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Abstract: 

Personalized neurostimulation has been a potential treatment for many brain diseases, which 

requires insights into brain/skull geometry. Here, we developed an open source efficient pipeline 

BrainCalculator for automatically computing the skull thickness map, scalp-to-cortex distance 

(SCD), and brain volume based on T1-weighted magnetic resonance imaging (MRI) data. We 

examined the influence of age and sex cross-sectionally in 407 cognitively normal older adults 

(71.9±8.0 years, 60.2% female) from the ADNI. We demonstrated the compatibility of our 

pipeline with commonly used preprocessing packages and found that BrainSuite Skullfinder was 

better suited for such automatic analysis compared to FSL Brain Extraction Tool 2 and SPM12-

based unified segmentation using ground truth. We found that the sphenoid bone and temporal 

bone were thinnest among the skull regions in both females and males. There was no increase in 

regional minimum skull thickness with age except in the female sphenoid bone. No sex 

difference in minimum skull thickness or SCD was observed. Positive correlations between age 

and SCD were observed, faster in females (0.307%/y) than males (0.216%/y) in temporal SCD. 

A negative correlation was observed between age and whole brain volume computed based on 

brain surface (females -1.031%/y, males -0.998%/y). In conclusion, we developed an automatic 

pipeline for MR-based skull thickness map, SCD, and brain volume analysis and demonstrated 

the sex-dependent association between minimum regional skull thickness, SCD and brain 

volume with age. This pipeline might be useful for personalized neurostimulation planning. 

Keywords: Ageing; magnetic resonance imaging: sex difference; skull thickness, scalp-to-cortex 

distance   
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1. Introduction 

Brain stimulation has been a potential nonpharmacological therapeutic intervention for a 

range of brain diseases. Different neuromodulation methods have been developed using 

transcranial brain stimulation (TBS), transcranial ultrasound stimulation [1], transcranial direct 

current stimulation, transcranial electrical stimulation [2], transcranial magnetic stimulation, 

brain radiotherapy, etc. Increasing numbers of neuroimaging techniques, e.g., diffuse optical 

tomography [3], functional near-infrared spectroscopy [4], transcranial ultrasound microscopy 

[5], and photoacoustic imaging [6-8], have been developed and applied to human brain imaging. 

The skull compartment exerts a strong influence on the imaging and stimulation results, 

suggesting the need to accurately examine its geometry and alterations in the population. 

Thinning and geometric changes in the skull may also occur due to aging and disease. An earlier 

study showed the association between tomographic characteristics of the temporal bone and 

transtemporal window quality on transcranial Doppler ultrasound in patients with stroke or 

transient ischemic attack [9]. Skull shape abnormalities in ischemic cerebrovascular and mental 

diseases in adults have also been reported [10]. Optimization of the probe location on the head 

for neuroimaging/brain simulation thus has added value in various neurostimulation and imaging 

studies, such as simulation ultrasonic wave propagation and acoustic transmission [11-16]. 

Computed tomography (CT) imaging has been used to investigate the changes in bone 

thickness in 123 people (female/male) aged between 20-100 years [17, 18]. However, radiation 

exposure, particularly to the brain, is not ideal for volunteers or patients. Analysis using routine 

structural magnetic resonance imaging (MRI) data is a feasible alternative. Structural MRI-based 

automatic skull reconstruction from images was challenging, as compact bone has a very low 

signal in MRI. Recent efforts have enabled the development of accurate and automatic head 
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segmentation/skull stripping pipelines from MRI for individualized head modelling [19, 20], 

which is not immediately applicable for skull analysis. 

Here, we design a pipeline for automatically computing the skull thickness map, scalp-to-

cortical distance (SCD), and brain volume based on structural T1-weighted (T1w) MRI data from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI 1 and 2) [21]. Cortical thinning has 

been found to be associated with amyloid-beta (Aβ) and tau accumulation in Alzheimer’s disease 

(AD) and prodromal AD [22], as well as in clinically normal older adults [23], and associated 

with increasing age [24]. The changes in skull thickness and SCD with age and sex have not 

been evaluated in a large cohort, which is relevant in brain stimulation applications. To our 

knowledge, this study is the first to assess MRI-based skull thickness in a group of 407 

cognitively normal older adults (71.9±8.0 years, 60.2% female). 

 

2. Methods 

2.1 MRI data 

Data used in the preparation of this article were obtained from the ADNI database 

(adni.loni.usc.edu) [1]. The ADNI was launched in 2003 as a public�private partnership led by 

Principal Investigator Michael W. Weiner, MD. The primary goal of the ADNI has been to test 

whether serial MRI, positron emission tomography (PET), other biological markers, and clinical 

and neuropsychological assessments can be combined to measure the progression of mild 

cognitive impairment (MCI) and early AD. For up-to-date information, see www.adni-info.org. 

The dataset analysed includes 407 T1w MRI scans at 3 T of cognitively normal older adults 

between the ages of 51-100 years when scanned. Demographic information on the sex and age of 

cognitively normal older adults is presented in Table 1. The MRI imaging protocols of the ADNI 
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study that were used to acquire the T1w MRI scans were described in [25] (field of view = 

255×239×207 ���, voxel size = 1 ���). The majority of cognitively normal participants in the 

ADNI are of white ethnicity, with a mean education of 16 years and Mini-Mental State 

Examination score of 29. 

 

2.2 MRI data analysis pipeline 

The fully automated pipeline BrainCalculator was designed for processing T1w structural MR of 

the human brain (Fig. 1a). The BrainSuite (BS) 21a [26] skullfinder toolbox was used to 

segment the cortex, scalp, inner and outer skull surfaces based on a sequence of morphological 

transformations [27]. The initial skull stripping by using the skullfinder toolbox automatically 

computed the intensity threshold of the skull and scalp, which was then used to extract the skull 

and scalp surfaces with mathematical morphology. If the computed intensity threshold yields 

poor segmentation results, manual change of parameters is necessary for reaching higher 

accuracy. Next, the images were processed by a series of correction and masking algorithms to 

extract the cortex surface of the brain. Brain volume was calculated based on the cortex surface 

of the brain. The whole pipeline takes approximately 8 minutes for one dataset, as tested on Dell 

XPS 15 with Intel i7-9750H CP. After extracting the four surface meshes for the cortex, scalp, 

inner and outer skull surfaces from the MRI, 5×105 points were uniformly sampled on the skull 

and scalp surfaces to form point clouds. The cortex surface was sampled with 5×106 points, as 

the surface area is much larger than the skull and scalp surfaces. The SCD was calculated based 

on the cortex and scalp surface. The estimated skull thickness (is defined by the Euclidean 

distance between the two nearest points on the inner and outer skull surfaces). To eliminate 

outliers in point sampling, for each point on a surface, we searched for the 30 nearest points on 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.19.524484doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.19.524484
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

the other surface and computed the root mean square as the thickness: 

d=  ��

�
∑ ��

���
���

�

  (where ��  is the Euclidean distance between the point of analysis and the ��	 

nearest point on the other surface) 

 

To efficiently search for the nearest points, we used the K-dimensional tree algorithm to speed 

up the computation process [28]. The computation took approximately 3 minutes for the skull 

thickness map (Fig. 1j) and 5 minutes for the SCD (Fig. 1l). As the sphenoid, temporal, parietal, 

and occipital bones are important in brain stimulation studies, we chose calculations for these 

regions as examples. The points with minimum values in the regions of the sphenoid, temporal, 

parietal, and occipital bones can be directly located in the interactive visualization of the 

thickness map ((Fig. 1j). The user can choose a location on the skull with the cursor to retrieve 

the thickness value. Our opensource pipeline BrainCalculator is available at 

https://github.com/Junha0Zhang/BrainCalculator. The Open3D library in Python was used in our 

data processing [29]. 

 

2.3 Comparison of different preprocessing packages 

With the aim of automatic computing, we compared the suitability and performance of different 

segmentation approaches without manual correction. We computed the skull meshes and 

thickness maps based on segmentation using BS Skullfinder [26, 27] and FSL Brain Extraction 

Tool (BET) 2 [30, 31] and Statistical Parametric Mapping (SPM) 12-based unified segmentation 

[32]. We compared the different approaches using a registered pair of T1w MR-CT images from 

the “Retrospective Image Registration Evaluation” dataset (Vanderbilt University) [33]. Detailed 

information on MRI and CT is described in [33]. We used 3D Slicer [34] to label the skull by 
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thresholding from the CT scan as the reference. We then used flood filling to fill the unselected 

voxels inside the skull. For BET and BS, we segmented the MRI skull by subtracting the inner 

skull mask from the outer one. We computed the skull label directly by SPM12. We did not 

include the lower parts of the skull in the comparison, as they were either noisy or absent in the 

processing by all three methods. In addition to the skull, we computed the scalp mask (whole 

head) by thresholding. To compare the similarity of different analysis methods, we computed the 

Dice coefficients for each of the labels and the CT pair. The Dice coefficient measures the 

similarity of two sets of data and is defined as 
�|��� ��|

|��|� |��|
, where |�| is the total number of voxels 

inside a skull label or scalp mask in our study. 

 

2.4 Statistics 

Normal distribution was determined by using the D'Agostino & Pearson test. For comparison of 

age between females and males, the nonparametric Mann�Whitney test was used. Two-way 

ANOVA with Bonferroni post hoc correction was used to compare the differences between 

groups by using GraphPad Prism (GraphPad, US, v9.0). Nonparametric Pearson correlation 

analysis was used to assess the association between age and SCD, skull thickness and brain 

volume for normally distributed data. All data are the mean ± standard deviation. Significance 

was set at p < 0.05. 

 

3. Results 

3.1 Development of the open-source pipeline BrainCalculator 

We developed an open-source fully automated pipeline BrainCalculator for the computation of 

human skull thickness, SCD, and brain volume (Fig. 1). The original T1w MRI file of the human 
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head (.nii) from ADNI (Fig. 1a) was processed by using BS Skullfinder to generate 3D meshes 

(.obj) for the cortical surface, scalp surface, and inner and outer skull surface (Figs. 1b-e). All 

datasets were registered to the same coordinate. Brain volume was calculated based on the cortex 

surface of the brain (Fig. 1b). Next, uniformly sampled points from the four surfaces for the 

cortex, scalp, inner and outer table (Figs. 1b-e) were used to generate corresponding point clouds 

(.pcd) (Figs. 1f-i). Earlier studies have used an exhaustive neighbor search of points [18]. To 

efficiently search for the nearest points, we used the K-dimensional tree algorithm to speed up 

the computation process [28]. For every point in the scalp and outer skull surface (Figs. 1g, i), 

the closest point in its paired data (cortex/inner skull) was identified (Fig. 1k). Next, we 

computed the skull thickness (Fig. 1j) and SCD maps (Fig. 1l) for all the selected points and 

regions. The skull thickness map is visualized, and the value is reported when the user selects the 

location on the skull by a cursor. The whole pipeline takes approximately 8 minutes for one 

dataset as tested on Dell XPS 15 with Intel i7-9750H CP. 

 

3.2 Comparison of different preprocessing approaches 

Next, we compared different open-source packages in the suitability and performance for 

automatic (without manual correction) skull segmentation and SCD computation. We 

demonstrated the utility of our pipeline based on BS Skullfinder preprocessing [26, 27] along 

with FSL Brain Extraction Tool (FSL) 2 [30, 31] and SPM12-based unified segmentation [32] 

for computing the skull meshes and thickness maps. SPM also provided probability maps for 

cerebral spinal fluid, white matter and gray matter, however did not provide scalp map. To 

evaluate the performance and compare the similarity of different analysis methods, we computed 

the Dice coefficients for each of the labels and the CT pair. CT data were used as ground truth. 
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The Dice coefficient measures the similarity of two sets of data. Higher similarity of the 

segmentation to the CT reference is indicated by the closeness to 1.0. We did not include the 

lower parts of the skull in the comparison, as they were either noisy or absent in the processing. 

We found that the three methods BS, FSL, and SPM generated globally similar segmentations 

for the skull and scalp mask using the T1w MRI data (Table 1, Fig. 2). However, mismatches in 

the temporal bone, sphenoid bone and occipital bone were observed in the automatically 

processed data based on FSL BET segmentation when overlaying the segmentation with CT 

(Figs. 2c, g). This mismatch could be observed in the skull thickness map generated based on 

FSL BET segmentation (Figs. 2i, j). Given the importance of the temporal bone, sphenoid bone 

and occipital bone regions in focused ultrasound stimulation and other neurostimulation 

approaches, we decided to use BS-based segmentation in our automatic pipeline. 

 

3.3 Demographics 

We collected data from the ADNI1 and ADNI2 databases from 407 cognitively normal older 

adults (71.93±7.98 years, 60.2% female). Detailed demographic information is presented in 

Table 2. Normal distribution analysis was performed by using the D'Agostino & Pearson test. 

The dataset assessed the normality test, with p values of 0.0760 (male, n = 162) and 0.3173 

(female, n = 245), and the corresponding K2 values were 5.154 (male) and 2.296 (female). The 

ethnic background of the dataset from AD was white in majority. 

 

3.4 Association with age changes in skull thickness in the left hemisphere of male and 

female cognitively normal older adults 
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Next, we applied our analysis pipeline to compute the skull thickness map for the 407 T1w MR 

datasets from ADNI (Figs. 3a, b). We chose the sphenoid, temporal, parietal, and occipital bones 

as examples to present the computed results for minimum skull thickness, as these brain regions 

are important in brain stimulation studies (Table 2). Group comparisons of the minimum skull 

thickness were performed between sex and age groups. There was a trend of higher skull 

thickness in male participants than in female participants, although the difference was not 

statistically significant. Significant skull thickening was found in the temporal bone of male 

participants in the 71- to 80-year-old group compared to the 60- to 70-year-old group (1.69±0.21 

mm, n = 55 vs 1.59±0.19 mm, n = 57; p = 0.0402). In addition, significant skull thickening was 

found in the sphenoid bone of female participants in the 71- to 80-year-old group compared to 

the 51- to 60-year-old group (1.75±0.27 mm, n = 88 vs 1.53±0.23 mm, n = 21; p = 0.0037). In 

the sphenoid bone of female participants, there was a slight increase associated with age (r = 

0.1734, p = 0.0066), with +0.202%/y. In other regions of skull bones, no correlation between age 

and skull thickness was detected in either sex. The magnitude of skull thickening was higher in 

the sphenoid bone and occipital bone of females than in those of males. In the temporal bone and 

parietal bone, the rates of change were similar in the female and male groups. 

 

3.5 Sex-dependent age-associated increase in SCD in cognitively normal older adults   

Next, we applied our analysis pipeline to compute the SCD map (Figs. 4a, b). Group comparison 

was performed between male and female groups of all ages and of different age groups and 

between different age groups of each sex (Table 3). No difference between male and female 

participants was observed. Significantly increased SCD was found in all four regions of both 

male and female participants in the older groups compared to the younger groups. We observed 
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that in all the regions, there was an increased SCD associated with age in both the male and 

female groups. The slope of the increase in SCD was steeper in the female group (0.307%/y) 

than in males (0.216%/y) in the temporal cortex and was comparable in other brain regions 

(Table 3). 

 

3.6 Sex-dependent age-associated brain volume decrease in cognitively normal older adults   

Brain volume was computed based on the cortex surface volume (Fig. 1b). We did not further 

examine the regional difference in brain volume, as there have been several well-established 

pipelines and cortical thickness and regional brain atrophy analysis studies previously. Group 

comparison of the brain volume was performed between male and female groups of all ages 

(Mann�Whitney) and of different age groups and between different age groups of each sex 

(two-way ANOVA with Bonferroni post hoc correction) (Table 4). Approximately 10-15% 

larger brain volume was observed in the male participants than in the female participants at all 

ages (4.58±1.09 105 mm3, n = 162 vs 4.19±0.90 105 mm3, n = 245; p < 0.0001), as well as in the 

61-70, 71-80 and 81-90 years age groups (Table 4). In addition, significant brain atrophy was 

found in the older group compared to the relatively younger group in both female and male 

participants. We observed a reduced brain volume associated with age in both the male group (r 

= -0.3887, p < 0.0001, n = 162) and female group (r = -0.4100, p < 0.0001, n = 145) (Figs. 4j, k). 

The slope of reduction in the whole brain volume was steeper in females (-1.031%) than in males 

(-0.998%) (Table 4). 

 

4 Discussion 

Here, we developed an automatic pipeline for skull thickness and SCD computation and 
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demonstrated the influence of age and sex on these measures in 407 cognitively normal older 

adults. Given the diversity in biological measures, a larger cohort is needed to evaluate the 

changes in skull thickness in association with sex and aging. This is the first study with a large 

structural MR sample size on human skull geometry in living older adults. Most previous studies 

are based on CT in cadaver samples and CT/MR in a small sample size of living participants. 

Although CT imaging is better in studying skull features, it involves radiation to living 

participants, which is not optimal. Moreover, structural imaging on 3 T MR provided insights 

into brain atrophy information in addition to skull feature information at the same time. 

For T1w MRI head segmentation/skull stripping, various toolboxes, including FSL BET2 [30, 

31], SPM12-based unified segmentation [32], BS skullfinder [20], AFNI 3dSkullStrip (3DSS) 

[35], ROAST [2], CHARM [19], SimNIBS 2.1 [36], ROBEX [37], BEaST [38], optiBET [39], 

MONSTR [40], SynthStrip (in FreeSurfer) [41], and deep learning-based approaches [42-44], 

have been developed. These pipelines have been very useful for brain volumetric measurements 

[45], automatic generation of realistic head models and electroencephalography field 

computations with applications in neuroimaging (e.g., diffuse optical tomography) and 

transcranial brain stimulation [46]. The uniqueness of our pipeline lies in the skull thickness 

computation and visualization in addition to the SCD outputs, which are not available in the 

current various packages. We showed the compatibility of our analysis with both BS- and FSL-

based preprocessing. A previous study showed that FSL BET2 and SPM12 achieved better skull 

segmentations than BS [20]. In our study, we found great similarity between the different 

approaches in segmenting the skull and generating scalp mesh at the global level. However, a 

mismatch was observed in the automatically processed data based on FSL BET segmentation in 

the regions important in neurostimulation studies, such as the temporal bone and occipital bone. 
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These results suggest that for automatic computation of skull thickness without manual 

correction, BS is better suited than the other two. For SCD, manual measurement has been 

possible [47] using the BrainRuler pipeline [48]. Our method enables efficient computation and 

visualization of the SCD of the whole brain in 3 minutes (whole pipeline 8 minutes). 

Since we recorded the minimum regional skull thicknesses in cognitively normal older 

adults, the values were lower than the mean skull thickness reported in previous studies using CT 

[18] and MR scans in living cases [49]. Postmortem CT scans of 604 individuals showed a mean 

thickness of approximately 2 mm in the temporal and occipital bone [50]. Intersubject variability 

in the skull measures also suggests the importance of a large sample size [51]. In addition, we 

found that minimum skull thickness was associated with age in the sphenoid bone in females. 

Earlier MR studies have demonstrated the influence of skull thickening, particularly the inner 

skull table, associated with age and the associations between skull thickening and cognition and 

brain atrophy in older adults[52, 53]. A previous CT study in 120 participants aged 20-100 years 

indicated a nonsignificant trend of increase in the full skull thickness due to an increase in the 

thickness of the diploic layer [18]. Another CT skull cadaver study showed an age-related 

increase in skull thickness [54]. 

Moreover, we observed sex differences in the skull MR measures in aging cognitively 

normal older adults (n = 407). We found that the %skull thickening/y was higher in the sphenoid 

bone and occipital bone of females than in those of males. In the temporal bone and parietal 

bone, the rates of change were lower in the female and male groups. A previous MR study in 60 

older adults (48% females) aged 71–74 years showed more inner table skull thickening in 

females (8.3%) than in males (6.2%) [52]. Earlier cadaver CT studies also showed intersex 

differences and dimorphism in the structural properties of aging femora, indicating differential 
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bone fragility [55-57]. 

Here, we found that SCD increased with age in both male (n = 162) and female (n = 245) 

cognitively normal older adults. The increase in SCD was more rapid in the female group 

(0.307%/y) than in the male group (0.216%/y) in the temporal cortex, indicating faster regional 

brain atrophy. The rates of increase in SCD were comparable in other regions in the female and 

male groups (Table 3, Fig. 4). The temporal cortex is important in cognitive function, e.g., 

conceptual categorization and semantic and language processing, and is impaired early in 

neurodegenerative diseases such as AD [58]. Earlier lifespan studies showed brain atrophy and 

thinning of the cerebral cortex in aging [1, 59, 60]. An earlier study showed that the average 

annualized rate of hippocampal volume loss among controls was -1.55%/y [61]. Another 

structural MR-based study found age-related increased SCD in the left dorsolateral prefrontal 

cortex and not in the primary motor cortex [62]. 

We found a negative correlation between brain volume and age in both the female and 

male groups. The reduction in brain volume based on the brain surface map was more 

pronounced in the female group (-1.031%/y) than in the male group (-0.998%/y). An earlier CT 

study reported a significant relationship between cortical thinning and age for both inner and 

outer tables of the frontal, occipital, and parietal bones ranging between a 36% - 60% decrease 

from ages 20 to 100 years in females, whereas males exhibited no significant changes [18]. ICV 

is commonly used as a marker of premorbid brain size in neuroimaging studies, as it is thought to 

remain fixed throughout adulthood. Inner skull table thickening that occurs with aging would 

affect the ICV measure and could mask actual brain atrophy [53, 63]. Sex and age differences in 

the volume of regional gray matter in the normal adult human brain have been reported by using 

in vivo structural MR [64], as well as in postmortem examination [65]. Earlier studies showed 
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that young females have a larger volume of cortical gray matter after correction for total brain 

volume [66, 67] compared with males. 

There are several limitations in this study. 1) With the development of amyloid-beta and 

tau positron emission tomography, cellular correlates of cortical thinning are being better 

understood [68]. Brain atrophy is detectable in Aβ [69] and tau accumulation [70, 71] in 

cognitively normal older adults. However, the Aβ and tau status of the controls are not 

known/not analysed. 2) Since T1w MR data are being utilized for analysis, whether there are 

changes in body density or thickening of the inner skull table or outer table is not attainable. 

Further analysis using data from MR bone imaging with the zero TE sequence will provide more 

comprehensive information on the skull features [72, 73]. 3) Here, we used only T1w MR data 

for skull thickness computation. Multicontrast MRI data, T1+T2, may provide higher accuracy; 

however, T2 MR data are not available at ADNI for the majority of cases and are thus not 

included in this study. 4) We did not perform ICV correction for the brain volume measurement. 

 

Conclusion 

We developed an open-source skull thickness and SCD analysis pipeline for structural MR brain 

scans and demonstrated the association between skull thickness and SCD with age. The 

automatic efficient computation toolbox for skull thickness and SCD map analysis is potentially 

useful for personalized neurostimulation planning. 
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Fig. 1 Analysis pipeline for human skull thickness and scalp-to-cortex distance (SCD) using 

T1w MRI data. (a) Original MRI file and zoom-in-view summarizing position of b-k; (b-i) 

Surfaces and corresponding point clouds for (b, f) cortex, (c, g) scalp, (d, h) inner skull and (e, i) 

outer skull; (j) SCD map. Scale bar = 9-18 mm (blue�red); (k) Zoomed-in view of the skull (in a) 

indicating the inner surface (red dots) and outer surface (blue dots). ��  is the ��	 nearest point on 

the inner surface to each point on the outer surface (arrow line). (l) Skull thickness map. Scale 

bar = 1-10 mm (blue�red). Representative images based on T1w MR from one 79-year-old male. 

 

Fig. 2 Comparison of different pipelines for skull and scalp-to-cortex map based on T1w 

MR-CT registered data. Images are displayed in sagittal, coronal and horizontal views. (a, e) 

T1w MR and CT image of human head; (b, f) BrainSuite skullfinder segmentation on MR and 

overlay of segmentation on CT: area between scalp and outer skull (green); area between inner 

and outer skull (blue); (c, g) FSL BET and (d, h) SPM12 segmentation on MR and overlay of 

segmentation on CT: area between inner and outer skull (blue); (i, j) Comparison of skull 

thickness map from BrainSuite and FSL. Scale bar = 1-10 mm (blue�red); (k-m) Comparison of 

skull mesh from FSL, BrainSuite, SPM12 processed using Braincalculator; Original MR and CT 

data source: “Retrospective Image Registration Evaluation” study [33]. 

 

Fig. 3 Skull thickness map and association between age and skull thickness in male and 

female older adults. (a, b) Representative skull thickness map-based T1w MR from one 55-

year-old male; grey square indicates sphenoid bone (a) and parietal bone (b); magenta square 

indicates temporal bone (a) and occipital bone (b). Scale bar = 5 cm; Color scale = 1-10 mm 

(blue�red); (c-f) Association between age and skull thickness in male participants (n = 162); (g-
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j) Association between age and skull thickness in female participants (n = 245). 

 

Fig. 4 Scalp to cortex distance (SCD) map and association with age in male and female 

older adults. (a) Representative SCD map-based T1w MR from one 55-year-old male; gray 

square indicates the sphenoid cortex (a) and parietal cortex (b); magenta square indicates the 

temporal cortex (a) and occipital cortex (b). Scale bar = 5 cm; Color scale = 9-18 mm (blue�red); 

(b-e) Association between age and skull thickness in male participants (n = 162); (f-i) 

Association between age and skull thickness in female participants (n = 245). (j-k) Association 

of brain volume with age in male and female older adults. (j) In male participants (n = 162); (k) 

in female participants (n = 245). 
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Fig. 3 
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Table 1 Comparison of different preprocessing methods for T1w MR segmentation with 

CT as the ground truth 

Pipeline Skull Scalp 
mask 

Outputs Subcortical 
analysis 

Operation 
system 

BS 0.7654 0.9779 Label, mask, surface mesh Yes Windows/Unix 
FSL 0.7348 0.9639 Label, mask Yes Unix 
SPM 0.7913 0.9743 Probability map No Windows/Unix 
 

BS: BrainSuite Skullfinder preprocessing [26, 27], FSL: FSL Brain Extraction Tool [30, 31], 

SPM: SPM 12-based unified segmentation [32]. 
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Table 2 Demographic data of cognitively normal older adults in the study 

 N (%) Age (yrs) 51-60 (yrs) 61-70 (yrs) 71-80 (yrs) 81-90 (yrs) 91-100 (yrs) 

Male 

(n) 

162 

(39.8%) 

73.72±8.17 58.25±1.49 

(8) 

67.02±2.35 

(57) 

74.55±2.79 

(55) 

84.28±2.68 

 (40) 

93.00±2.82 

 (2) 

Female 

(n) 

245 

(60.2%) 

70.75±7.65a 57.05±2.31 

 (21) 

66.61±2.64 

(107) 

74.58±2.84 

(88) 

83.59±2.06 

 (27) 

94.00±1.41 

 (2) 

Data are presented as the mean ± standard deviation; a, male vs female group p = 0.0007. 

Mann�Whitney nonparametric comparison. 
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Table 3 Comparison of skull thickness in male and female cognitively normal older adults 

of different ages 

Skull 
Thickness All ages (yrs) %/y 51-60 

(yrs) 
61-70 
(yrs) 

71-80 
(yrs) p 

81-90 
(yrs) 

Male (n = 162)  (n = 8) (n = 57) (n = 55)  (n = 40) 

SC 
1.73±0.23 
[1.70-1.77] 

0.112% 1.66±0.17 1.76±0.26 1.79±0.31  1.72±0.22 

TC 
1.65±0.21 
[1.61-1.68] 

-0.097% 1.72±0.24 1.59±0.19 1.69±0.21 0.0402b 1.67±0.21 

PC 
2.01±0.35 
[1.96-2.07] 

0.146% 1.96±0.36 1.96±0.37 2.10±0.40  2.05±0.38 

OC 
1.86±0.28 
[1.81-1.90] 

-0.123% 1.97±0.59 1.93±0.51 1.95±0.51  1.90±0.33 

Female (n = 245)  (n = 21) (n = 107) (n = 88)  (n = 27) 

SC 
1.69±0.26 
[1.66-1.72] 

0.202% 1.53±0.23 1.68±0.26 1.75±0.27 0.0037b 1.63±0.22 

TC 
1.61±0.20 
[1.58-1.63] 

-0.074% 1.61±0.21 1.61±0.19 1.61±0.19  1.58±0.21 

PC 
1.94±0.31 
[1.90-1.98] 

0.138% 1.90±0.29 2.03±0.46 1.94±0.38  1.98±0.31 

OC 
1.75±0.18 
[1.73-1.78] 

0.215% 1.75±0.19 1.79±0.24 1.86±0.48  1.86±0.32 

Data are presented as the mean ± standard deviation [confidence interval]; b, compared to the 61-

70 yrs group. Two-way ANOVA with Bonferroni post hoc correction. SC, sphenoid; TC, 

temporal; PC, parietal; OC, occipital; 
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Table 3 Scalp to cortex distance (SCD, mm) in male and female cognitively normal older 

adults of different ages 

SCD All ages (yrs) 
%/y 51-60 

(yrs) 
61-70 
(yrs) p 

71-80 
(yrs) p 

81-90 
(yrs) p 

Male (n = 162)  (n = 8) (n = 57)  (n = 55)  (n = 40)  

SC 
12.63±0.46 [12.56-
12.70] 

 
0.234% 

12.18±0.33 12.43±0.39  12.69±0.46 
0.0086a 
0.0070b 

12.90±0.37 
<0.0001a 
<0.0001b 

TC 
12.78±0.73 [12.66-
13.89] 

0.216% 12.27±0.67 12.59±0.71  12.83±0.72  13.04±0.67 
0.0197a 
0.0075b 

PC 
13.03±0.64 [13.13-
13.93] 

0.318% 12.49±0.68 12.70±0.57 0.0157a 13.13±0.56  13.43±0.54  

OC 
13.49±0.52 [13.41-
13.57] 

0.276% 12.78±0.48 13.25±0.44  13.54±0.23 
<0.0001a 
0.0053b 

13.90±0.36 
<0.0001a 
<0.0001b 
0.0016c 

Female (n = 245)  (n = 21) (n = 107)  (n = 88)  (n = 27)  

SC 
12.52±0.47 [12.47-
12.58] 

0.230% 12.13±0.47 12.41±0.44 0.0278a 12.66±0.42 
<0.0001a 
0.0004b 

12.77±0.41 
<0.0001a 
0.0006b 

TC 
12.66±0.71 [12.57-
13.75] 

0.307% 12.25±0.65 12.41±0.56  12.88±0.70 
0.0007a 
<0.0001b 

13.19±0.81 
<0.0001a 
<0.0001b 

PC 
12.98±0.61 [13.05-
13.90] 

0.312% 12.52±0.59 12.78±0.56  13.15±0.55 
<0.0001a 
<0.0001b 

13.53±0.40 
<0.0001a 
<0.0001b 
0.0098c 

OC 
13.42±0.59 [13.35-
13.49] 

 
0.286% 

12.91±0.41 13.25±0.54 0.0152a 13.57±0.51 
<0.0001a 
<0.0001b 

13.95±0.58 
<0.0001a 
<0.0001b 
0.0014c 

 

Data are presented as mean ± standard deviation [confidence interval]; a, compared to the 51-60 

yrs group; b, compared to the 61-70 yrs group; c, compared to the 71-80 yrs group. There was no 

difference between males and females in all regions. Two-way ANOVA with Bonferroni post 

hoc correction for comparisons between different age groups. SC, sphenoid; TC, temporal; PC, 

parietal; OC, occipital; 
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Table 4 Brain volume (105 mm3) of males and females at different ages 

Brain 
volume All ages %/y 51-60 

(yrs) 
61-70 
(yrs) 

71-80 
(yrs) p 81-90 

(yrs) p 

Male (n = 162)  (n = 8) (n = 57) (n = 55)  (n = 34)  

 
4.72±0.88 
[4.58-4.86] 

-0.600% 
5.24±0.47 4.90±0.78 4.66±0.84  4.36±1.04 

0.0059a 

<0.0001b 

0.0164c 
Female (n = 245)  (n = 21) (n = 107) (n = 88)  (n = 27)  

 
4.19±0.90 
[4.08-4.30] 

-1.031% 
4.71±0.72 4.46±0.68 3.96±0.95 

0.0113a 
0.0025b 

3.56±1.03 
0.0004a 
<0.0001c 

p <0.0001   <0.0001 <0.0001  0.0134  
 

Data are presented as mean ± standard deviation [confidence interval]; a, compared to the 51-60 

yrs group; b, compared to the 61-70 yrs group; c, compared to the 71-80 yrs group. 
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