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ARTICLE INFO ABSTRACT

Eye tracking is a popular research tool in developmental cognitive neuroscience for studying the development of
perceptual and cognitive processes. However, eye tracking in the context of development is also challenging. In
this paper, we ask how knowledge on eye-tracking data quality can be used to improve eye-tracking recordings
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Development and analyses in longitudinal research so that valid conclusions about child development may be drawn. We
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Longitudinal answer this question by adopting the data-quality perspective and surveying the eye-tracking setup, training
ongitudina:

protocols, and data analysis of the YOUth study (investigating neurocognitive development of 6000 children).
We first show how our eye-tracking setup has been optimized for recording high-quality eye-tracking data.
Second, we show that eye-tracking data quality can be operator-dependent even after a thorough training
protocol. Finally, we report distributions of eye-tracking data quality measures for four age groups (5 months, 10
months, 3 years, and 9 years), based on 1531 recordings. We end with advice for (prospective) developmental

eye-tracking researchers and generalizations to other methodologies.

1. Introduction

What wonder it must be to see the world through a child's eyes as
they grow up. While it is physically impossible to see the world through
a child's eyes, it illustrates the intuitive appeal of investigating one's
looking behavior. Indeed, researchers have been interested in the
looking behavior of children for a long time (Aslin, 2007). Through eye
tracking, gaze location can be objectively measured from children as
young as a few days old, and up to adulthood. As such, eye tracking has
been one of the main research methods in the last decades for gaining
insights into early (neuro)cognitive development (see e.g. Aslin and
McMurray, 2004; Aslin, 2012; Oakes, 2012). Eye tracking is therefore
also one of the main methods used in the YOUth study ' investigating
individual developmental trajectories. Although eye tracking is often
hailed as an excellent tool for studying early development (the good),
eye tracking in the context of development is also challenging. For one,
young children cannot be instructed to behave to the experimenter's
wishes. Moreover, the quality of eye-tracking data obtained in infant
research is often low compared with the quality of eye-tracking data
obtained in adult research. If the analysis tools used are susceptible to
differences in data quality, invalid conclusions may be drawn about
child development, particularly at the individual level (the bad). In this
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paper, we adopt the data-quality perspective and use this to scrutinize
the entire procedure of eye-tracking research. We thus address the ugly
problems in eye-tracking research that may not always be the primary
interest when an experimental study is conceived, yet which need be
solved to ensure that valid conclusions about development can be
drawn.

This goal of this paper is two-fold. First, we give a brief overview of
the advantages and disadvantages of using eye tracking in develop-
mental research. While the advantages may be intuitively clear, many
of the disadvantages have been discussed mainly in the methodological,
not the developmental, eye-tracking literature. Hereafter, we answer
three outstanding questions with regard to eye-tracking data quality in
developmental eye-tracking research. This paper is aimed at the entire
spectrum of eye-tracking researchers in developmental cognitive neu-
roscience or psychology. For example, developmental researchers who
are one of the first in their group to conduct eye-tracking research may
find helpful suggestions and advice on the important trade offs for ex-
perimental setup, design, eye-tracking data collection and analysis.
Likewise, experienced researchers may also find inspiration or helpful
suggestions for their eye-tracking operation that have hitherto not been
discussed in the literature.
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1.1. The good

Humans rely greatly on vision, and gaze direction and eye move-
ments are coupled to a host of perceptual and cognitive processes. Fast
eye movements that redirect the line of sight (saccades) allow the visual
world to be sampled (Kowler, 2011), and visual information can thus be
gathered for e.g. motor action (Land and Furneaux, 1997) or informa-
tion-processing tasks such as visual search and reading (Rayner, 1998).
Under the common assumptions that where one looks is where one's
attention is allocated and that visual information around the gaze lo-
cation is processed (e.g. Hessels et al., 2019), knowing where children
look at a given point in time can thus provide crucial insights into
perceptual and cognitive development. Eye tracking has thus been a
popular research tool in developmental research. Researchers have, for
example, investigated how visual information selection occurs in in-
fants (Amso and Johnson, 2006; Hessels et al., 2016a), or how infants
explore faces (Hunnius and Geuze, 2004) and their visual environment
(Franchak et al., 2011), among various other topics. The many eye-
tracking studies of the past decades have culminated in models on how
infants learn about the world (Johnson, 2010), on early developmental
trajectories of Autism (Elsabbagh and Johnson, 2016), and even hy-
potheses about biological niche construction through eye movements
(Constantino et al., 2017).

Importantly, eye trackers allow one to obtain a gaze location ob-
jectively and non-invasively. Most modern video-based eye trackers
give as output a gaze signal (often a location on a screen), which is
obtained by filming the eyes of the participant. By determining the
locations of the pupil center in the camera image and the centers of
reflections of one or several (near-)infrared illuminators, gaze location
can be inferred. All that is needed for this is a calibration procedure
during which participants look at several known locations in the world
(e.g. on a computer monitor) and having the participant sit relatively
still. Eye tracking in the context of development has quite a long his-
tory. Already halfway through the 20th century, estimations of infants’
gaze location were used to learn about perceptual development
(Salapatek and Kessen, 1966). However, this often came at the cost of
long hours of manual coding. Nowadays, eye trackers can automatically
report gaze location up to a thousand times per second with no manual
labor involved at all (for comprehensive work on video-based eye
tracking, see Holmqvist et al., 2011). One can even obtain an infant's
gaze location online and use this to manipulate the visual stimulus
(gaze-contingent eye tracking).

1.2. The bad

While the advantages of eye tracking for developmental research
seem clear, less attention has been paid to the disadvantages. Among
the disadvantages that have been noted, Gredebick et al. (2009)
mention that eye trackers are costly, more so than traditional ob-
servational methods for establishing looking times. However, a salary
for researchers (or research assistants) to manually code looking be-
havior may quickly offset the initial cost of an eye tracker. A likely more
prominent disadvantage is that eye trackers deliver gaze data as time
series (horizontal and vertical components of gaze location over time),
which requires specific skills to analyze (e.g. signal processing). More
recently, the problems specific to collecting eye-tracking data in de-
velopmental research and analyzing these have been addressed. In
order to make these problems intelligible, it is crucial that we first
clarify what we mean when we refer to the quality of eye-tracking data
and the ‘data-quality perspective’.

1.2.1. Eye-tracking data quality and the data-quality perspective

The quality of eye-tracking data is often characterized by quanti-
fying the accuracy, precision and data loss. Accuracy refers to the error
between the gaze location reported by the eye tracker and the true gaze
location. It may be referred to as the systematic error, and corresponds
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best to the term ‘validity’ often used in the context of psychological
research. It is often operationalized as the difference between a gaze
location measured by the eye tracker and an instructed gaze location to
the participant. The higher the systematic error, the lower the accuracy.
Precision refers to the reproducibility of a gaze location by the eye
tracker under the assumption that the true gaze location does not vary.
It may be referred to as the variable error, and corresponds best to the
term ‘reliability’ as commonly used in psychological research. It is often
operationalized as the root mean square of the sample-to-sample de-
viation in gaze location when a participant is assumed to fixate the
same location. The higher the sample-to-sample deviation, the lower
the precision. Finally, data loss refers to the relation between the ex-
pected number of measurements of gaze location to be delivered by the
eye tracker and the actual number delivered. If, for example, a parti-
cipant turns their head away from the screen or blinks, the eye tracker
cannot report a gaze location. This then constitutes data loss. Data loss
can also occur, however, when the participant is looking toward the
screen and has their eyes open. This is often considered to be due to
‘technical difficulties’ on the side of the eye tracker.

Generally, researchers in developmental psychology or cognitive
neuroscience use an eye-tracker to answer questions from the field of
psychology. For example, what can eye-tracking teach us about child
development? In our experience, the eye tracker is often taken for
granted. Here, we approach eye-tracking research from the data-quality
perspective. With this, we mean that we look at eye-tracking data
collection and analysis purely from the viewpoint that many aspects of
the eye-tracking operation can have a positive or negative effect on data
quality. For example, an eye-tracking recording with an infant that
moves a lot may yield unusable eye-tracking data. Obviously, this is not
desirable. High eye-tracking data quality provides the foundation for
solid developmental eye-tracking research, and we believe that it is
here that much may be gained. We briefly review the current literature
on eye-tracking data quality in developmental research, and highlight
which aspects of the eye-tracking operation have already been shown to
positively or negatively affect data quality.

1.2.2. Eye-tracking data quality in developmental research

An important question in the context of eye-tracking data quality is
which eye tracker to use. Eye-tracker manufacturers generally specify
how precise and accurate measurements of gaze location are with their
eye trackers. One might thus think that the eye tracker with the best
specifications is the one to use in (developmental) research. Yet, these
specifications are generally achieved under ‘optimal’ conditions.
Optimal refers to recordings with adult participants, who can be well
instructed and positioned in a chin rest. Manufacturer specifications are
not necessarily representative for situations when participants are un-
restrained (Hessels et al., 2015b; Niehorster et al., 2018), as is often the
case with infants and toddlers. Indeed, the accuracy and precision of
eye-tracking data collected from infants and toddlers are often lower
than the accuracy and precision of eye-tracking data obtained from
adults (Dalrymple et al., 2018; Hessels et al., 2016b; Hooge et al.,
2018b). Notably, lower precision (higher variable errors) in infant eye-
tracking data cannot be attributed to gaze behavior of the child itself
(for example due to infants having lower fixation stability; Seemiller,
2018). Furthermore, many short periods of data loss are observed in
infant eye-tracking research, which cannot be attributed to participants
looking away or blinking. The interested reader is referred to Wass et al.
(2014, p. 5) and Hessels et al. (2015a, p. 5) for more elaborate dis-
cussions on the nature of this data loss. Fig. 1 depicts two example gaze-
position signals of relatively high and low quality. As can be seen from
the top panel, there are clear periods in which the gaze position does
not change much (the fixations®), and swift changes in gaze position

2 A “fixation’ generally refers to a period in which gaze is directed at a con-
strained part of the screen for a given period (e.g. gaze is within a 2° radius for
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Fig. 1. Example horizontal gaze position data for two 10-month-old infants
from Hessels et al. (2016a). Gaze positions recorded from the two eyes are given
by separate lines (blue for left eye, orange for right eye). Top: Example 4-s
horizontal gaze position on screen in pixels (left axis) and degrees (right axis) of
relatively high quality. Bottom: Example 4-s horizontal gaze position on screen
in pixels (left axis) and degrees (right axis) of relatively low quality. Degrees are
reported under the assumption that the participant's eyes were 65 cm from the
screen, and that all areas of the screen were at equal distance from the eyes.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

(the saccades). In the example in the Bottom panel of Fig. 1, the pre-
cision is much lower, which is evident from the fact that the sample-to-
sample difference in gaze position is larger than in the Top panel.
Moreover, there are short periods of data loss between 2 and 2.5s, and
larger periods of data loss between 3 and 4s. These differences are
qualified by the statement that the eye-tracking data in the Top panel
are of higher quality than the eye-tracking data in the Bottom panel.
Low eye-tracking data quality — defined as low accuracy and pre-
cision, and the occurrence of periods of data loss — poses specific pro-
blems for data analysis. For example, the number of fixations classified
in eye-tracking data and the corresponding average fixation duration
may depend on the precision (variable error) of the gaze-position signal
(Wass et al., 2014; Holmqvist et al., 2012). More importantly, whether
a lower or higher number of fixations are classified in eye-tracking data
for lower-precision eye-tracking data depends on the specific fixation-
classification algorithm that is used (Hessels et al., 2017). In other
words, important measures of gaze behavior (number of fixations and
average fixation duration) may be biased by the quality of the eye-
tracking data, and in an idiosyncratic way based on the analysis tools
used. In an extreme example, Shic et al. (2008) show that the settings
used in a fixation-classification algorithm can reverse differences be-
tween typically developing children and children with Autism. Clearly,
this is an undesirable situation, as conclusions are often drawn about

(footnote continued)

100 ms or longer). This can be computationally extracted from eye-tracking
data using many different techniques. A common method is using the velocity
signal of the gaze position. If the velocity is below a certain threshold, a sample
is classified as belonging to a fixation. For more information on conceptual or
computational definitions of fixations or saccades, see Hessels et al. (2018).
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typical and atypical development based on eye-tracking data.

One crucial problem for eye-tracking researchers in developmental
research is that most state-of-the-art fixation-classification algorithms
are not developed for, or tested on, eye-tracking data of low quality
(Hessels et al., 2017). As such, some developmental researchers have
even turned to manual correction of fixation classifications (Saez de
Urabain et al., 2015), which may lead to biases based on who corrects
the classifications (Hooge et al., 2018b). Wass et al. (2013) were the
first to develop a fixation-classification algorithm that works with low
quality eye-tracking data, using a common algorithm with a set of ex-
clusion rules. However, these exclusion rules can cause a lot of eye-
tracking data to be excluded (Hessels et al., 2017). This may not be
desirable if there are many children for which this occurs, and if eye-
tracking data quality is related in some way to other behavioral char-
acteristics. In the latter case, conclusions may be drawn about percep-
tual or cognitive development based on a biased sample of children.
Recently, new fixation-classification algorithms have been developed
(Renswoude et al., 2018; Hessels et al., 2017) that can work with eye-
tracking data within a larger range of variable error and data loss.
However, much is still to be gained in developmental eye-tracking re-
search. While it is increasingly more common to report eye-tracking
data quality in adult eye-tracking research (Holmqvist et al., 2012), this
is still rare in developmental eye-tracking research. Indeed, publishing
guidelines from a prominent developmental journal do not require eye-
tracking data quality metrics to be reported (Oakes, 2010).

1.3. The ugly, or, the present article

Given that eye-tracking data quality and analysis may not be of
primary interest when an experimental study is conceived, it has per-
haps been underexposed. A contributing factor may be that eye-
tracking data quality is dependent on many different factors. Nystrom
et al. (2013), for example, have shown that the precision and accuracy
of eye-tracking data depends on the skills of the operator, the calibra-
tion method, the eye color of the participant, and the time since the last
calibration. In other words, eye-tracking data quality may be high or
low for reasons related to the technical workings of the eye tracker,
reasons related to participant physiology, or as a result of the choices
made by an operator or researcher. The broader questions addressed in
the present article can thus be stated as follows. First, how can data
quality in developmental eye-tracking research be improved? Second,
how can eye-tracking data of variable quality best be analyzed? The
overarching issue is how to avoid that eye-tracking metrics are biased
by data quality, so that individual developmental trajectories can be
uncovered regardless of the eye-tracking data quality of an individual
recording. In order to answer this question, we adopt the data-quality
perspective and survey the eye-tracking data collection and analysis
procedures in the YOUth study.

We use examples and eye-tracking data from the YOUth study, and
focus specifically on the following three questions:

1. How can an eye-tracking setup be designed to optimize eye-tracking
data quality in developmental eye-tracking research?

2. How can eye-tracking data quality be optimized when the re-
searcher is not the primary person carrying out the recordings, but
many research assistants fulfill this function?

3. What ranges of eye-tracking data quality are to be expected in de-
velopmental eye-tracking research, and how can eye-tracking data
analysis be matched to the data-quality range?

We thus tackle the ugly problems that help ensure that valid con-
clusions about child development can be drawn. We end with advice for
longitudinal and cohort-based eye-tracking research and general-
izations to other methodologies (e.g. EEG).
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2. Methods

In this study, we adopt the data-quality perspective in order to an-
swer three questions related to optimizing eye-tracking data quality and
analyzing eye-tracking data of potentially low quality. We first describe
the eye-tracking data sets from the YOUth study used for this paper.
Hereafter, we provide the necessary methodological background for
each of our three questions.

2.1. Participants

The YOUth study is a large cohort study involving two cohorts (0-6
years and 9-15 years) with a projected 3000 participants in each. At
each visit, multiple measurements are conducted, among which eye
tracking, EEG, questionnaires, behavioral tasks, observation of parent-
child interaction, biological material, and fMRI. The exact measure-
ments conducted at each time point vary with age. Recruitment for the
YOUth study commenced in 2015 and is still ongoing. Participants are
recruited in Utrecht and its neighboring communities. The YOUth study
was approved by the Medical Research Ethics Committee of the
University Medical Center Utrecht and all participants’ parents pro-
vided written informed consent. A brief overview of the YOUth study
including the measurements conducted at each timepoint is available
from https://www.uu.nl/en/research/youth-cohort-study. Detailed in-
formation on the YOUth study design, in- and exclusion criteria, and the
measurements conducted at each timepoint is forthcoming in this spe-
cial issue.

For the present paper, 500 eye-tracking data sets were requested
from the YOUth study for each available age group (5 months, 10
months, 3 years, 9 years). As the 3-year wave has only recently com-
menced, only 31 sets were available at the time of writing. Descriptive
statistics of the eye-tracking data sets used are given in Table 1.

2.2. Apparatus and stimuli

Eye-tracking data were collected using the Tobii TX300 running at
300 Hz. Communication with the Tobii TX300 was achieved using the
Tobii SDK controlled through MATLAB running on Mac OSX.
PsychToolbox (Brainard, 1997) was used for stimulus presentation.

During the participant visits at 5 and 10 months, three eye-tracking
experiments are conducted: a gaze cueing experiment, a gap-overlap
experiment, and a free-viewing experiment. During the visits at 3 years,
the three experiments are supplemented by a word-learning experi-
ment. At the 9-year visit, the free-viewing experiment is replaced with
an anti-saccade experiment. As we wanted to analyse eye-tracking data

Table 1
Descriptive statistics of the eye-tracking data sets used for this article.
RA = Research Assistant.

Data set Number of participants  Age (years) Sex (% female)

5 months — RA 1 119
5 months - RA 2 104
5 months - RA 3 48
5 months — RA 4 42
5 months - RA 5 38
10 months —-RA 2 97
10 months —-RA'1 92
10 months -RA 6 44
10 months —-RA7 35
10 months —-RA 8 33

0.46 (sd = 0.06) 57
0.45 (sd = 0.06) 53
0.45 (sd = 0.06) 50
0.45 (sd = 0.07) 60
0.46 (sd = 0.07) 39
0.87 (sd = 0.07) 49
0.88 (sd = 0.08) 48
0.86 (sd = 0.07) 48
0.89 (sd = 0.07) 40
0.86 (sd = 0.06) 48

5 months 500 0.46 (sd = 0.06) 50
10 months 500 0.87 (sd = 0.07) 52
3 years 31 2.40 (sd = 0.27)" 58
9 years 500 9.50 (sd = 0.88) 54

@ Note that our age groups are jittered around the target age. We have only
had a few participants in the 3-year-old group as of this writing, which explains
the low age (2.4 years) compared with the target age (3 years).
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from the same experiment for each age group, we selected the gap-
overlap experiment. The gap-overlap experiment is planned as the
second of three (four for the 3-year-olds) experiments during the visit of
the participant. As eye-tracking data quality tends to decrease as a
function of time during the experiment (e.g. Nystrom et al., 2013;
Hessels et al., 2015a), data quality measures from this experiment are
expected to be most representative of eye-tracking data quality in our
entire set of eye-tracking experiments.

In the gap-overlap experiment, a central stimulus is presented fol-
lowed by a peripheral one at either side of the screen. By varying
whether the central stimulus disappears prior to peripheral stimulus
onset or not, attentional disengagement is investigated (see e.g. Saslow,
1967; Elsabbagh et al., 2013; Van der Stigchel et al., 2017). Prior to the
experiment, a 5-point operator-controlled calibration procedure was
conducted. Each calibration point consists of a rotating colored spiral
that contracts when the operator presses a button. The calibration
output of the Tobii SDK was inspected, and, when necessary, individual
points could be recalibrated. After calibration was deemed to have been
successful, or when the participant was deemed to be losing attention,
the experiment commenced. Detailed information on the calibration
procedure is given in Hessels et al. (2015a).

2.3. Operationalizations of eye-tracking data quality

As noted before, eye-tracking data quality is usually characterized
by three aspects: precision (or variable error), accuracy (or systematic
error) and data loss. In the present article, we only present measures of
precision and data loss, not accuracy. Precision and data loss can di-
rectly affect the processing of the gaze-position signals. Large variable
errors (low precision) can be, for example, problematic for fixation
classification (Wass et al., 2014; Holmqvist et al., 2012; Hessels et al.,
2017). Large proportions of data loss may mean that the gaze-position
signal is not analyzable at all, while small periods of data loss can also
be problematic for fixation or saccade classification (Wass et al., 2014;
Hessels et al., 2017). Accuracy (or systematic error) is not evident from
the gaze-position signal alone. It requires a known (or assumed) fixa-
tion location to which the gaze-position signal is compared. In adult
research, assuming such a location is straightforward: adults can be
instructed to look somewhere. In infant research, this is not as trivial.
Furthermore, systematic errors do not directly affect e.g. fixation or
saccade classification in the gaze-position signal. The interested reader
is referred to other psychology literature. Estimates of systematic errors
in infancy, toddlerhood, school age and adults are given in Hessels et al.
(2015a) and Dalrymple et al. (2018). Frank et al. (2012) furthermore
describe a method of re-calibrating eye-tracking data to remove large
systematic errors and Orquin and Holmqvist (2018) describe how Area
of Interest (AOI) size may be chosen such that it can accommodate
systematic errors of known size.

Precision and data loss were operationalized as follows. For preci-
sion, a 100 ms window was slid over the horizontal and vertical gaze-
position signals of each eye for each trial. For each window, the Root
Mean Square sample-to-sample deviation (RMS s2s) was calculated.
The median of all computed RMS s2s values in a trial was then de-
termined, and these medians were averaged over trials. The horizontal
and vertical components were combined using Pythagoras’ theorem to
acquire an RMS s2s value for the gaze-position signal of each eye. These
two values were subsequently averaged to acquire the final estimate of
precision of the eye-tracking data acquired during each participant's
recording. For data loss, the proportion of samples in a trial without a
reported gaze coordinate was determined for each eye. These values
were averaged over trials and subsequently averaged over eyes to ac-
quire the final estimate of data loss for the eye-tracking data of each
participant. Lower values for the RMS-s2s deviation and the proportion
of data loss indicate better eye-tracking data quality.
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2.4. Question 1 — Defining the requirements for an eye-tracking setup

The first question we aim to answer is how to design an eye-tracking
setup in order to optimize eye-tracking data quality in developmental
eye-tracking research. With an eye-tracking setup, we mean the com-
bination of an eye tracker, a computer screen, a seat for the participant,
and whatever table or mounting device is needed to position the eye
tracker. This setup should allow the eye tracker and participant to be
positioned and oriented optimally with respect to one another. Optimal
here means the relative position and orientation between eye tracker
and participant for which the quality of recorded eye-tracking data is
best, while the participant is still able to conduct the task. Often, the
optimal position and orientation are specified by the eye-tracker man-
ufacturer by means of a tracking distance between the eyes and eye
tracker, and a so-called head box. This head box is a theoretical box (or
more appropriately, a viewing frustum) in front of the eye tracker in
which the participant should be able to move while a gaze position can
still be reported by the eye tracker. In adult eye-tracking research, head
movement may be restrained through the use of a chin rest or bite bar
(e.g. Engel, 1977; Collewijn and Tamminga, 1984), thereby ensuring
that the optimal position and orientation are maintained throughout a
recording. In developmental research, however, participants tend to
move, which can be problematic for eye-tracking data quality. Wass
et al. (2014), for example, showed that when head movement occurs,
the variable error in the eye-tracking data and data loss increase (al-
though see Hessels et al. (2015a) for potential problems of using the
eye-tracker signal to estimate head movement). It has further been
shown that some eye trackers are more susceptible to participant
movement than others: some eye trackers do not report a gaze position
anymore when a participant tilts their head slightly from the optimal
position and orientation, whereas others do (Hessels et al., 2015b;
Niehorster et al., 2018). Even for eye trackers that do still report a gaze
position, eye-tracking data quality decreases during participant move-
ment and under non-optimal head orientations with respect to the eye
tracker. An important question for developmental eye-tracking research
thus is: how can children be positioned such that participant movement
is reduced and eye-tracking data quality does not decrease and the
participant can still complete the task?

While older children can be positioned using regular office chairs
and chin rests, this is not possible with toddlers and infants. Seating
practices with young children differ between developmental eye-
tracking labs. For example, some researchers position infants in the
parent's lap (Gredebéack et al., 2010; Wass and Smith, 2014), whereas
others position infants in a car seat (Shic et al., 2014; Jones et al.,
2008). The different types of seating afford different amounts of
movement, yet also put different constraints on the rest of the geo-
metry. For example, in a car seat, the infant is strapped in, which means
there is typically little movement except perhaps head sway. However,
an infant laying in a car seat is not oriented optimally relative to an eye
tracker positioned on a table. An easy rule of thumb is that when the
eye tracker is mounted underneath a screen, that screen should be
positioned parallel to the participant's head. The eye tracker will then
be directed towards the eyes from below the participant's line of sight
when that participant is looking straight ahead. With an infant in a car
seat, however, the eye tracker likely needs to be mounted on an arm of
some sorts to allow it to be positioned in the optimal orientation with
respect to the infant. When an infant is seated in the parent's lap or in a
high chair, positioning the infant's head parallel to a computer screen
on a table, with the eye tracker underneath, is easier. Yet, these situa-
tions afford more movement than a car seat. In the only direct com-
parison to date, the best accuracy of the gaze position signal was
achieved in recordings with infants in a car seat, rather than recordings
with infants in a high chair or directly on the parents’ lap (Hessels et al.,
2015a, although the comparison was not systematic, i.e. the car seat
was the default choice). Restricting infant movement is thus possible
through the use of a car seat, and while it may increase eye-tracking
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data quality, it constrains how the eye tracker can be positioned relative
to the participant.

In the YOUth cohort studies, we measure eye movements from
children as young as 5 months up to children aged 15 years. As we
wanted to keep the eye-tracking setup as similar as possible across ages,
the setup needed to satisfy the following criteria:

1. The eye tracker should be able to measure eye movements from
infants, toddlers, school-aged children and adults.

2. The eye tracker should be robust to participant movement, with
which we mean that a gaze position can still be reported by the eye
tracker when the participant has moved.

3. The setup should afford as little movement of the participant as
possible.

4. The participant can be positioned parallel to a computer screen,
with the eye tracker mounted underneath in the optimal relative
orientation to the participant.

5. The setup should be adaptable to different age-groups within one
cohort (0-6 years, 9-15 years).

2.5. Question 2 — Research assistants as the operators in eye-tracking
research

In many longitudinal or cohort-based studies, as in the YOUth study,
most recordings are conducted by research assistants (RAs). Obviously,
these RAs need to be trained in the eye-tracking recording procedure. It
is of particular importance to train RAs well, as eye-tracking data
quality is known to be affected by operator expertise (Nystrom et al.,
2013). The question is how to organize the training protocol so that RAs
are trained effectively and efficiently.

Although it is outside the scope of the present article to go into the
full training protocols in the YOUth cohort studies, we briefly outline
the protocol for the eye-tracking domain. RAs begin by reading the
protocols for the eye-tracking data collection, which are specified for
each experiment. Second, RAs are expected to watch a short lecture on
the basics of eye tracking, and a number of videos on positioning and
calibration. Third, RAs have to observe at least 1 recording from a more
experienced RA. Fourth, the RA participates in a training session con-
ducted by the head of the eye-tracking domain (author RH) or a dele-
gated party. This training session focuses on positioning, calibration
and eye-tracking data monitoring during the experiments. Fifth, RAs
observe two more recording from a more experienced RA. Sixth, RAs
conduct at least three recordings while being observed by a more ex-
perienced RA. Hereafter, RAs are qualified to conduct recordings by
themselves. The head of domain or a delegated party conducts checks of
the new RAs and random checks every few months.

An important question is whether the different RAs are all able to
obtain high quality eye-tracking data during the recordings in which
they serve as the operator. While we did not conduct any systematic
investigations of whether our training protocol is effective, for obvious
reasons of project continuity, we will investigate whether eye-tracking
data quality measures differ substantially between RAs. We therefore
compared estimates for precision and data loss for the five RAs that
conducted the most recordings with 5-month-old and 10-month-old
infants (see Table 1). Note that two RAs were among the top 5 RAs that
conducted the most measurements for both the 5-month and 10-month
age groups (RAs 1 & 2)

2.6. Question 3 — What ranges of eye-tracking data quality to expect

The third question that we address in this article is what ranges of
eye-tracking data quality are to be expected in developmental eye-
tracking research, and how eye-tracking data of potentially low quality
can be analyzed. Despite all efforts to improve eye-tracking data quality
through optimized setups and substantial training protocols, it is highly
unlikely that eye-tracking data for infants, toddlers and school-aged
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Fig. 2. (a) Eye-tracking setup used in the YOUth cohort study for ages 0 and up. The eye tracker (Tobii TX300) is mounted in a frame that can be lowered and
heightened (indicated by the yellow arrow). The eye tracker can be tilted from fully vertical to fully horizontal (indicated by the blue arrow), such that the optimal
relative position and orientation between eye tracker and participant can be achieved with almost all manners of seating. (b) The setup as it is generally positioned
with larger infants and toddlers. (c) The setup as it is generally positioned with young infants. The seats in (b) and (c) are mounted on a platform with wheels. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

children will be of equal quality. It is thus imperative to consider the
ranges of eye-tracking data quality that are typically obtained across
ages, and how this affects eye-tracking data analysis. We therefore
analyzed data quality ranges for precision and data loss for the age
groups that are already in progress in the YOUth study: 5 months, 10
months, 3 years (recently started) and 9 years. We then discuss con-
straints on data-analysis tools, and discuss age-specific data-analysis
problems. Eye-tracking data quality measures are reported for 500
participants per age group, except for the 3-year-old age group, for
which only 31 participants had been recorded at the time of writing. As
before, estimates for precision and data loss are presented (see
Operationalizations of eye-tracking data quality), both derived from the
gap-overlap experiment. Descriptive statistics of the eye-tracking data
sets per age group are given in Table 1.

3. Results
3.1. The eye-tracking setup in the YOUth study

Fig. 2 depicts the setup developed for the YOUth study. It is a
custom design, built by a professional constructor according to the
needs specified by the eye-tracking researchers in the YOUth cohort
study. It consists of an eye tracker mounted to a moveable frame and a
platform with two different seats mounted on it. The eye tracker we
chose to use in the YOUth study is the Tobii TX300. This decision was
based on extensive testing of different eye trackers on their robustness
to participant movement and non-optimal head orientation relative to
the eye tracker (Hessels et al., 2015b; Niehorster et al., 2018). The eye
tracker is mounted underneath a computer screen. As such, the optimal
position and orientation between participant and eye tracker can be
achieved by (1) orienting the computer screen parallel to the

participant's head, and (2) positioning the computer screen at the right
distance and height relative to the participant's line of sight when
looking straight ahead.

As denoted by the yellow arrow in Panel A in Fig. 2, the computer
screen and eye tracker can be lowered and heightened. As denoted by
the blue arrow, it can furthermore be tilted from fully vertical to fully
horizontal relative to the floor. It is thus possible to position and orient
the eye tracker optimally with respect to the participant with many
different types of seating,” for example with a small infant car seat
(Panel C) or a slightly larger car seat (Panel B). It is also possible to
position the eye tracker fully upright and use it with older children or
adult participants positioned in a chin rest. This setup makes it possible
to conduct eye-tracking research with participants from infancy to
adulthood. In order to facilitate quick positioning of the children, two
car seats are mounted on a wheeled platform: one seat for infants, one
for larger infants or toddlers. Both seats afford little participant
movement. The wheeled platform makes it easy to fine tune the exact
positioning of the child, without having to ask a parent to move, or to
move the eye-tracker and its frame. In sum, the presented setup satisfies
all criteria we noted in the Methods section.

3.2. Eye-tracking data quality for multiple research assistants

Fig. 3 depicts distributions of the estimates for precision and data

3We are aware of the fact that there are developmental eye-tracking re-
searchers who prefer not to use a car seat as infants may cry more in a car seat
than e.g. on the parents lap. While our first choice is the use of a car seat to
minimize infant movement, we opt for either a high chair or placing the infant
on the parent's lap when the infant does not tolerate the car seat or when the
parent informs the RA that the infant will not tolerate the car seat.
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loss for the 5-month-old and 10-month-old infants, as recorded by the 5
RAs that conducted the most recordings per age group. Each participant
contributes one value to a distribution. In order to ease visual com-
parison of the distributions, they were kernel-smoothed in MATLAB.*
As visible from the top left panel in Fig. 3, the distribution of precision
for 5-month-old infants was not identical for every RA. For RAs 3 and 4,
for example, the peak of the distribution is close to 1.5° of RMS-s2s
deviation, while it peaks around 1° for RAs 1 and 2. This is not the case
for 10-month-old infants as seen from the top right panel, at least not to
the same extent. Here, the distributions peak roughly at the same value
for all RAs. As the distributions overlap for a large part, statistical
analysis was conducted to support these findings. A one-way Bayesian
ANOVA was conducted in JASP (JASP Team, 2018) for the RMS s2s
values with RA as a fixed factor. This was done separately for the 5-
month-old and 10-month-old infants. For the 5-month-old infants, the
model including the RA factor was best supported by the data, as in-
dicated by a Bayes Factor (BF,;, where ,; denotes the model described)
of 6.5 *10%. This indicates that the RA affects the RMS s2s value. For
the 10-month-old infants, the null model was supported best by the
data, albeit only slightly (BFy; = 2.66).

For data loss, a similar pattern is observed. As visible from the
bottom left panel in Fig. 3, the distributions of data loss for 5-month-old
infants have a sharp peak at around 0.15 for RAs 1 and 5, while the

4 Using the fitdist function with the ‘kernel’-option for distribution type and
the default bandwidth value.

RMS-s2s deviation (deg)

Root Mean Squared sample-to-sample de-
viation (RMS s2s) of the gaze-position
signals. Data loss was estimated as the
proportion of samples without a gaze co-
ordinate. Each distribution belongs to one
research assistant (RA) and is kernel-
smoothed to ease visual comparison. The
number of recordings for each RA is given
in parentheses. The values on the y-axes
are empirical probability densities for the
smoothed empirical distribution. The area
under the curve of each smoothed em-
pirical distribution is 1.
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distributions are much wider for RAs 2, 3 and 4. For the 10-month-old
infants (bottom right panel), the distributions of data loss of the RAs
peak closer together. These findings were again supported by statistical
analysis. One-way Bayesian ANOVAs were conducted for the proportion
of data loss values with RA as a fixed factor, separately for the 5-month-
old and 10-month-old infants. For the 5-month-old infants, the model
including the RA factor was best supported by the data (BF,, = 6.06).
For the 10-month-old infants, the null model was supported best by the
data (BF,; = 75.01).

Together, these findings indicate that eye-tracking data quality may
be dependent on the RA. Here, eye-tracking data quality was RA-de-
pendent for the younger infants (5 months) but not for the older infants
(10 months). It should be noted, however, that the RAs were not the
same for the 5-month-old and 10-month-old infants. The reason for this
is that only two RAs that conducted more than 30 measurements for the
5-month-old infants also conducted more than 30 measurements for the
10-month-old infants. When fewer than 30 measurements are available,
estimates of precision and data loss for an RA are unreliable, as they can
be too dependent on a few ‘easy-’ or ‘difficult-to-record’ infants.
However, in order to check that both age and RA experience contribute
to eye-tracking data quality, and differences between age groups are not
due to different RAs, a Bayesian ANOVA was conducted for the two RAs
that contributed measurements to both age groups. For the estimates of
precision, this revealed that the model including both the participant
age group and the RA as a factor was best supported by the data
(BF,; = 22.26). For the estimates of data loss, the model including only
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participant age group was best supported by the data (BF,; = 3.37),
followed closely by the model including both participant age group and
RA (BF); = 2.48). Eye-tracking data quality is thus dependent on both
participant age and which RA conducts the measurement.

Another interesting finding is that it is not necessarily the case that
more experienced RAs, i.e. those with more recordings to their name,
are the ones with the best eye-tracking data quality for their recordings.
The ‘best’ distribution for both measures of eye-tracking data quality is
one that peaks early and does not have a long tail to the right. For the
precision observed with 5-month-old infants, RA 2 fits this description
best, followed by RA 1 and RA 5, showing that more experienced op-
erators produced better eye-tracking data quality. However, for the
data loss observed with 5-month-old infants, RA1 and RA 5, not RA 2,
fit this description best. For the 10-month-old infants, this comparison
is more difficult to make, as the distributions are more alike.

3.3. Eye-tracking data quality ranges in developmental eye-tracking
research

Fig. 4 depicts distributions of the RMS-s2s deviation (estimate for
precision) and proportion of data loss for the four age groups. Each
participant contributes one value to a distribution. As is visible from the
left panel, the distribution of RMS-s2s deviation peaks around 1 to 1.5°
for the 5-month-old infants, while it peaks increasingly earlier for the
10-month-old infants, the 3-year-old children and the 9-year-old chil-
dren. A similar pattern is observed for the proportion of data loss (right
panel in Fig. 4). Here, the distribution for the 5-month-old infants is
very wide, with no clear peak. For the older ages (10 months, 3 years
and 9 years), the distribution is increasingly more peaked towards the
lower values, indicating better eye-tracking data quality. Note that for
both RMS-s2s deviation and the proportion of data loss, the distribu-
tions are wider for younger children than for older children. This means
that the differences in data quality are larger between the eye-tracking
data of the younger participants, than the eye-tracking data of the older
participants.

We further investigated differences in data loss across ages, by
looking at data loss for the individual eyes. Ideally, data loss is O for
both eyes, indicating that a gaze position could always be reported for
each eye. However, data loss is inevitable and particularly so in de-
velopmental eye-tracking research. If a participant blinks, for example,
a gaze coordinate cannot be reported for a short period (generally a few
hundred milliseconds at maximum). If a participant looks away from
the eye tracker completely, a gaze coordinate can also not be reported.
Such episodes are likely to occur with infants or toddlers. However,
data loss can also occur when a participant is not blinking or looking
away. As stated, such data loss may occur due to technical difficulties in
tracking the eyes (Wass et al., 2014; Hessels et al., 2015a), for example,

Data loss per age

Developmental Cognitive Neuroscience 40 (2019) 100710

Fig. 4. Distributions of the estimates for
precision (left) and data loss (right) for the
four different age groups: 5 months, 10
months, 3 years, and 9 years. Precision was
estimated by the Root Mean Squared
sample-to-sample deviation (RMS s2s) of
the gaze-position signals. Data loss was es-
timated as the proportion of samples
without a gaze coordinate. Distributions are
kernel-smoothed to ease visual comparison.
The number of recordings for each age
group is given in parentheses. The values on
the y-axes are empirical probability den-
sities for the smoothed empirical distribu-
tion. The area under the curve of each
smoothed empirical distribution is 1.
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when a pupil cannot be found in the camera image of the eye tracker.
When a participant blinks or looks away, data loss occurs for both eyes
at the same time. If all data loss in a given experiment is due to blinks or
looking away, one would thus expect the proportion of data loss to be
nearly identical for the two eyes. This does not need to be the case when
data loss occurs for different reasons. We therefore plotted the pro-
portion of data loss for the left eye against the proportion of data loss
for the right eye in Fig. 5.

As visible from the top left panel in Fig. 5, the proportion of data
loss for 5-month-old infants ranges from O to 1. Interestingly, there is
quite some spread around the unity line, which indicates that for these
participants, one eye had a consistently higher proportion of data loss
than the other. As visible from the top right panel, the proportion of
data loss for 10-month-old infants also ranges from 0 to 1, but the
spread around the unity line is substantially smaller. For the 3-year-old
and 9-year-old children (bottom two panels), the spread around the
unity line further decreases, and the proportion of data loss clusters
more in the bottom left corner of the plot. These findings can be de-
scribed by two metaphorical forces. As children age, the proportion of
data loss is forced towards the unity line, and towards O (the bottom left
corner of the plot). In other words, as children age the proportion of
time that only one eye can be tracked is reduced and the amount of data
loss that occurs at all. This furthermore indicates that the higher levels
of data loss for the 5-month-old infants compared with the 10-month-
old infants are not likely due to more looking away from the screen,
which would lead to both eyes not being tracked instead of only one.

4. Discussion

High data quality is the foundation on which solid developmental
eye-tracking research is built. However, eye-tracking data quality has
been underexposed in the developmental literature. In this article, we
have questioned how knowledge on eye-tracking data quality could be
used to improve eye-tracking recordings and analyses in longitudinal
research so that valid conclusions about child development may be
drawn. In order to answer this broader question we adopted a data-
quality perspective and aimed to answer the following three research
questions:

1. How can an eye-tracking setup be designed to optimize eye-tracking
data quality in developmental eye-tracking research?

2. How can eye-tracking data quality be optimized when the re-
searcher is not the primary person carrying out the recordings, but
many research assistants fulfill this function?

3. What ranges of eye-tracking data quality are to be expected in de-
velopmental eye-tracking research, and how can eye-tracking data
analysis be matched to the data-quality range?
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Fig. 5. Proportion of data loss for the left eye plotted against the proportion of data loss for the right eye for the four different age groups: 5 months (top left), 10

months (top right), 3 years (bottom left), and 9 years (bottom right).

Regarding the first question, we have shown how our eye-tracking
setup was designed to optimize the quality of the eye-tracking data
recorded. It was designed to facilitate obtaining the optimal relative
position and orientation of the eye tracker and the participant, for in-
fants, toddlers, school-aged children and adults. Regarding the second
question, we have outlined our RA-training protocol and have shown
that eye-tracking data quality can be RA-dependent even after a thor-
ough training protocol. Regarding the third question, we have reported
distributions of precision and data loss measures for four age groups (5
months, 10 months, 3 years, and 9 years), based on 1531 recordings.
We will discuss below how differences in these distributions of eye-
tracking data quality measures constrain data analysis in longitudinal
and cohort-based eye-tracking research.

The fact that eye-tracking data quality is RA-dependent is an im-
portant factor to consider when monitoring eye-tracking data quality in
large studies. Importantly, the magnitude of differences in eye-tracking
data quality achieved by different RAs, could approximate the differ-
ence in eye-tracking data quality between age groups (5-month-olds
and 10-month-olds). This highlights that even a thorough training
protocol with many checks by experienced RAs and researchers does
not necessarily mean that eye-tracking data quality will be RA-in-
dependent. Yet, although our findings indicate that eye-tracking data
quality is RA-dependent, and is not necessarily highest for more

experienced RAs, they should not be interpreted without considering
other aspects of the recording. It may be the case, for example, that the
different RAs also have different thresholds for when to start, stop or
pause an ongoing recording: an important aspect of the recording that
we do not explicitly consider here. However, our findings do indicate
that it is worthwhile to monitor RA-dependence of data quality, and
potentially focus training efforts on those RAs with consistently lower
eye-tracking data-quality values. An important outstanding question is
exactly what drives the differences in eye-tracking data quality between
the different RAs. One problem is that errors early in a measurement
may propagate. For example, problematic positioning of an infant may
lead to more calibrations needing to be conducted, potentially leading
to an infant that becomes fussy before the experiment is over. In the
experience of the first author (RH) in supervising the RAs, the most
difficult decision is when to start the experiment and when to keep
tweaking and fine-tuning the positioning and calibration.

The distributions of eye-tracking data quality, specifically precision
and data loss, that we have reported confirm previous work on the
differences in precision between age groups (Dalrymple et al., 2018;
Hessels et al., 2016b; Hooge et al., 2018b), and extend it by showing
how data loss differs across age groups. Furthermore, our distributions
for precision and data loss were acquired with a large number of par-
ticipants per age group: 500 children for all age groups except the 3-
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year-olds. While eye-tracking data quality measures may differ as a
result of the specific eye tracker used, the demographics of the parti-
cipant groups or the lab at which the research is conducted, we hy-
pothesize that the relative differences between age groups will gen-
eralize beyond our eye tracker and participant demographics. Finally,
we have highlighted important differences in the nature of data loss
between the age groups. The question then beckons: how do these
findings constrain eye-tracking data analysis and the conclusions that
may be drawn from it?

We first address the differences in precision across age. Our analyses
of the precision poses two specific problems for developmental eye-
tracking data analysis: (1) precision is increasingly better for the older
ages, and (2) the differences within an age group are increasingly
smaller for the older ages. As stated before, a low precision (or higher
variable error) may affect the number of fixations and corresponding
fixation durations classified in eye-tracking data (Wass et al., 2014;
Holmgqvist et al., 2012; Hessels et al., 2017). Should one thus use a
fixation-classification algorithm for which the output is not precision-
independent, one might conclude that (1) the number of fixations or
average fixation duration changes as a function of age, and (2) in-
dividual differences in these measures become smaller with age, without
there being any actual difference in the underlying gaze behavior.
These conclusions may purely depend on the precision of the eye-
tracking data recorded. Clearly, this is an undesirable situation. Hessels
et al. (2017) have recently developed a fixation-classification algorithm
which is less susceptible to differences in precision between 0 and 2° of
RMS-s2s deviation than competing algorithms. While this is an im-
portant step forward in analysis of low-quality eye-tracking data, there
can still be a substantial proportion of participants in infant research for
which the average RMS-s2s deviation is larger than 2° (see Fig. 4).

With regard to data loss, the problem is likely more complex. If the
proportion of data loss is close to 1, it is unlikely that the remaining
gaze data is going to be useful when drawing conclusions about a child's
gaze behavior. However, large proportions of data loss need not be
problematic. If, for example, an infant looks away from the screen and
eye tracker for 50 to 60% of the time, it may still be that the eye-
tracking data for the remaining time is perfectly analyzable. In that
scenario, time spent looking away from the screen and eye tracker may
be an informative measure in itself, for example of interest in the visual
stimulus. Yet, when periods of data loss are very short (< 100 ms) and
occur often, this can be problematic for fixation or saccade classifica-
tion (Wass et al., 2014; Hessels et al., 2017). Moreover, if data loss
occurs for one eye, but not the other, the question then beckons how
gaze-position signals of the two eyes (if both recorded) should be
analyzed. If one wants to average the gaze-position signals from the two
eyes to acquire a lower precision due to the square root law (Hooge
et al., 2018a), the eye with the largest proportion of data loss de-
termines the total proportion of data loss, i.e. the worst signal in terms
of data loss dominates. If one wants to maximize the available gaze-
position data, one might choose the eye with the lowest proportion of
data loss, or take a gaze position from whatever eye is available at any
point in time. The latter option may be tricky: if one averages the gaze
positions of two eyes when available and takes the gaze position of one
eye when the other could not be reported, large shifts in the gaze po-
sition may occur. The shift may be due to, for example, different sys-
tematic errors for each eye.

Finally, it is important to consider what may drive the differences in
eye-tracking data quality between age groups and whether some of the
causes can be mitigated. Our findings not only show that eye-tracking
data quality improves with participant age, but also that the nature of at
least one aspect of eye-tracking data quality (data loss) differs between
age groups. For the 5-month-old infants, for example, the proportion of
time that one eye, but not the other, could be tracked was higher than
for the 10-month-old infants. Given that many things can affect eye-
tracking data quality, such as positioning, movement, eye physiology,
but also infant fussiness and crying, it is not possible to pinpoint one

10

Developmental Cognitive Neuroscience 40 (2019) 100710

cause for developmental differences in data quality based on our data.
In order to provide a more concrete answer to this question, one might
have to videotape the participant during the eye-tracking recording, to
get an idea of how movement or positioning over time might affect eye-
tracking data quality. However, at least part of the answer is hidden in
the black box of the commercial eye tracker: Most eye-tracking manu-
facturers do not specify how the image of the eye is processed in order
to estimate gaze position. Open-source eye trackers may be helpful
here, although they are often not specifically developed for develop-
mental eye-tracking research.

Based on the potential problems discussed above, we advise devel-
opmental eye-tracking researchers to always verify whether their fixa-
tion- or saccade-classification algorithms (or other analysis tools) are
suited for the quality of the eye-tracking data obtained. This can be
done, for example, by inspecting the raw gaze-position signals overlaid
with the classified fixations for these signals. Critically, the assessment
of whether an algorithm is suitable or not depends at least on (1) the
analysis tool used, (2) the quality of the eye-tracking data recorded, and
(3) the eye-movement measure of interest.

4.1. Advice

Based on our experiences and findings, we advise (prospective)
developmental eye-tracking researchers in longitudinal and cohort-
based research:

1. To consider an eye-tracking setup as at least a combination of an eye
tracker, seating and table. Different seating puts different con-
straints on the relative positioning and orientation of the eye tracker
with respect to the participant (and vice versa). This is also an im-
portant consideration for budgets in grant applications.

2. To consider that the operator can affect the data quality of the eye-
tracking recording. Eye-tracking data quality can be optimized by
ensuring that operators are well trained. Sharing experiences among
operators, or comparing an operator's subjective assessment of a
measurement with the data quality obtained, may be helpful in this
regard.

3. To consider that systematic monitoring of eye-tracking data quality
can be useful in spotting areas for improvement, for example in the
RA-training protocol.

4. To always verify that the analysis tools used are suited for the
quality of the eye-tracking data. If so required, specialized fixation-
or saccade-classification algorithms can be applied. For example,
some fixation-classification algorithms do not produce a valid
output when the precision is low. Comparing the fixation-classifi-
cation output to the raw data delivered by the eye tracker (e.g. gaze
position signals as a function of time) may be useful to establish
whether this is the case (see e.g. Hessels et al., 2017, Figure 10).

5. To report measures for eye-tracking data quality (precision, accu-
racy and data loss), and link these measures to the analysis tools
used. Investigating, for example, average fixation durations puts
more constraints on data quality than an AOI-based analysis of total
looking time, especially when AOIs are large and the stimulus is
sparse (e.g. Hessels et al., 2016b). An example of this can be found
in Van der Stigchel et al. (2017), who report measures for the pre-
cision and accuracy obtained and state that these are within the
values required for their fixation-classification algorithm and AOI
analysis. See also Holmqvist et al. (2012) for advice on reporting
eye-tracking data quality.

6. To realize that data quality can be an important factor in develop-
mental eye-tracking research. When comparing different groups (by
age or e.g. diagnostic status), investigating individual differences, or
mapping an individual developmental trajectory, it is essential to
consider whether eye-tracking data quality can explain the observed
differences. If, for example, measures of precision, accuracy, or data
loss differ significantly between groups or timepoints, researchers
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might wish to verify that this did not affect the computation of the
eye-tracking measures used (see points 4 & 5).

Finally, we hope that developmental journals will consider the ad-
vice above, and adopt a policy for reporting eye-tracking data quality
measures. Such a policy could take the form of requiring authors (1) to
provide empirical values for precision, accuracy and data loss, (2) to
make explicit whether these values differed between groups, timepoints
or individuals (when relevant) and (3) to make explicit whether the
values obtained were within range for the analysis tools used.

Although this article concerns the collection, quality and analysis of
eye-tracking data, many of the problems addressed generalize to other
neurocognitive domains as well. The basic principles of optimizing data
quality by fine-tuning the setup and data-collection protocols transfer to
any measurement technique, be it eye tracking, EEG, fMRI, or beha-
vioral experiments. The important question is how the factors that af-
fect data quality can best be understood and mitigated so that valid
conclusions about child development may be drawn. We hope the
present article furthers the debate on this topic.
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