
metabolites such as quercetin and 3,4-dihydroxytoluene, 3,4-
dihydroxyphenylacetic acid and 3,4-dihydroxybenzoic acid
(Morales et al., 2018); and chlorogenic acid is hydrolyzed into
caffeic acid and quinic acid by esterase (Choi et al., 2018).
Geniposide is hydrolyzed to genipin through β-glucuronidase
(Zhang W. et al., 2017).

In phase II reactions, NMCs undergo conjugation reactions,
including glucuronidation, glycosylation, methylation,
sulfonation, sulfation, cysteine conjugation, glucuronide
conjugation and glucopyranoside conjugation, through
metabolic enzymes such as UDP-glucuronosyltransferases
(UGTs), sulfotransferases (SULTs), glutathione S-transferases
(GSTs) (Iyanagi, 2007). Tanshinone IIA, geniposide, Δ9-
tetrahydrocannabinol and puerarin undergo glucuronidation,
which attaches a glucuronide (Dinis-Oliveira, 2016; Zhang X.
et al., 2017; Shang et al., 2017; Liang et al., 2019). Salvianolic acid
B, rutin, scutellarein, baicalin and puerarin are conjugated with
methyl groups via methyltransferase (Shi et al., 2015; Gimenez-
Bastida et al., 2017; Shang et al., 2017; Wang et al., 2017; Zhang
et al., 2022). Leonurine, geniposide, and puerarin undergo
sulfonation by SULTs (Zhu et al., 2014; Zhang W. et al., 2017;
Shang et al., 2017); ferulic acid also needs SULTs to undergo
sulfation (Wang et al., 2016). Conjugation of glucuronide to
evodiamine (Wang C. et al., 2018) or glucopyranoside to
baicalin (Wang et al., 2017) also occurs in phase II reactions.

CONCLUSION AND FUTURE PROSPECT

NMCs have appealing benefits as cerebral disease-treating drugs
due to their effects on the metabolism of neurotransmitters,
hormones, neurotrophic molecules, and other brain-specific
chemicals in addition to their low cost, low toxicity, and
obvious efficacy. Although the bioavailability/absorption of
most NMCs is unsatisfactory, appropriate delivery systems

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9370759

Xie et al. Bioactivity, Cerebral Metabolism and Pharmacokinetics

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


such as novel nanosystems including exosomes, nanoparticles,
LPHNPs, nanoemulsions, protein conjugation and
nanosuspensions, provide better pharmacological and
pharmacokinetic characteristics for NMCs. In addition, the
structure-based metabolic reactions of NMCs, which produce
more active, less active, inactive, innocuous, or even noxious
metabolites, alter the pharmacological activities of NMCs
(Figure 1). NMCs commonly undergo oxidation, reduction,
hydrolysis and conjugation reactions, and metabolic enzymes
such as cytochrome P450 enzymes, UGTs, and SULTs are needed
in some cases. However, the metabolism and pharmacokinetics
data for NMCs are still very limited.

In order to achieve clinical transformation of NMCs and
overcome the key challenges ahead, the scientists may focus
on the formulation prescription, industrial preparation,
stability investigation and toxicity evaluation in the future.
Since most of the current pharmacokinetic/pharmacological
studies are based on animal experiments, more clinical
evidence is needed for further application. NMCs are effective
in cerebral-related disorders. They are strong candidates for
clinical therapy of cerebral diseases. There have been some
progress by now. GV-971 is a sodium oligomannate, which is
derived from marine algae. GV-971 was first approved in China
for marketing as a drug to mitigate AD. GV-971 (Syed, 2020)
inhibits Aβ accumulation and decreases Aβ aggregates toxicity
(Wang et al., 2020). Also, in support of the theory of the
association between gut dysbiosis and AD, GV-971 ameliorates

gut dysbiosis and suppresses neuroinflammation to improve
cognition in AD (Wang H et al., 2019). Although debates exist
about this drug, it is expected to have good prospects due to the
safety and tolerance data obtained from phase III clinical trial
evidence (Wang et al., 2020).
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FIGURE 1 | The schematic diagram for natural medicine delivery systems to improve bioactivity, increase metabolism and pharmacokinetic characteristics.
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GLOSSARY

ACTH Adrenocorticotropic hormone

Aβ Amyloid plaques

AD Alzheimer’s disease

ADM Adrenomedullin

APP Amyloid precursor protein

ATF6 Activating transcription factor 6

AUC Area under the plasma concentration-time curve

BBB Blood-brain barrier

BCS Biopharmaceutics classification system

BDNF Brain-derived neurotrophic factor

CB1 Cannabinoid receptor 1

CB2 Cannabinoid receptor 2

CHOP CCAAT/enhancer-binding protein homologous protein

Cl Clearance

Cmax Maximum plasma

CNS Central nervous system

CNTF Ciliary neurotrophic factor

CRF Corticotropin-releasing factor

CT-1 Cardiotrophin-1

CT-2 Cardiotrophin-2

D0 Dose number

eIF2α Eukaryotic initiation factor 2-alpha

EphA4 Erythropoietin-producing hepatocellular A4

EPO Erythropoietin

ER Endoplasmic reticulum

ERα Estrogen receptor alpha

ERβ Estrogen receptor beta

FGF Fibroblast growth factor

GFAP Glial fibrillary acidic protein

GLUT-1 Glucose transporter 1

GR Glucocorticoid receptor

GRP78 Glucose regulated protein 78GSK-3β

GSK-3β Glycogen synthase kinase 3 beta

GSTs Glutathione S-transferases

HIF-1α Hypoxia-inducible factor alpha

HMGB1 High-mobility group box 1

HPA Hypothalamic-pituitary-adrenal

IGF Insulin-like growth factor

IκB-α B-cells inhibitor alpha

IL-6 Interleukin-6

iNOS Inducible nitric oxide synthase

I/R Ischemia/reperfusion

IRE1α Inositol-requiring enzyme 1α

JNK c-Jun N-terminal kinase

LIF Leukemia inhibitory factor

Log P Oil-in-water partition coefficient

LPHNPs Lipid polymer hybrid nanoparticles

MAPKs Mitogen-activated protein kinases

MCAO Middle cerebral artery occlusion

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

NGF Nerve growth factor

NMCs Natural medicines that affect cerebral metabolism

NMs Natural medicines

Nrf-2 Nuclear factor erythroid 2-related factor 2

PPARα Peroxisome proliferator-activated receptor-alpha

PPARγ Peroxisome proliferator-activated receptor-gamma

sAPPα Soluble amyloid precursor protein alpha

SULTs Sulfotransferases

S100B S100 calcium-binding protein B

TBI Traumatic brain injury

TGF-β Transforming growth factor-β

TLR4 Toll-like receptor 4

TPGS D-α-tocopheryl polyethylene glycol 1000 succinate

TrkA Tropomyosin receptor kinase A

TrkB Tropomyosin receptor kinase B

UGTs UDP-glucuronosyltransferases

VEGF Vascular endothelial growth factor
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