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Abstract .  Expression of human immunodeficiency vi- 
rus type 1 (HIV-1) structural proteins requires the 
presence of the viral trans-activator protein Rev. Rev 
is localized in the nucleus and binds specifically to the 
Rev response element (RRE) sequence in viral RNA. 
Furthermore, the interaction of the Rev activation do- 
main with a cellular cofactor is essential for Rev func- 
tion in vivo. Using cross-linking experiments and Bio- 
specific Interaction Analysis (BIA) we identify 
eukaryotic initiation factor 5A (elF-5A) as a cellular 
factor binding specifically to the HIV-1 Rev activation 

domain. Indirect immunofluorescence studies demon- 
strate that a significant fraction of elF-5A localizes to 
the nucleus. We also provide evidence that Rev trans- 
activation is functionally mediated by elF-5A in Xeno- 
pus oocytes. Furthermore, we are able to block Rev 
function in mammalian cells by antisense inhibition of 
elF-5A gene expression. Thus, regulation of HIV-1 
gene expression by Rev involves the targeting of RRE- 
containing RNA to components of the cellular transla- 
tion initiation complex. 

H 
tJr, tAN immunodeficiency virus type 1 (HIV-1) m en- 
codes a trans-acting regulator of viral gene expres- 
sion, called Rev, which is essential for virus replica- 

tion (Feinberg et al., 1986; Sodroski et al., 1986; Sadaie et 
al., 1988; Terwilliger et al., 1988). It was shown that Rev 
function is required for the cytoplasmic expression of un- 
spliced and singly spliced viral mRNAs encoding the viral 
structural proteins (Emerman et al., 1989; Hammarskj61d et 
al., 1989). Various modes of Rev action have been suggested 
including effects on the transport, stability, splicing, and 
translation of viral mRNA species (Chang and Sharp, 1989; 
Felber et al., 1989; Malim et al., 1989b; Arrigo and Chen, 
1991; Kjems et al., 1991b; Lawrence et al., 1991; DAgostino 
et al., 1992). 

Previous studies demonstrated that Rev is a nuclear phos- 
phoprotein which appears to accumulate in the nucleoli of 
expressing cells (Cullen et al., 1988; Hauber et al., 1988; 
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Cochrane et al., 1989; Malim et al., 1989a; Cochrane et al., 
1990b). Rev trans-activates through a highly structured cis- 
acting RNA sequence, the Rev response element (RRE), 
which is encoded by sequences residing in the env gene 
(Rosen et al., 1988; Hadzopoulou-Cladaras et al., 1989; 
Malim et al., 1989b). In vitro studies demonstrated that the 
rev gene product binds directly and specifically to its RRE 
RNA target sequence (Daly et al., 1989; Zapp and Green, 
1989; Cochrane et al., 1990a; Daefler et al., 1990; Heaphy 
et al., 1990; Malim et al., 1990; Olsen et al., 1990b). Multi- 
ple Rev interaction sites within the RRE have been reported 
(Kjems et al., 1991a). However, a substructure of the RRE, 
termed Stem-Loop IIB, has been mapped as the high-affinity 
Rev binding site (Bartel et al., 1991; Cook et al., 1991; 
Heaphy et al., 1991; Kjems et al., 1992; Tiley et al., 1992). 
Recently, evidence was provided that multimerization of Rev 
monomers on the RRE is required for biological activity 
(Malim and Cullen, 1991). In addition, Rev multimerization 
before RRE RNA binding has also been reported (Olsen et 
al., 1990a; Zapp et al., 1991). 

Mutational analysis of the rev gene revealed a modular 
structure similar to transcriptional activator proteins 
(Ptashne, 1988). A basic domain rich in arginine residues, 
which maps to amino acids (aa) 33 to 46 in the 116 aa Rev 
protein, serves as a nuclear localization signal and is re- 
quired for the sequence specific binding of viral RRE RNA 
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(Malim et al., 1989a; Hope et al., 1990; Olsen et al., 1990a; 
B6hnlein et al., 1991; Kjems et al., 1991b, 1992; Malim and 
Cullen, 1991; Zapp et al., 1991). Amino acid residues flank- 
ing this domain are reported to be involved in the oligomer- 
ization of the Rev molecule (Olsen et al., 1990a; Malim and 
Cullen, 1991; Zapp et al., 1991). In addition, a protein acti- 
vation domain which is required to mediate Rev effector 
functions in vivo is located between aa 78 and aa 93 (Malim 
et al., 1989a, 1991; Mermer et al., 1990; Venkatesh and 
Chinnadurai, 1990; Hope et al., 1991; Weichselbraun et al., 
1992). A peptide core motif rich in leucine residues (aa 81 
to 84) has been identified as the functionally critical part of 
this domain (Hope et al., 1991; Malim et al., 1991). Muta- 
tions in this region resulted in Rev mutant proteins which 
display a trans-dominant (dominant-negative) phenotype. 
These data suggest that the Rev activation domain mediates 
Rev function in vivo by interacting with an unknown cellular 
host protein (Malim et al., 1989a, 1991; Mermer et al., 
1990; Venkatesh and Chinnadurai, 1990; Hope et al., 1991). 
The identification of this cellular cofactor required for Rev 
function will provide insight into the molecular mechanism 
of Rev-mediated trans-activation in the course of HIV-1 in- 
fection. 

We used biochemical methods to detect a cellular protein 
which localizes to the nucleus and interacts specifically with 
the activation domain of the HW-1 Rev trans-activator pro- 
tein. Subsequently, this cellular factor was identified by 
purification and amino acid sequencing. Finally, functional 
data are provided which demonstrate that this specific inter- 
action mediates Rev trans-activation. 

Materials and Methods 

Cross-linking Experiments and 
SubceUular Fractionation 
Total HeLa nuclei were prepared according to standard procedures and 
purified by centrifugation through a 60% sucrose cushion (Yamasaki et al., 
1989). 

Proteins from total nuclei were prepared by TCA precipitation (15 % final 
concentration) and subsequently analyzed on 10-15 % gradient SDS-PAGE 
followed by autoradiography. Nuclear envelopes were isolated by a com- 
bined nuclease digestion (DNase I: 45 U; RNase A: 0.75 U; Boehringer 
Mannheim, Mannheim, Germany) at 37°C for 30 rain followed by high-salt 
extraction (1.6 M NaC1; 2 x 10 rain at ambient temperature). The chroma- 
tin fraction (chromatin-associated proteins) was prepared by DNase I diges- 
tion as described above followed by salt extraction using 400 mM NaCI. 
The nucleoplasmic fraction was obtained by salt extraction using 300 mM 
NaC1. The cytoplasmic fraction was obtained by disrupting (Wheaton 
dounce tissue grinder, pestle "B"; 10 strokes) intact HeLa cells in hypotonic 
buffer (10 mM Hepes, pH 6.5; 10 mM NaC1; 4 mM MgC12; 1 mM EDTA; 
2 ~g/rni Aprotinin; 10/~g/rnl Leupeptin) and low-speed centrifugation to re- 
move the nuclei. 

Peptide mimics of the HIV-1 Rev activation domain (Rev aa 75 to 93: 
NH2-LPPLERLTLDCNEDCGTSG-COOH) were coupled to radioiodi- 
nated N-[4-(p-azidosalicyl-amido)butyl]-3"(2"pyridyl-dithio)propionamide 
cross-linker molecules (APDP; Pierce, Rockford, IL). 5 x 106 HeLa 
nuclei were equilibrated for 1 h at room temperature in the presence of 
400 nM of t25I-APDP-activation domain peptide (106 cpm/nmol) in 2 mM 
Hepes, pH 7.0, 40 mIVl NaI-I2PO4, 50 mM NaCI, and 4 mM MgCI2. 
The photoreactive moiety was activated at a distance of 10 cm at 366 nm 
for 10 rain using a Hoefer TransiUuminator with a bulb surface intensity 
of ,~10.000 ~tW/cm 3. A Tat-derived peptide (Tat aa 73 to 86; NH2- 
PTSQSRGNP'I~PKQ-COOH) served as nonspecific competitor (Arya et 
al., 1985). 

Protein Purification 
500 g of HeLa cells were used to isolate 6 × 101° nuclei which were 

stored at -80°C in storage buffer (10% Sucrose, 10 mM Hepes, 10 mM 
NaCl, 4 mM MgC12, pH 6.5) as described above. 

After thawing, 2 t~g/ml Aprotinin and 20 gg/mi Leupeptin were added 
to the nuclei and the suspension was centrifuged at 2.800 g for 15 rain at 
40C. The pellet was washed twice in 25 mM Hepes, 150 mM NaC1, 4 m_M 
MgCI2, 1 mM EGTA, 10% Glycerol, 0.6% n-Octylghicoside, 2 gg/mi 
Aprotinin, 20 gg/ml Leupeptln, pH 7.4 and resuspended in 250 ml of the 
same buffer. This solution was adjusted to a final concentration of 2 % NP- 
40 and 2% n-Octylglucoside. Solubllizafion of the nuclei was finally 
achieved using 20 strokes of a motor driven Teflon homogenizer (1,200 rpm; 
4°C). The obtained homogenate was cleared by centrifugation at 100,000 g 
for 60 min at 4°C and the superuatant subjected to ultraffltration using an 
Amieon XM 300/76 device (Amicon Corp., Danvers, MA). The resulting 
filtrate was then concentrated using an Amicon YM 3/76 unit. 

Size exclusion chromatography on Superose 75 (Pharmacia, Uppsaia, 
Sweden) was carried out using a 16 × 1,200-ram column equilibrated with 
chromatography buffer (25 mM Hepes, 50 mM NaCI, 4 mM MgCI2, 1 
mM EGTA, 10% Glycerol, 0.6% n-Octylglucoside, 2/~g/ml Aprotinin, 20 
pg/ml Leupepfin, pH 7.4). The protein homogenate was chromatographed 
at 1 ml/min and fractions were collected. 

Fractions containing the.19-kD protein were pooled and loaded onto a 
Mono Q column (16 x 100 mm; Pharmacia) for anion exchange chroma- 
tography. Proteins were eluted by applying a salt gradient ranging from 50 
mM to 1 M NaCI at a flow rate of 2 ml/min and fractions containing the 
desired protein were pooled. After this stage of the purification scheme, two 
alternative separation procedures were followed. 

To prepare the Rev activation domain binding protein in its native state, 
the technique of chromatofocussing was applied. A Mono P column (high 
resolution [HR]; 10 × 300 ram; Phatmacia) was equilibrated with chroma- 
tography buffer and the protein sample was loaded using a flow rate of 1 
ml/min. A self-forming pH gradient was created by tltrafing the sample- 
containing Mono P matrix at pH 7.4 with elution buffer (Pharmacia- 
Polybuffer 74 diluted 1:20 with chromatography buffer lacking Hepes). The 
obtained native protein was subjected to two-dimensional (2D) gel elec- 
trophoresis for determination of purity and identity confirmation. 

FOr sequencing, the Rev binding protein was prepared by reversed phase 
chromatography using a Vydac C4 column (4.6 × 150 ram). Separation 
was achieved by applying a gradient of water/0.1% Trifluoroacetic Acid 
(TFA) to acetonitrile/0.1% TFA. 

Amino Acid Analysis and Sequence Determination 
Approximately two pmol of the purfied Rev binding protein were gas-phase 
hydrolyzed with 6 N HCL containing 1% phenol at 110°C for 20 h on a 
pico tag workstation (Waters Associates, Milford, MA) and subsequently 
dried. Amino acid derivatives were formed by automated pre-column reac- 
tion with o-Phthalaldehyde and FMOC. The amino acid derivatives were 
analyzed by reversed phase HPLC on a model HP 1090 M liquid chromato- 
graph (Hewlett-Packard Co., Palo Alto, CA) using a micro-bore column 
(2 × 150 ram) and fluorescence detection. Elution was carried out accord- 
ing to the manufacturer's recommendations. 

For CN-Br cleavage ,~50 pmol of the isolated protein were dissolved in 
100 gl of 70% formic acid containing 3 mg/mi cyanogen bromide and 
incubated at 20"C for 16 h in the dark. Subsequently the sample was dried 
and 10% of the material was used to verify the cleavage reaction by 
SDS-PAGE. The remainder' was redissolved in TFAJacetonitril/water 
(1:500:500), spotted on a polyhrene coated glass filter disk and subjected 
directly to sequence determination. 

Automated amino acid sequence analysis was perforraed on a model 
470A sequencer. Amino acid derivatives were analyzed on-line by reversed 
phase HPLC with a model 120A PTH amino acid analyzer (Applied Bio- 
systems, Inc., Foster City, CA) using a C-18 micro-bore column (2.1 × 220 
ram). Instrument control, data collection, and analysis was performed using 
a model 900A contmler (Applied Biosysterns, Inc.). 

Antisera 
Chemically synthesized HW-1 Rev activation domain peptide and eIF-SA 
protein, which was purified as described previously (Perk et al., 1986), 
were conjugated separately to cationized BSA (SuperCarrierTM; Pierce) 
according to the manufacturer's protocol. 

Female BALB/c mice received 50/~g conjugated Rev activation domain 
peptide (NH2-LPPLERLTLDCNEDCGTSG-COOH) in Freond's com- 
plete adjuvant intraperitoneally (ip) and subcutaneously (so) on day 0. The 
same amount was administered in Freund's incomplete adjuvant on day 21. 
Two animals received intraperitoneally 20/~g conjugated elF-SA protein in 
saline on day 36. 
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IgG and IgM antibodies were detected in the sera by an ELISA system 
as previously described (Bahr et al., 1985). 

To raise polyclonal anti-eIF-5A antibodies, glutathione-S-transferase- 
eIF-5A fusion protein was prepared as previously described (Smith and 
Johnson, 1988) and conjugated to cationized BSA. A rabbit was immunized 
on day 0 with 200/~g of this material after mixing with Freund's complete 
adjuvant. The rabbit was boosted by additional injections on day 8, 15, and 
22 and the responses rapidly demonstrated a high level of specific anti-eIF- 
5A antibody as measured by immunoprecipitation of eIF-5A protein. 

Biospecific Interaction Analysis (B IA ) 
Biospecitic Interaction Analysis (BIA) was performed on a BIAcore TM pro- 
cessing unit (Pharmacia) according to the manufacturer's system manual. 

The eIF-5A protein used in these studies was purified as described previ- 
ously (Park et al., 1986). The immunoaflinity purified anti-Rev activation 
domain antibodies were prepared as described previously (Kristiansen, 
1978) by passing 1.5 ml of high titered pooled mouse antiserum diluted with 
PBS (1:3) through a Rev-Sepharose column (5 × 20 nun). Bound mouse 
anti-Rev antibody was eluted at pH 2.8 with 0.1 M Glycin/HCL buffer and 
neutralized immediately after desorptiun, elF-5A and the immunoalfinity 
purified anti-Rev antibody were immobilized on the BIAcore chip surface 
at a surface concentration of 15 ng/mm 2. Antiserum from one mouse 
designated P3 was diluted 1:20 with PBS and subsequently 5-20/~1 were 
used for serum sample analysis. Preincubation experiments were carried 
out by exposing the mouse antiserum (P3) to 20/~g/ml of elF-5A or BSA 
for 30 min at ambient temperature before BIA. 

Plasmid Constructions 
The pcRev, pBC12/CMV, pBCI2/CMV/11-2, and pDM128/CMV con- 
structs and the plasmids encoding the Rev mutants MI0, M20, and M32 
have been described in detail previously (Cullen, 1986a; Maiim et al., 
1988, 1989b, 1991). The RRE-deficient plasmid pDM128/CMVARRE was 
constructed by cloning the 1.7-kb XbaI-Bglll fragment from the Rev- 
specific CAT reporter construct pDM128 (Hope et al., 1990) between the 
SalI and HindHI site of pgTat (Malim et al., 1988). Substitution of the 11-2 
specific sequences in pBC12/CMV/II-2 (Cullen, 1986a) by the 3.7-kb 
HindllI-BamHI fragment ofpSV-/~-Galactosidase (Promega, Madison, WI) 
resulted in the construct pBC12/CMV/#Gal. The gene encoding elF-5A 
(Smit-McBride et al., 1989a) was isolated from a human eDNA as a 0.5-kb 
HindIlI-BamI-II fragment by PeR technology, using the following primers 
to introduce terminal HindlII and BamHI sites, respectively: sense 5'-AAG- 
C T T C ~ G C G A G ~ T C G A A G C C T C T T - 3 ' ;  anti-sense 5'-GGATCC- 
CCTGGAGCCAGTTATTTICd2C-3'. The PCR conditions included 30 cy- 
cles of denaturation at 95°C for I rain, primer annealing at 60"C for 2 rain, 
and primer extension at 73°C for 3 rain. The reaction product was digested 
by HindIII and BamHI and subsequently inserted in the expression vector 
pBC12/CMV to generate peIF-5A. Plasmid pelF-5Aas expresses the an- 
tisense strand of the full-length human elF-5A eDNA. 

I m m u n o f l u o r e s c e n c e  

Indirect immunofluorescence studies were performed as previously de- 
scribed (Malim et al., 1989a) to localize the eIF-5A protein within trans- 
fected and wild-type COS cells. The primary rabbit anti-eIF-SA antibody 
was used at a 1:1000 dilution. The second antibody, rhodamine-conjngated 
goat anti-rabbit IgG, was used at a 1:50 dilution. 

For confocal laser scanning microscopy COS cells were fixed using 3.7 % 
formaldehyde/2% sucrose in PBS and permeabilized with 0.5% Triton 
X-100 in PBS. The cells were incubated with anti-eIF-5A antiserum at a 
1:500 dilution in PBS containing 1% BSA. To label the nuclear envelope, 
a mouse mAb (CHON 211) that specifically binds to components of the nu- 
clear pore complex (Park et al., 1987) was included in the primary antibody 
incubations. CHON 211 ascites was used at a 1:2000 dilution. The second- 
ary antibodies were FITC-conjngated goat anti-mouse IgM and Texas 
red-conjugated goat anti-rabbit IgG (diluted 1:100 in PBS/BSA). All anti- 
body incubations were carried out for I h at ambient temperature. 

Two color images were obtained in the dual channel mode with a BioRad 
MRC 600 confocal laser scanning system (Bio Pad Laboratories, Cam- 
bridge, MA) mounted on a Zeiss IM 10 inverted microscope (Carl Zeiss 
Inc., Thornwood, NY). Spill-over of fluorescein into the Texas red channel 
was corrected for by applying the available "bleed" software. The two im- 
ages were merged using the "nmerge" command. 

Transfections 
For indirect immunofluorescence and studies using antisense constructs, 

COS cells were transfeeted using DEAE-Dextran as previously described 
(Cullen, 1986b). 

CAT enzyme levels in protein extracts of the transfected COS cells were 
determined as previously described CNeumann et al., 1987). 

Microinjection Experiments 
Microinjection was performed into nuclei of stage VI Xenopus oocytes 
(Dumont, 1972). Typically, 15 ng pDM128/CMV, 15 tag pcRev and 7.5 ng 
pBC12/CMV//~Gal DNA together with 0.05 lag eIF-5A protein or 15 ng 
peIF-5A DNA in 80 mM NaC1, 10 mM Hepes, pH 6.8, were co- 
microinjected in oocytes using 15 oocytes per experiment. In some ex- 
periments the pDM128/CMV reporter construct was substituted by 
pDMI28/CMVARRE. In all of the experiments the DNA concentration was 
kept constant by addition of pBC12/CMV DNA. 

Incubation of the injected oocytes was carried out at 21°C for 24 h in 
modified Barth's medium (Gurdon and Wickens, 1983). Protein extracts 
were prepared by disrupting the oocytes with a pipette tip in 200/zl of 250 
mM Tris-HC1, pH 7.6, and cleared by centrifugation. 

CAT assays were normalized to the expression of/~-galactosidase activity 
expressed from the internal control plasmid pBC12/CMV//3Gal (Gorman et 
al., 1982). 

RNA Isolation and $1 Nuclease Protection Analysis 
Nuclear and cytoplasmic RNAs were isolated from 100 mm cell cultures 
(2.5 X 106 COS cells) 60 h after transfection as described previously 
(Malim et al., 1989b). 

S1 nuclease protection analysis was carded out as published previously 
(Malim et al., 1988). The probe used was isolated as a 629-bp SalI-EcoRI 
fragment from pDM128/CMV (Malim et al., 1991), fused to heterologous 
non-HIV-1 sequences and radioactive labeled at the SalI site using Klenow 
enzyme. The probe spans the HIV-l-derived splice donor site (Hope et al., 
1990) and allows the input probe to be distinguished from the protected 
fragments corresponding to unspliced and spliced pDM128/CMV-derived 
RNAs. 

Results 

Detection of the Cellular Rev Activation Domain 
Binding Factor 
To detect an interaction between the HIV-1 Rev activation do- 
main and host cell proteins, we used a synthetic peptide to 
mimic the Rev activation domain in cross-linking experi- 
ments. The radioactive labeled cross-linker APDP (N-[4- 
(p-azidosalicyl-amido)butyl]-Y-(2'-pyridyl-dithio)propion- 
amide was coupled chemically to the Rev activation domain 
peptide and the resulting conjugate was incubated with total 
nuclei or cellular extracts from HeLa cells (Fig. 1). Cellular 
proteins interacting with the conjugated Rev activation do- 
main were identified through activation of the cross-linker by 
UV-light, followed by a reductive cleavage of the cross- 

Figure 1. Intracellular distri- 
bution of HIV-I Rev activation 
domain sequence binding pro- 
teins. Intact nuclei from HeLa 
cells were incubated with Rev 
activation domain peptide 
coupled to radioiodinated N-[4- 
(p-azido-salicylamido)butyl]-3'- 
(2'pyridyldithio)propionamid 
(APDP;Pierce) and subse- 
quently cross-linked. Subfrac- 
tions of labeled nuclei were 

subjected to SDS-PAGE and the cross-linked proteins were visual- 
ized by autoradiography. Lane 1, total nuclei; lane 2, nuclear enve- 
lope; lane 3, chromatin; lane 4, nucleoplasm; lane 5, cytoplasm. 
Molecular mass standards (in kilodaltons) are indicated on the left. 
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linked peptide-protein complexes. This protocol resulted in 
the transfer of  the radioactive label from the cross-linker 
molecule onto the cellular target proteins which were subse- 
quently subjected to gel electrophoresis and visualized by 
autoradiography. A typical result is shown in Fig. 1. Pre- 
dominant signals migrating at a relative molecular mass of 
65, 41, 39, 34, 30, 19, and 15 kD were detectable when the 
Rev activation domain peptide was incubated with total 
nuclei f rom HeLa cells (Fig. 1, lane 1 ). Fractionation of the 
nuclei resulted in an identical cross-linking pattern for the 
nuclear envelope fraction (Fig. 1, lane 2 versus lane 1 ). No 
signals were detected in the HeLa cell chromatin, nucleo- 
plasmic or cytoplasmic fractions (Fig. 1, lanes 3 to 5). To 
demonstrate binding specificity, competition experiments 
were performed using unlabeled peptide. A 6-10-fold molar 
excess of the Rev activation domain peptide completely abro- 
gated the cross-linking to the 19-kD protein from the enve- 
lope fraction of HeLa nuclei (Fig. 2 A, lanes 4 and 5 versus 
lane 1 ). Densitometric analysis of this data revealed that the 
19-kD signal is reduced by maximal 82% when compared 
with the nonspecific 15-kD band (not shown). In contrast, 
the use of  a nonspecific competitor peptide derived from the 
HIV-1 Tat carboxyterminus (Tat aa 73 to 86) did not abolish 
the interaction of the HIV-1 Rev activation domain peptide 
with the 19-kD host protein (Fig. 2 B, lanes 2 and 3 versus 
lanes 4 and 5).  Therefore, the band of 19 kD exhibited the 
highest degree of specific competition and was selected for 
further analysis in this study. 

Purification and Identification of the Rev 
Binding Factor 

A radiotracer isolation procedure was used to isolate the 19- 
kD Rev binding host protein. This approach was chosen 
since the detected binding factor lacks Rev binding activity 

Figure 2. Binding specificity of nuclear proteins recognizing the 
HIV-I Rev activation domain. Autoradiographs of SDS-PAGE gels 
are shown. The molecular mass standards (in kilodaltons) are indi- 
cated on the left. An arrow indicates the position of the 19-kD nu- 
clear protein. (A) Cross-linking experiments using an unlabeled 
specific competitor (Rev activation domain peptide). The molar ex- 
cess of the specific competitor used was as follows: lane 1, no com- 
petitor; lane 2, onefold; lane 3, threefold; lane 4, sixfold; lane 5, 
10-fold; lane 6, 50-fold. (B) Comparison of specific with non- 
specific competition. A Tat-derived peptide (Tat aa 73 to 86; NH2- 
PTSQSRGNPTGPKQ-COOH) served as nonspecific competitor. 
The molar excess of the competitors used were as follows: lane 1, 
no competitor; lanes 2 and 3, 5- and 10-fold molar excess of 
nonspecific competitor, respectively; lanes 4 and lane 5, 5- and 10- 
fold molar excess of specific competitor, respectively. 

when solubilized from its native nuclear context (data not 
shown). For this the HeLa cell nuclei were cross-linked to 
the Rev activation domain peptide as described above and the 
19-kD target protein was purified on an analytical scale 
using various extraction and column purification methods 
(not shown). In addition, the isoelectric point was deter- 
mined to be pI 5.1 by 2D gel electrophoresis using the identi- 
cal material. This information was subsequently used to ad- 
just the scheme to large-scale purification (detailed in 

Figure 3. Purification of the Rev activation domain binding factor. 
10 ~g of Rev activation domain binding factor were purified from 
500 g of HeLa cells. Size fractions which contained the desired pro- 
tein and which were collected for further purification are shown on 
silver stained SDS-PAGE gels. (A) Size exclusion Chromatography. 
Solubilized nuclear proteins were fractionated according to size on 
a Superose 75 (Pharmacia) gel-filtration column. SDS-PAGE anal- 
ysis of the fractions collected is shown. Molecular mass standards 
(in kilodaltons) are indicated on the left. (B) Anion Exchange 
Chromatography. The charge differences at physiological pH were 
exploited to separate the acidic Rev activation domain binding fac- 
tor from the neutral and basic nuclear protein fractions using a 
Mono Q resin (Pharmacia). The 19-kD Rev cofactor eluted at a salt 
concentration of ,,o400 mM NaCI which was monitored by SDS- 
PAGE (lane 3). (C) Separation according to isoelectric properties 
was achieved using Chromatofocussing on a Mono P matrix (Phar- 
macia). This procedure ensured the recovery of the desired protein 
in a native state. SDS-PAGE analysis revealed the purity of the frac- 
tions collected which eluted at a pH of 5.5 (lanes I and 2). (D) 2D 
gel electrophoresis was used to demonstrate purity and identity of 
the protein prepared under native conditions, pI standards for iso- 
electric focussing (IEF) as the first dimension are indicated on the 
bottom. The purified Rev activation domain binding factor is indi- 
cated by a triangle. Molecular mass standards for SDS-PAGE as the 
second dimension are shown on the left. (E) To prepare the protein 
in a solvent mixture suitable for amino acid sequence determina- 
tion, reversed phase chromatography on a Vydac C4 support was 
performed. The 19-kD protein desorbed at an acitonitril concentra- 
tion of 55 %. Again, the purity of the protein was confirmed by 
SDS-PAGE (lanes 1 and 2). 
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Figure 4. Amino acid sequence determination after cyanogen bro- 
mide (CNBr) cleavage of the Rev binding factor. The amino acid 
sequence of the 154-amino acid (aa) elF-5A protein is shown. The 
sequence of the indicated CNBr-derived peptides (boxes) gave an 
exact match with the published human elF-5A sequence (Smit- 
McBride et al., 1989a). No sequence could be determined for aa 
1 to 20 due to an amino-terminal modification in elF-5A (Wolff et 
al., 1992). 

Materials and Methods) to isolate quantitative amounts. 
Since Rev binding activity is lost after solubilization, the 
protein purification could not be directly followed by a bind- 
ing assay. However, the chromatographic behavior derived 
from the abovementioned small-scale procedure allowed the 
path of  the 19-kD protein to be followed. 2D gel electropho- 
resis was used to identify fractions containing this protein 
during anion exchange chromatography and chromatofocus- 
sing (Fig. 3 D). The isolated protein displayed identical ex- 
traction and elution behavior to the photoaffinity-labeled 
protein. The subsequent purification steps and the protein 

fractions which were processed to determine a partial amino 
acid sequence of  the Rev binding host cell factor are shown 
in Fig. 3. 

50 pmol of  the purified protein was subjected to NH2-ter- 
minai sequence analysis (for technical details see Materials 
and Methods). However, this analysis revealed NH2-ter- 
minal blocking of  the purified Rev binding protein. There- 
fore the protein was subjected to amino acid analysis and 
subsequently cleaved by cyanogen bromide (CNBr) to gener- 
ate a peptide mixture now accessible to sequence determi- 
nation. 

The sequences obtained were used in a subsequent search 
in the NIH sequence database using the TFASTA program 
(Devereux et al., 1984). A perfect match with the amino acid 
sequence of  eukaryotic initiation factor 5A (elF-5A; for- 
merly named elF-4D) was detected (Smit-McBride et al., 
1989a). In agreement with our results obtained with the un- 
cleaved protein, the sequence of  the NH~-terminal peptide 
was also blocked (see Fig. 4). Taken together, these data 
strongly suggested that the isolated Rev binding protein was 
identical with elF-5A. 

elF-SA Recognizes the HIV-1 Rev Activation Domain 

To raise mAbs specific for the Rev activation domain, mice 
were immunized with the activation domain peptide (Rev aa 
75 to 93: NH2-LPPLERLTLDCNEDCGTSG-COOH) con- 
jugated to BSA. Interestingly, serum from one mouse desig- 
nated P3, taken 7 d after a boost with the peptide-BSA con- 
jugate (bleed day 28; Table I) displayed not only IgG 
antibodies to the complete Rev protein but also IgM antibod- 
ies to purified eIF-5A. This IgM response to elF-SA was in- 
duced to switch to an IgG response after injection of  the 
mouse on day 36 with eIF-SA protein (bleed day 47; Table 
I). Sera from control mice immunized with the carrier alone 
totally lacked antibodies with specificity against either Rev 
or eIF-SA proteins. In addition, all preimmune sera did not 
react with Rev-derived peptides, Rev or eIF-SA (data not 
shown). 

Biospecific interaction analysis was performed using a 
BIAcore TM processing unit (Phannacia) to investigate the bind- 
ing pattern of  the P3 antiserum. As expected from the anti- 
body levels detected, eIF-5A protein immobilized on the 
BIAcore support-chip retained effectively P3 serum compo- 

Table L Antibody Levels of Immunized BALB/c Mice 

Antibody levels* against 

Immunization Rev elF-5A 

Animal Peptide* eiF-5A~: Bleed day IgG§ IgMII IgGH IgMll 

P1 + - 28 1.01 0.10 0.03 0.06 
P2 + - 28 1.40 0.11 0.03 0.08 
P3 + - 28 0.41 0.08 0.07 0.36 
P3 + + 47 ND ND 0.20 0.31 
P4 + - 28 0.84 0.04 0.00 0.09 
P5 - - 28 0.04 0.02 0.02 0.07 
P5 - + 47 ND ND 0. l0 0.28 

Animals immunized with BSA and the preimmune sera of the animals presented showed no response to the Rev-derived peptide, Rev or eIF-SA (not shown). 
* Absorbance values read at 492 tun. 
~: Animals were immunized using a Rev-derived peptide (Rev activation domain; Rev aa 75 to 93) on day 0 and day 21 or using eIF-5A protein on day 36. Both 
antigens were conjugated to cationized BSA (for details see Materials and Methods). 
§ll The presented absorbance values were obtained at a 1:200§ or l:50fl serum dilution. 
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Figure 5. Biospecific interaction analysis (BIA). (A) Interaction of 
immobilized eIF-5A with the preimmune- (P3-pi; a) and the 
immune-serum (P3; ta) from a BALB/c mouse immunized with 
Rev activation domain peptide (Rev aa 75 to 93). Binding values 
represent the relative levels and have been corrected for background 
activity. (B) Interaction of the P3-derived serum with immobilized 
immunoattinity-purified anti-Rev activation domain antibodies. P3 
immune-serum preincubated with 20 #g/nil eIF-5A for 30 rain at 
ambient temperature before BIA (P3+eIF-5A; (r~); P3 immune- 
serum preincubated with 20 #g/ml BSA for 30 min at ambient tem- 
perature before BIA (P3-BSA; ~). 

nents compared to P3 preimmune serum (see Fig. 5 A). Im- 
mobilization of immuno-purified anti-Rev activation domain 
peptide antibodies on the BIAcore support-chip revealed an 
almost identical reactivity with the P3 immune serum. Un- 
der identical conditions P3 preimmune serum failed to react 
(Fig. 5 B). However, preincubation of the P3 immune serum 
with elF-5A reduced the observed reactivity by 70 %. In con- 
trast, preincubation with BSA had no detectable effect on the 
reactivity of the P3 serum with the anti-Rev activation do- 
main antibody (Fig. 5 B). 

Taken together, these data suggest that the reactivity of the 
P3 antiserum to elF-5A is an anti-idiotypic response to the 
initial serum antibodies generated against the Rev activation 
domain. Thus, the activation domain is the interaction site 
of the HIV-1 Rev trans-activator with elF-5A. 

Nuclear Localization of  elF-SA 

To demonstrate directly that a significant fraction of elF-SA 
localizes to the nucleus, we performed indirect immunofluo- 
rescence studies, 

An anti-elF-5A polyclonal antiserum was raised in rabbits 
by immunization of the animals with bacterially expressed 
glutathione S-transferase-elF-5A fusion protein (see Mate- 
rials and Methods). The specificity of the antiserum ob- 

Figure 6. Subcellular localization on elF-5A by indirect immunofluorescence. (A) Phase-contrast (left) and corresponding immunofluores- 
cence photograph (right) of fixed COS cells transfected with 0.5 #g of pelF-5A. Cells in this experiment were treated with rabbit pre-immune 
serum. (B) Phase-contrast and corresponding immunofluorescence photograph of pelF-5A-transfected COS cells incubated with polyclonal 
rabbit anti-eIF-5A antiserum. (C) Fluorescence photograph of nontransfected COS cells stained with anti-elF-5A antiserum. Bar: (A and 
B) 130 #m; (C) 85 #m. 
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tained was verified by immunoprecipitation analysis of elF- 
5A protein (data not shown). 

We next transfected COS cell cultures with the pelF-5A ex- 
pression plasmid and subjected the fixed cells to elF-5A 
specific indirect immunofluorescence microscopy. No elF- 
5A protein was detected upon incubation with pre-immune 
serum (Fig. 6 A). Using the anti-elF-5A antiserum, strong 
cytoplasmic and nuclear flourescence was easily detectable 
in transfected cells (Fig. 6 B). In this experiment the ex- 
posure time was very short to visualize elF-5A in overex- 
pressing cells. However, a weak fluorescence originating 
from endogenous eIF-5A protein could be detected in all 
cells using a longer exposure time combined with a higher 
magnification (Fig. 6 C). Clearly, the cytoplasmic fluores- 
cence was faint compared with the more intense signals de- 
tectable in the cell nuclei. 

To demonstrate the nuclear localization of elF-5A more 
clearly, confocal laser scanning microscopy was performed 
on nontransfected wild-type COS cells (Fig. 7). The fixed 
cells were incubated together with anti-elF-5A antiserum 
and a mouse mAb (CHON 211) that specifically recognizes 
components of the nuclear pore complex (Park et al., 1987). 
The immunostaining of the COS cell nuclear envelope by 
CHON 211 is shown in Fig. 7 A and the elF-5A specific sig- 
nal is shown in Fig. 7 B. Combination of both images clearly 
demonstrated that a significant fraction of elF-5A is localized 
to the nucleus (see Fig. 7 C). Similar results were also ob- 
tained using HeLa cells (not shown). 

Reconstitution of Rev Function in Xenopus Oocytes 
by eIF-SA 

Having identified elF-5A as a nuclear binding factor of the 
HIV-1 Rev activation domain, we next examined whether 
eIF-5A is also the cellular co-factor required for Rev func- 

tion. A Northern blot analysis of elF-5A encoding mRNAs 
revealed that, in contrast to the cell lines examined (HeLa, 
CEM, Jurkat, U937), no elF-5A gene expression was detect- 
able in Xenopus oocytes (see Fig. 8 A). Therefore, the Xeno- 
pus oocyte system was chosen to investigate Rev function. 
An additional Southern blot analysis of the corresponding 
genomic DNAs using the same elF-5A-specific probe 
demonstrated probe specificity (Fig. 8 B). Multiple signals 
were detected in EcoRI-digested genomic DNA of mam- 
malian cells (Fig. 8 B, lanes I to 4). This hybridization pat- 
tern might indicate the existence of multiple elF-5A genes. 
In contrast, only a single signal was detected in Xenopus 
DNA (Fig. 8 B, lane 5). 

Various Rev expressing plasmids and elF-5A protein were 
microinjected into the nuclei ofXenopus oocytes. Rev activ- 
ity was monitored by coinjection of the Rev-responsive 
chloramphenicol acetyltransferase (CAT) expression vector 
pDM128/CM V (Malim et al., 1991). All experiments were 
internally controlled by addition of the pBC12/CMV//3Gal 
construct./3Gal expression was used to equalize the amount 
of protein extract used in the CAT assay. Before microinjec- 
tion, the identity and purity of elF-5A, which was purified 
as described previously (Park et al., 1986), was confirmed 
by 2D gel electrophoresis and amino acid sequence analysis. 

In these assays Rev failed to induce CAT activity from the 
Rev-responsive reporter construct pDM128/CMV, indicat- 
ing the lack of cellular components required for Rev trans- 
activation in oocytes (Fig. 9, lane 3 versus lane 4). However, 
addition of eIF-5A clearly reconstituted Rev function in the 
oocytes while elF-5A alone had no influence on the reporter 
activity (Fig. 9, lane 5 versus lane 6). In previous studies, 
mutagenesis of the rev gene combined with functional analy- 
sis in mammalian ceils was used to generate Rev activation 
domain mutants with defined phenotypes in vivo. The Rev 
mutants M10 and M32, both of which have alterations in the 

Figure 7. Nuclear localization of eIF-5A by confocal laser scanning microscopy. COS cells were viewed using a Bio Rad MRC 600 confocal 
imaging system. Corresponding images are shown. (A) Staining of the nuclear envelope using CHON 211 antibody and FITC-conjugated 
goat anti-mouse secondary antibody. (B) Detection of elF-5A in the nucleus using anti-elF-5A antiserum and Texas red--conjugated goat 
anti-rabbit secondary antibody. (C) The images shown in A and B were merged using the available software to obtain a single image combin- 
ing both signals. Bars, 25 gm. 
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Figure 8. Detection of elF-5A 
mRNA and gene sequences. 
(A) 10 #g of total RNA from 
the indicated cell lines and 
Xenopus oocytes were sub- 
jetted to Northern blot analy- 
sis as described previously 
(Valent et al., 1991). elF- 
5A-specific transcripts of 1.4 
kb were detected using a ra- 
diolabeled synthetic oligonu- 
cleotide probe (gene position, 
300-329; Smit-McBride et 
al., 1989a). The same result 
was obtained using the full- 
length eIF-5A cDNA (not 
shown). To control for com- 
parable RNA amounts the 
filters were stripped and rehy- 
bridized using a 18 S ribo- 
somal RNA probe. (B) South- 
ern blot analysis of 10 #g of 
EcoRI digested genomic 
DNA from the indicated cell 

lines and Xenopus oocytes was performed as previously described 
(Weiss et al., 1989). The filter used in this experiment was hybrid- 
ized with the oligonulceotide probe described in A. eIF-5A-specific 
signals are indicated by arrows on the left. The hybridization pat- 
tern obtained might indicate the existence of multiple eIF-5A genes 
in mammalian cells. Size standards (in kilobase pairs) are shown 
on the right. 

leucine-rich core motif of  the Rev activation domain, are 
nonfunctional proteins with trans-dominant phenotypes 
(Malim et al., 1989a, 1991). In agreement with these in vivo 
observations, RevM32 and RevM10 failed to trans-activate 
in the presence of  eIF-5A in Xenopus oocytes (Fig. 9, lanes 

7 and 8). Furthermore, a mutation in the activation domain 
(M20) which did not abolish biological Rev activity (Malim 
et al., 1991) was functional in our assay (Fig. 9, lane 9). Sub- 
stitution of  the microinjected protein by a cDNA encoding 
elF-5A resulted in comparable Rev trans-activation in our 
assay system (Fig. 9, lane 10). Finally, no trans-activation 
could be detected in control experiments when the reporter 
pDM128/CMV was substituted by the RRE-deficient con- 
struct pDM128/CMVARRE (Fig. 9, lanes 11-13). 

These results directly demonstrate that elF-5A is a cellular 
cofactor mediating Rev trans-activation. In addition, they 
provide evidence that the Rev leucine-motif is required for 
functional Rev-elF-5A interaction and that trans-activation 
is dependent on the presence of  the RRE target sequence. 

elF-SA Gene Expression Is Required for Rev 
Trans-Activation in Mammalian Cells 

Finally we tested the effect of  elF-5A on Rev function in 
mammalian cells. For this, we transiently blocked elF-SA 
gene expression in COS cells with an eIF-SA antisense con- 
struct (pelF-5Aas) and monitored Rev function by co-trans- 
fection of the Rev-responsive reporter construct pDM128/ 
CMV. Again, these experiments were internally controlled 
by inclusion of the pBC12/CMV//~Gal expression plasmid in 
order to rule out an effect of pelF-5Aas on general translation 
initiation. As summarized in Table II, the expression of  elF- 
5A antisense sequences resulted in a significant inhibition 
(83%) of Rev function as measured by Rev-dependent CAT 
activity, indicating the necessity of elF-5A gene expression 
for Rev function. 

Previous studies demonstrated that Rev function directly 
affects the intracellular distribution of  incompletely spliced 
viral mRNAs in mammalian cells, including COS (Malim et 
al., 1988, 1989b; Felber et al., 1989). It was shown, that 
HIV-l-derived RRE-contalning RNAs are retained in the nu- 
cleus and only appear in the cytoplasm when Rev is present. 
Therefore, we also investigated the effect of  peIF-5Aas on the 
cytoplasmic accumulation of these RNAs. Transfected COS 
cell cultures were subjected to subcellular fractionation and 

Figure 9. Reconstitution of Rev function in Xenopus oocytes by eIF- 
5A. Oocytes were microinjected with the indicated expression plas- 
raids and purified eIF-SA protein. Rev activity was monitored by 
injection of the CAT expressing Rev-responsive reporter construct 
pDM128/CMV (lanes 3-10) or the RRE-deficient construct 
pDM128/CMVARRE (lanes 11-13). All experiments were inter- 
nally controlled by constitutive coexpression of B-Galactosidase 
from the plasmid pBC12/CMV/BGal. Lane I (CAT), CAT enzyme 
(assay control); lane 2 (Mock), noninjected oocytes (negative 
control). 

Table II. Effect of elF-5A on HIV-1 Rev Activity in 
Transfected COS Cells 

Level of CAT Percent inhibition 
Transfection* expression (cpm)* of Rev function 

pDM128/CMV 60 - 
pDM128/CMV + pcRev 15,066 - 
pDM128/CMV + pcRev 2,576 83 

+ peIF-5Aas 
pDM128/CMV 222 - 

+ peIF-5Aas 

* 2 . 5  × l0 s COS cells were co-transfected together with I00 ng of 
pDM128/CMV, 50 ng of pcRev and 590 ng of peIF-5Aas as previously described 
(Cullen, 1986b). In addition, 60 ng of pBC12/CMV//~Gal DNA was included 
in every transfection. Total input DNA was kept constant by inclusion of the 
parental expression vector pBC12/CMV as a negative control. Expression of 
~Gal served as internal control in order to normalize the CAT assays. 

Protein extracts were prepared 60 h after transfection and assayed for CAT 
activity as described previously (Neumann et al., 1987). Values represent the 
relative levels of CAT expression measured when the change in transacetyla- 
tion was linear with respect to time and have been corrected for background 
(mock) activity. 
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nuclear and cytoplasmic RNAs were subsequently analyzed 
by S1 nuclease protection (see Fig. 10). The probe used in 
this assay was designed to detect both spliced and unspliced 
(RRE-containing) RNA species expressed from the Rev- 
responsive reporter construct pDM128/CMV (Hope et al., 
1990; Malim et al., 1991). Attachment of heterologous se- 
quences also allowed us to distinguish the full-length input 
probe from the fragments rescued by the unspliced and 
spliced transcripts. As shown in Fig. 10, Rev function 
resulted in the cytoplasmic accumulation of unspliced RRE- 
containing RNA (lanes I and 2 versus lanes 3 and 4), which 
is in agreement with previous studies (Malim et al., 1988, 
1989b). However, the Rev phenotype, indicated by these cy- 
toplasmic RRE-containing RNAs, was almost completely 
abrogated by inclusion of the pelF-5A antisense construct 
(pelF-5Aas) to the transfection (see Fig. 10, lanes 5 and 6). 
Expression of pelF-5Aas in absence of Rev had no effect on 
pDM128/CMV expression in a control experiment (Fig. 10, 
lanes 7 and 8). 

The data presented demonstrate that elF-5A gene expres- 
sion is necessary for Rev function in mammalian cells, elF- 
5A is critically required for the Rev-mediated cytoplasmic 
accumulation and expression of incompletely spliced RRE- 
containing RNAs. 

Discussion 
The Rev trans-activator protein of HIV-1 plays a key role in 
the complex regulation of viral gene expression. Rev func- 
tion results in the expression of the viral structural proteins 

Figure 10. Effect of elF-5A gene expression on the intracellular dis- 
tribution of RRE-containing RNAs. COS cell cultures (2.5 x 106 
cells) were transfected with 0.8/~g of the Rev-responsive reporter 
construct pDM128/CMV and the expression plasmids peRcy (0.4 
gg) and pelF-5Aas (4.72 #g) as indicated at the bottom. Total input 
DNA was maintained constant in every experiment by inclusion of 
the parental expression vector pBC12/CMV as a negative control. 
Nuclear (N) and cytoplasmic (C) RNAs were isolated at 60 h after 
transfection as described previously (Malim et al., 1989b). 4.0-1zg 
aliquots of total RNA were subjected to SI nuclease analysis using 
an input probe (I) which was designed to detect both, unspliced (U) 
and spliced (S) pDM128/CMV-derived mRNA in the transfected 
COS cultures. 

and hence, in the generation of infectious particles (Terwil- 
liger et al., 1988; Emerman et al., 1989; Hammarskjtld et 
al., 1989). Experimental data suggested that interaction of 
Rev with an unknown cellular component is required for Rev 
function (Malim et al., 1989a, 1991; Mermer et al., 1990; 
Venkatesh and Chinnadurai, 1990). In this study we demon- 
strate that eukaryotic initiation factor 5A (elF-5A, previously 
called elF-4D) is a host co-factor required for Rev trans- 
activation. 

Human elF-5A is a small 154-aa protein with a molecular 
mass of 16.7 kD (Smit-McBride et al., 1989a). The isoelec- 
tric point of the acidic elF-5A was determined previously 
with a pI of '~5.1, which is in agreement with our results 
(Park et al., 1986; Smit-McBride et al., 1989b). 

elF-5A is the only known cellular protein that contains a 
hypusine residue, which is formed by posttranslational 
modification of the lysine residue at position 50 within eiF- 
5A (Fig. 4) (Park et al., 1986). The hypusinated protein 
stimulates the formation of the dipeptide analogue methio- 
nyl-puromycin in an in vitro assay which mimics the forma- 
tion of the first peptide bond during protein synthesis (Park, 
1989; Smit-McBride et al., 1989b; Hershey et al., 1990; 
Park et al., 1991). Thus, elF-5A appears to function on the 
level of protein synthesis initiation. However, the precise 
function of elF-5A in vivo is still unknown, elF-5A might 
have activities in addition to, or instead of, translation initia- 
tion (for a recent review see Park et al., 1993). 

Implications for  Rev Function 

The direct interaction of Rev with eIF-SA now provides the 
basis to significantly improve our understanding of Rev- 
specific trans-activation at the molecular level. It seems rea- 
sonable to assume that the targeting of RRE-containing 
mRNAs to eIF-SA could result in an improved utilization of 
these viral mRNAs by the translational machinery. Recently, 
D~,gostino and co-workers provided evidence that the pres- 
ence of Rev affected not only transport, but also translation 
of viral mRNAs encoding the structural proteins, by promot- 
ing polysomal loading (D~gostino et al., 1992). 

The modification or inactivation of translation initiation 
factors to repress host and enhance viral mRNA translation 
is a strategy which is used by various viruses. Adenovirus 
infection involves viral-mediated dephosphorylation of a 
component of the cap-binding protein complex eIF-4E while 
poliovirus inactivates elF-4F by proteolytic degradation of 
an eIF-4F subunit (for a recent review see Thach, 1992). 
Influenza virus, vesicular stomatitis virus and adenovirus 
are able to control the efficiency with which different 
mRNAs are translated by blocking phosphorylation of a 
subunit of the translation initiation factor eIF-2. 

The identification of eIF-5A as a cellular factor interacting 
with the Rev activation domain allows the model of Rev func- 
tion to be refined. Rev activity depends on the presence of 
cis-acting repressive sequences (CRS) which are located in 
the HIV-1 structural genes and act to retain the viral mRNAs 
in the nucleus (Rosen et al., 1988; Cochrane et al., 1991; 
Maldarelli et al., 1991; Schwartz et al., 1992). Inefficient 
splice-sites present on the viral mRNAs may delay an other- 
wise very rapid in vivo splicing reaction (Chang and Sharp, 
1989). This delay would allow the specific recognition of the 
RRE RNA sequence by Rev, followed by Rev-specific mul- 

Ruhl ¢t al. HIV-I Rev Trans-Activation 1317 



timer formation, which in turn results in the observed dis- 
sociation of spliceosomes on the viral mRNAs; a reaction 
which occurs independent of the Rev activation domain 
(Kjems et al., 1991b). Finally, the subsequent interaction of 
the RRE-Rev complex with elF-5A may not only induce 
nucleo/cytoplasmic RNA translocation but may also result in 
the preferential translation of RRE-containing mRNAs. In 
this model, although Rev initially acts at a nuclear location 
by binding the viral RNA, it also provides cytoplasmic func- 
tions directly affecting translation via elF-5A. 

A Nuclear Role:for elF-SA 

elF-5A was originally described as an abundant cytoplasmic 
protein which is transiently attached to ribosomes in the 
course of initiation of eukaryotic cellular protein synthesis. 
The major evidence for its function comes from a nonphysio- 
logical in vitro reaction; the synthesis of methionyl-puromy- 
cin (Park, 1989; Smit-McBride et al., 1989b; Hershey et al., 
1990; Park et al., 1991). However, the results presented in 
this study reveal that successful cross-linking of elF-5A to 
the Rev activation domain is only achieved with elF-5A 
residing in the nuclear compartment (Fig. 1). In agreement 
with this finding, our elF-5A-specific immunofluorescence 
studies clearly demonstrated that a substantial fraction of 
this protein exists inside the nucleus. It is conceivable that 
this material was trapped in the nuclear envelope fraction of 
our initial fractionation experiment (Fig. 1). Nevertheless, 
this nuclear elF-5A may possibly extend activities associated 
with translation initiation. Intriguingly, a similar nuclear lo- 
calization characterized by speckles (see Fig. 7) was also re- 
cently demonstrated by Lejbkowicz and co-workers for a 
fraction of eukaryotic initiation factor 4E (eIF-4E), which is 
the mRNA 5' cap-binding protein (Lejbkowicz et al., 1992). 
Thus it is evident that the nuclear localization of some initia- 
tion factors is a common principle in eukaryotic cells, which 
may serve functions with respect to targeted nucleo-cyto- 
plasmic mRNA transport and/or interference with the nu- 
clear mRNA splicing machinery. 

In recent studies the idea of variant elF-5A activities, in- 
cluding functions other than protein synthesis, have been 
suggested. In CHO cells as well as in chick embryo fibro- 
blasts, isoforms of elF-5A could be detected (Park, 1989; 
Wolff et al., 1992). In the yeast Saccharomyces cerevisMe, 
two highly similar genes encoding elF-5A are expressed 
differentially in response to aerobic growth conditions 
(Schnier et al., 1991). Two slightly different genes, termed 
NelF-5AI and NelF-5A2, were also described in tobacco 
(Chamot and Kuhlemeier, 1992). While NeIF-5A2 appears 
to be a housekeeping protein involved in general translation 
initiation, NelF-5A1 seems to regulate the light-dependent 
translation of specific transcripts. Taken together, these data 
indicate that multiple forms of eIF-5A exist which may serve 
different functions during posttranscriptional regulation of 
eukaryotic gene expression. 

It is tempting to speculate that the subcellular localization 
of Rev-binding elF-5A is of functional significance for the 
selective translocation of specific viral mRNAs across the 
nuclear envelope. Indeed, the translocation of poly(A)-rich 
mRNA requires a protein carrier which is part of a complex 
system located in the nuclear envelope (Gerace and Burke, 
1988). It is conceivable that eIF-5A is part of a RNP which 
is involved in the translocation of nuclear RNA to the 

cytoplasm. Intriguingly, nuclear RNPs are concentrated in 
discrete nuclear domains, serving as interconnecting chan- 
nels that extend through the nuclear interior to the nuclear 
envelope (Gerace and Burke, 1988). Also, the interaction of 
elF-5A with the small preribosomal subunit already in the 
nuclear compartment may result in co-translocation of the 
viral mRNA. After transit through the nuclear pores and 
assembly of translation-competent ribosomes, the RRE- 
containing RNA would be preferentially used in the process 
of protein synthesis (Arrigo et al., 1991; Lawrence et al., 
1991; D~,gostino et al., 1992). 

The finding that elF-5A is a cellular Rev activation domain 
binding factor required for Rev trans-activation has several 
consequences. It should now be possible to dissect the com- 
plete pathway of Rev function step by step, starting with the 
specific RRE binding and finally resulting in the preferential 
translation of these viral mRNAs. It will also be of interest 
to examine whether other complex retroviruses exploit the 
same pathway to regulate their gene expression at a posttran- 
scriptional level. Therapeutic interference with Rev-elF-5A 
interaction may provide a new opportunity to block viral 
replication by inhibiting the Rev-regulated expression of the 
structural proteins. 

Clearly, our findings also demonstrate a new biological ac- 
tivity for elF-5A. Studies aimed to identify the cellular inter- 
action partners of elF-5A in the nuclear compartment will 
generate new insights into mechanisms that are applied in 
eukaryotic cells in order to translate specific transcripts pref- 
erentially. 
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