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Introduction:Response inhibition is oneof the executive functions impaired in attention-deficit/hyperactivity dis-
order (ADHD). Increasing evidence indicates that altered functional and structural neural connectivity are part of
the neurobiological basis of ADHD. Here, we investigated if adolescents with ADHD show altered functional con-
nectivity during response inhibition compared to their unaffected siblings and healthy controls.
Methods: Response inhibition was assessed using the stop signal paradigm. Functional connectivity was assessed
using psycho-physiological interaction analyses applied to BOLD time courses from seed regions within inferior-
and superior frontal nodes of the response inhibition network. Resulting networks were compared between ad-
olescents with ADHD (N = 185), their unaffected siblings (N = 111), and controls (N = 125).
Results: Control subjects showed stronger functional connectivity than the other two groups within the response
inhibition network, while subjects with ADHD showed relatively stronger connectivity between default mode

network (DMN) nodes. Stronger connectivity within the response inhibition network was correlated with
lower ADHD severity, while stronger connectivity with the DMN was correlated with increased ADHD severity.
Siblings showed connectivity patterns similar to controls during successful inhibition and to ADHD subjects dur-
ing failed inhibition. Additionally, siblings showed decreased connectivity with the primarymotor areas as com-
pared to both participants with ADHD and controls.
Discussion: Subjects with ADHD fail to integrate activation within the response inhibition network and to inhibit
connectivity with task-irrelevant regions. Unaffected siblings show similar alterations only during failed stop tri-
als, aswell as unique suppression ofmotor areas, suggesting compensatory strategies. These findings support the
role of altered functional connectivity in understanding the neurobiology and familial transmission of ADHD.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Response inhibition, the process of actively suppressing an ongoing
or inappropriate response, is considered one of the main cognitive con-
trol deficits underlying ADHD (Alderson et al., 2007; Goos et al., 2009;
Crosbie et al., 2008, 2013). However, a recent meta-analysis has
shown only moderate effect sizes and large heterogeneity in response
inhibition performance in patients with ADHD, with half of the subjects
showing no performance deficits (Lipszyc and R. Schachar, 2010). Brain
activation during response inhibition, as measured by functional mag-
netic resonance imaging (fMRI), appears to be a more sensitive mea-
sure, as indicated by research in children (e.g. 12–14), adolescents
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(Katya Rubia et al., 2005), and adults with ADHD (Cubillo et al., 2011;
Mulligan et al., 2011), including a study by our group (Van Rooij et al.,
2014). These studies demonstrated that alterations within the neural
networks responsible for cognitive control, inhibition, and attention
can be found in the absence of behavioral response inhibition deficits.
These alterations have been found even in unaffected siblings of sub-
jects with ADHD (Van Rooij et al., 2014), adolescents with subthreshold
ADHD (Whelan et al., 2012), and adults with ADHD (Cubillo et al.,
2010).

Neuroimaging studies of response inhibition in healthy subjects
have identified a highly interconnected neural network. This involves
nodes from the frontal–striatal network such as the inferior frontal
gyrus, pre-supplementary motor area, basal ganglia, and suprathalamic
nucleus (A.R. Aron et al., 2007a,b; Zandbelt et al., 2013a,b; Hampshire
et al., 2010; Majid et al., 2012; Sebastian et al., 2012; Swick et al.,
2011; Verbruggen and G. Logan, 2008), as well as nodes from the fron-
tal–parietal network including supramarginal and temporal/parietal
areas (C. Fassbender et al., 2006; Chambers et al., 2009; Hugh Garavan
et al., 2006; Simmonds et al., 2008). Functionally, the inferior frontal
gyrus is involved in salience processing and initiation of the inhibition
signal (A.R. Aron et al., 2007b; Cai et al., 2011; Chevrier et al., 2007;
Hampshire et al., 2010; N. Swann et al., 2009a). This is thought to be
the most likely site for integration of response inhibition and higher
order cognitive control processes, executed from the superior frontal
areas (A.R. Aron, 2011). The pre-supplementarymotor area and subcor-
tical regions on the other hand are thought to be involved in the execu-
tion of the stop processes (A.R. Aron et al., 2007a; Cai et al., 2012; Chao
et al., 2009; de Wit et al., 2012; N.C. Swann et al., 2012; Tabu et al.,
2011),whereas the parietal areas are thought to reflect attentional redi-
rection and task-set maintenance during response inhibition (C.
Fassbender et al., 2006; Chambers et al., 2009).

While each of these nodes plays a distinct role in response inhibition,
the overall inhibition efficiency may depend on the degree of integra-
tion between the different parts of the network. Diminished functional
connectivity between the left and right inferior frontal gyrus, caudate/
thalamus, cingulate gyrus, and temporal/parietal regions during a re-
sponse inhibition task has previously been found in adults with ADHD
as compared to healthy controls (Cubillo et al., 2010). Additionally, evi-
dence from structural (De La Fuente et al., 2013; N.C. Swann et al., 2012)
and resting-state network studies (D.A. Fair et al., 2010; Mennes et al.,
2011; Tian et al., 2006) have supported the necessity of network inte-
gration during response inhibition and have confirmed altered patterns
of connectivity in subjects with ADHD. It is, therefore, specifically inter-
esting to investigate to what extent the functional connectivity is al-
tered in subjects with neural hypoactivation within the response
inhibition network.

In a previous paper we showed decreased neural activation during
response inhibition in left inferior frontal, left superior frontal, and bilat-
eral temporal/parietal areas in adolescents with ADHD and their unaf-
fected siblings as compared to healthy controls (Van Rooij et al.,
2014). The primary aim of the current studywas to investigate whether
subjects with ADHDwould also show decreased functional connectivity
between these nodes of the response inhibition network and whether
the degree of hypo-connectivitywould be linked to ADHD severity. Sec-
ondarily, we aimed to investigate the familial nature of functional con-
nectivity by comparing subjects with ADHD not only with healthy
controls, but also with their unaffected siblings. Since unaffected sib-
lings of subjectswith ADHD share on average half of the genetic risk fac-
tors with their affected siblings, we expected similar but less extensive
decreases in functional connectivity in this group (Bidwell et al., 2007;
Crosbie et al., 2008, 2013). This would support the familial nature of de-
creased functional connectivity during response inhibition and its possi-
ble use as an endophenotype in ADHD. Finally, we aimed to investigate
neural connectivity related to compensatory strategies in both subjects
with ADHD and unaffected siblings. Previous investigations had sug-
gested that subjectswithADHDmay be able to recruit alternative neural
recourses to compensate for deficits in prefrontal functioning
(Catherine Fassbender and Schweitzer, 2006), although we previously
did not encounter such compensatory mechanisms in our study sample
with regard to neural activation (Van Rooij et al., 2014). We expected
that compensation for deficits in neural connectivity within the re-
sponse inhibition network might occur by recruiting compensatory re-
sources in other brain regions, leading to increased connectivity with
these areas.

2. Methods and materials

2.1. Participants

All subjects participated in the NeuroIMAGE project, the Dutch
follow-up of the International Multicenter ADHD Genetics (IMAGE)
study. Details about ethics approval, recruitment, assessment, and the
general testing procedures can be found in the generalmethods and de-
sign paper of the NeuroIMAGE project (Von Rhein et al., 2014).

In short, ADHD diagnosis was based on semi-structured interviews
(the Schedule for Affective Disorders and Schizophrenia for School-
Age Children [K-SADS] (C. Kaufman et al., 1997)) as well as the Conners
ADHD questionnaires (Conners et al., 1998a,b). Probands with ADHD
had to have six ormore hyperactive/impulsive and/or inattentive symp-
toms according to DSM-IV criteria (American Psychiatric Association,
2000); unaffected siblings and unrelated controls had to have less
than two symptoms overall, based on a structured psychiatric interview
(K-SADS) and Conners questionnaires.

Inclusion criteria for MRI participation consisted of the absence of
claustrophobia and any metal in the body. Informed consent was ac-
quired from all participants, with parents supplying consent for partici-
pants less than 16 years old. Subsequently, 208 participants with ADHD,
116 unaffected siblings, and 129 healthy controls successfully per-
formed the stop signal task within an MRI scanner. Of these, 21 partici-
pants only completed three out of four response inhibition runs (12
subjects with ADHD and six unaffected siblings). Six participants were
excluded after reaching an accuracy of b70% on the go-trials, indicating
inadequate performance on the task and leaving an insufficient number
of trials to estimate inhibition measures (four subjects with ADHD, two
healthy controls). Eleven participants were removed after excessive
movement (N3 mm within a single run) in the scanner (nine subjects
with ADHD, one healthy control). Sixteen participants were excluded
due to incidental neuroradiological findings. This led to a final inclusion
of 185 subjects with ADHD, 111 unaffected siblings, and 124 controls in
our analyses (see Table 1).

2.2. Stop signal task

A visual version of the stop signal task (Logan et al., 1984) was used
tomeasure response inhibition during fMRI acquisition. In this task, par-
ticipants had to respond as quickly as possible to a go-stimulus by left or
right button press, unless shortly after presentation it was followed by a
stop signal, in which case they were to withhold their response (25% of
trials). The task difficultywas adaptive,meaning delays between the go-
and stop stimulus were adjusted by 50ms after every failed or success-
ful response, leading to an approximately 50% success rate on the stop-
trials for all subjects (except for the aforementioned six removed from
the data). The task consisted of two practice blocks and four test blocks,
each consisting of 60 trials.

The Stop Signal Reaction Time (SSRT) was the main measure of re-
sponse inhibition efficiency, calculated by subtracting the eventual
delay between the go and stop signals. Secondary task outcome mea-
sures were the intraindividual coefficient of variation (ICV; derived by
dividing the reaction time variance by the mean reaction time), and
the total number of errors. We included both omission and commission
errors on go-trials in the error scores, since insufficient numbers of ei-
ther event occurred to model them separately. Both secondary



Table 1
Participant characteristics and task outcomes derived from the SST.

ADHD Siblings Controls Wald-χ2 Cohen3s d p-Value Between group effects

Males 129 48 55
Females 56 63 69 28.1 .536 b.001 ADHD b Sibs = Controls

Mean SD Mean SD Mean SD
ADHD symptoms a 12.9 3.1 1.3 3.4 0.6 1.5 242.7 2.34 b.001 ADHD N Sibs = Controls
Age (year) 17.3 3.2 17.3 4 16.5 3.3 1.6 .124 .44
Estimated IQ b 95.3 16.8 102.4 15.9 107.1 14.5 38.2 .633 b.001 ADHD b Sibs b Controls
Education (yr) 12.82 2.14 12.82 2.22 13.52 1.91 6.387 .249 .041 ADHD = Sibs b Controls
Age range 8–25 8–27 9–23
IQ range b 55–138 56–144 58–141

Mean SD Mean SD Mean SD
SSRT (ms)c 268.1 59.4 254.1 49 258.2 52.6 6.012 .241 .046 ADHD N Sibs = Controls
ICV (ms)c .21 .051 .18 .047 .17 .042 30.03 .555 b.001 ADHD N Sibs N Controls
Errors (n)c 6.3 7.6 4.2 5.6 3.1 3.5 13.56 .365 b.001 ADHD N Sibs = Controls
Medication use (%) 77 0 0 160.64 1.571 b.001 ADHD N Sibs = Controls
Comorbid ODD d 55 4 0 67.68 .876 b.001 ADHD N Sibs = Controls
Comorbid CD d 12 0 0 15.62 .393 b.001 ADHD N Sibs = Controls
Comorbid RD d 34 11 11 7.33 .267 .026 ADHD N Controls

Note: ADHD= attention deficit/hyperactivity disorder; ODD = oppositional defiant disorder; CD= conduct disorder; RD = reading disability SSRT = stop-signal reaction time; ICV =
intraindividual coefficient of variance; Errors = number of errors on go-trials. Bolded values indicate significant effects.

a ADHD diagnosis was based on K-SADS structured psychiatric interviews and Conners3 questionnaires (Conners C.K. et al., 1998).
b Estimated IQwas based on the block-design and vocabulary subtests of theWechsler Intelligence Scale for Children (WISC) orWechsler Adult Intelligence Scale (WAIS-III) (Wechsler, 2002).
c Task effects for the stop-task derived from generalized estimate equation models, using a significance threshold of p b .05 and correcting for familiarity, gender age and IQ.
d ODD, CD and RD diagnosis was based on K-SADS structured psychiatric interviews (Kaufman et al., 1997).
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measures are related mainly to attentional processes that indirectly in-
fluence the response inhibition performance (Kofler et al., 2013;
Schachar et al., 2004).

2.3. Task outcome analysis

To link functional connectivity to behavioral performance, the effects
of diagnostic group (i.e. ADHD, vs. sibling, vs. healthy control) on the
SST task-outcomemeasureswere analyzed. Thiswas analyzed usingGen-
eral Estimated Equations models in SPSS (SPSS 19.0 Inc.). Family affilia-
tion was added as a between-subject factor to control for relatedness
between participants. Age, gender, IQ, and scan-site were added as covar-
iates. Effects of medication use and comorbid disorders such as opposi-
tional defiant disorder, conduct disorder, and reading disorder on stop
signal outcomemeasureswere investigated in separateGEEmodelswith-
in the subjectswithADHD(see SI). Further details concerning the analysis
of Stop Task outcomes can be found in Van Rooij et al. (2014).

2.4. fMRI acquisition

Data were acquired at two scanning locations on similar 1.5 Tesla
Siemens scanners (Siemens Sonata at VU UMC in Amsterdam; Siemens
Avanto at Donders Center for Cognitive Neuroimaging in Nijmegen)
using identical protocols, using a T2*weighted echo planar imaging se-
quence (TR = 2340 ms, TE = 40 ms, FOV = 224 × 224 mm, 37 inter-
leaved slices, voxel size = 3.5 × 3.5 × 3.5 mm, 94 volumes per run).
Each participant3s MPRAGE T1 scan (TR = 2730 ms, TE = 2.95 ms,
TI = 1000 ms, voxel size = 1 × 1 × 1 mm, FOV= 256 mm, 176 slices)
was used for spatial localization and normalization.
Table 2
Region of interest coordinates.

Successful-stop network xa y z

Left inferior frontal gyrus −38 20 −18
Left superior frontal gyrus −2 60 38
Failed-stop network:
Left inferior frontal gyrus −52 18 −12
Left superior frontal gyrus −18 42 30

a Montreal Neurological Institute (MNI) space coordinates for peak voxels of the four region
b Wald-χ2, p-values and are derived from post-hoc generalized estimating equation models
2.5. Selection of regions of interest

To investigate functional connectivity, several regions of interest
(ROIs) were defined as seed regions. Instead of basing our selection of
ROIs on meta-analysis and data from healthy control studies (Hart
et al., 2013), we selected ROIs based on the brain regions showing
peak neural activation differences between probands with ADHD and
controls in a previous study from the same sample (Van Rooij et al.,
2014). This is becausewe aimed at further investigating possible altered
connectivity between these diagnostic groups, extending and
complementing thereby our previous analysis on neural activation dif-
ferences. Details regarding the procedure and analyses of the fMRI anal-
ysis of the stop-task detailing the differences in neural activation
between probands with ADHD and healthy control can be found in
the original publication, currently under revision (Van Rooij et al.,
2014). In short, two conditions of interest where defined, failed stop–
go and successful stop–go trials. These conditions reflect the neural cor-
relates of both failed and successful inhibitions, using the go-trials as an
implicit baseline. In both conditions, similar patterns of between group
activation differences were found, with the strongest activation differ-
ences located in the left inferior and left superior frontal gyri. These re-
sults can be found in the supplementary information. Previous literature
showed the inferior frontal gyrus to be crucial for the initiation of the
stopping process, while superior frontal gyrus is associated with top-
down control over response inhibition (A.R. Aron, 2011; Chambers
et al., 2009; Hugh Garavan et al., 2006; N.C. Swann et al., 2012;
Simmonds et al., 2008). Therefore, to investigate possible functional
connectivity differences between diagnostic groups during response in-
hibition, a total of four ROIswere defined based on the voxels with peak
activation differences in left inferior frontal gyrus and superior frontal
Wald-χ2 b p-Value b Between group difference

16.34 b.001 Controls = Sibs N ADHD
16.25 b.001 Controls = Sibs N ADHD

35.29 b.001 Controls N Sibs N ADHD
20.55 b.001 Controls N Sibs = ADHD

s of interest (ROIs).
indicating the main diagnostic group effect on neural activation in these nodes.



Fig. 1. Region of interest (ROIs) based on the maximal diagnostic group difference in neural activation (ADHD vs. Siblings vs. Controls). ROIs of the inferior frontal gyrus (A) and superior
frontal gyrus (B). Red spheres indicate the seed regions from the failed-stop contrast, blue spheres indicate ROIs from the successful-stop contrast.
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gyrus, from both the successful and failed stop conditions (see Table 2,
Fig. 1).
2.6. Psycho-physiological interaction connectivity analysis

A psycho-physiological interaction analysis executed in FSL FEAT
(FMRIB3s Software Library, http://www.fmrib.ox.ac.uk/fsl; fMRI Expert
Analysis Tool, version 6.0) was used to determine which voxels co-
varied in activation with the seed ROI as a function of task condition,
with the valence of the covariance coefficient indicating positive or neg-
ative connectivity. The average time series of neural activation was ex-
tracted from 6 mm diameter spheres around each ROI and entered as
a physiological variable in the psycho-physiological interaction model.
The task contrast of interest (successful stop–go or failed stop–go trials)
was entered as a psychological variable. The psycho-physiological inter-
actionwas obtained bymodeling a third variable as the interaction term
between the latter two variables. Since themain task-contrast is includ-
ed in the design matrix, the connectivity is effectively calculated over
the residuals of the activation maps, ensuring orthogonality of the con-
nectivity data from activation data. For optimal estimation ofmovement
artifacts, the 24 realignment parameters from the first-level analysis
were added, as well as spike regressors for all events within 8 s preced-
ing peakmovements greater than 1mm. Runswith totalmovement ex-
ceeding 3 mm were removed from the analysis. To correct for
background noise, the signal from cerebral spinal fluid (CSF) and
white matter (WM), extracted using FSL CSF and WM probability
masks (threshold of N0.8) were also added in the first level design.
Age, gender, IQ, and scan-site were included as covariates.

An F-contrast comparing the control group with the other two
groups was applied to the psycho-physiological interaction variable,
providing z-maps detailing the between-group effect on functional con-
nectivity. Multiple comparisons of resulting z-maps were performed by
FSL standards using thresholding clusters with a minimum z-score of
2.3 and a corrected p-value of b0.05 (Woo et al., 2014). Between-
group differences were further investigated by exporting the average
connectivity values of all clusters that reached significance in the F-
tests, and analyzing these in separate models in SPSS to account for
the familial relations between siblings within our sample. These post-
hoc analyseswere used to determine the size and direction of anydiffer-
ences in functional connectivity between subjects with ADHD, their un-
affected siblings, and healthy controls. Bonferroni–Holm corrections
were implemented to account for multiple testing in all post-hoc tests
(Holm, 1979).

A series of sensitivity analyses were run, given that the participants
with ADHD, unaffected siblings, and controls in our study were not a-
priori matched on demographic factors and across scanner sites (see
also Von Rhein et al., 2014). Therefore, the potential confounding effects
of IQ, gender, scanner location, and agewere analyzed to validate the ro-
bustness of the main diagnostic group effects. These analyses, together
with tests for the influence of comorbid disorders and medication use
in subjects with ADHD are also described in the Supplementary Infor-
mation (SI). To ensure potential motion effects did not influence the
group comparison, we calculated the root-mean-square of the frame-
wise displacement over all runs per subject; the three diagnostic groups
did not differ significantly on this measure (χ2 = 4.46; p = .107). The
association between frame-wise displacement and the connectivity
values from the nodes indicated in the group contrasts is depicted in
supplementary Table 5.

Finally, we investigated if functional connectivity was associated
with response inhibition performance or with ADHD severity. Two
sets of GEE analyses were performed; one to test the association be-
tween the SST outcome measures and connectivity in the significant
nodes from the group contrast and a second to test the associations be-
tween ADHD severity, as measured by the T-score of the Conners ques-
tionnaire, and these connectivity patterns. Age, gender, IQ, and scan-site
were also added as covariates in the post-hoc analyses.

3. Results

3.1. Task outcome measures

Significant effects of diagnostic groupwere foundon all SST outcome
measures (see Table 1). SSRT was slower in subjects with ADHD
(mean = 269 ms) as compared to both unaffected siblings (mean =
254 ms, p = .015) and healthy controls (mean = 255 ms, p = .05),
but did not differ between the latter two groups. ICVs were higher in
subjects with ADHD (mean = 0.2082) than in unaffected siblings
(mean= 0.1860, p b .001), who showed more variability than controls
(mean = 0.1743, p b .031). Subjects with ADHD made more errors
(mean= 6.4) than siblings (mean= 4.2, p b .013), whomademore er-
rors than controls (mean = 3.1, p b .032). No effects of gender, and IQ
were found on any of the SST measures, nor did comorbid diagnoses
or medication status affect results. Age had a significant main effect on

http://www.fmrib.ox.ac.uk/fsl


Table 3
Connectivity patterns from the left inferior frontal gyrus seed region.

Left inferior frontal network Valence Side a Peak voxel (MNI) BA p-Value b # voxels c

x y z

Stop-success network
Inferior frontal gyrus, pre-SMA and thalamus + R 48 14 −4 43–47, 13, 9, 6 b.0001 6037
Supramarginal area, fusiform gyrus + R 58 −36 28 40, 37 b.0001 4257
Fusiform gyrus + L −40 −50 −28 37 b.0001 2959
Inferior frontal gyrus, insula and operculum + L −48 8 −4 44, 13, 6 .0025 1752
Supramarginal area + L −48 −38 34 40 .0386 1044
Medial prefrontal cortex − L/R −10 64 24 38, 8–10 b.0001 6485
Precuneus − L/R −10 −46 32 31 b.0001 4384
Lateral occipital lobe − L −50 −64 28 39 .0049 1562
Superior temporal gyrus − L −64 −34 −2 21, 22 .0280 1121
Stop-failed network
Fusiform gyrus, cerebellum + L −40 −48 −28 37, 19 b.0001 1957
Inferior frontal gyrus, insula + R 38 50 10 46, 47, 9 b.0001 1930
Temporal/parietal junction, fusiform gyrus + R 60 −36 24 40, 22, 21 .0002 1591
Dorsolateral prefrontal cortex + L −50 42 22 46, 9 .0314 713
Temporal/parietal junction + L −42 −30 20 41, 22, 13 .0378 686
Cerebellum − R 34 −82 −34 n.a. .0096 891

Note: pre-SMA = pre-supplementary motor area; BA = Brodmann area.
a Side indicates the hemisphere (left/right).
b Correction for multiple comparisons applied using a cluster threshold of z N 2.3 and significance threshold of p b .05 corrected.
c # voxels indicates the number of voxels in a cluster.
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SST performance, though no interaction effects of age with diagnostic
group were found (see SI).

3.2. Task connectivity patterns

Average connectivity patterns over all subjects from the left inferior
frontal seed region for the successful stop network and failed stop con-
ditions are shown in Table 3 and Fig. 2A andB. The connectivity patterns
from the superior frontal seed are shown in Table 4, and Fig. 2C and D.
Over all subjects and task conditions, the areas that show positive con-
nectivity with the seed regions during stop-task performance mainly
encompass the inferior frontal, anterior cingulate, basal ganglia and
supramarginal nodes. Negative connectivity with the seed regions is
found in precuneus, occipital and medial frontal areas.

3.3. Group differences in connectivity patterns

The group differences (i.e. controls vs. probands with ADHD vs. sib-
lings) in connectivity patterns from the left inferior frontal seed regions
are depicted in Table 5 and Fig. 3A and B. Additional visual representa-
tion of the group differences within each node can also be found in
the SI. In Fig. 3, for illustration purposes, nodes with higher connectivity
values in controls are depicted in red-yellow and nodes with higher
connectivity values in probands or siblings in blue-white. These results
indicate that control subjects showed increased functional connectivity
with the right basal ganglia during successful stop trials, as well as in-
creased connectivity between the left and right inferior frontal gyrus,
superior frontal gyrus, and pre-supplementary motor area during the
failed stop condition, as compared to both other groups. Subjects with
ADHD had stronger connectivity between the left inferior frontal seed
and bilateral temporal poles and cerebellum in both conditions and
with the right supramarginal gyrus during failed-stop trials as com-
pared to controls. Unaffected siblings showed similar connectivity pat-
terns from the left inferior frontal seed as controls during the
successful stop condition and similar connectivity as subjects with
ADHD during the failed stop condition. Additionally, during the failed
stop condition the unaffected siblings showed unique hypo-
connectivity with the medial frontal gyrus as compared to subjects
with ADHD and healthy controls.

The group differences in the connectivity between healthy controls
and ADHD probands or siblings from the superior frontal seed region
are shown in Table 6 and Fig. 3C and D. These results indicate that
controls had stronger connectivity with the thalamus and operculum
during the successful stop condition and with the left inferior frontal
gyrus in the failed stop condition as compared to both other groups.
Subjects with ADHD showed stronger connectivity of the superior fron-
tal seedwithmedial frontal, precuneus during successful stops andwith
temporal areas during failed stops as compared to controls. Unaffected
siblings again showed similar connectivity patterns as controls from
the superior frontal seed region during the successful stop condition, to-
gether with unique hypo-connectivity with the precentral and primary
motor areas as compared to both other groups. During the failed stop
condition, they showed similar hypo-connectivity as subjects with
ADHDwith themiddle frontal gyrus and similar connectivity as controls
with the left inferior frontal gyrus.

The Cohen3s d values from Tables 5 and 6 range from 0.315 to 0.628,
with an average of 0.425, indicating moderate effect sizes for the diag-
nostic group effects, though there is still considerable overlap in the ob-
served PPI connectivity values between the three diagnostic groups.

No main or interaction effects with group of the covariates IQ, gen-
der, and scan-site were detected within these between-group analyses.
Severalmain effects of age were found, but no significant interaction ef-
fects of agewith diagnostic group either. Nevertheless, in the SI,findings
from several additional sensitivity analyses were added to document
the potential influence of these covariates, as well as of medication du-
ration and comorbid disorders. These sensitivity analyses indicated our
main effects did not changewhen these factorswere incorporated in the
analyses. Connectivity between the left inferior frontal seed and poste-
rior middle temporal as well as middle frontal areas was associated
with the average frame-wise displacement values, although these asso-
ciations did not survive multiple comparisons. Nevertheless, the group
comparisons in these nodes was adapted to include the frame-wise dis-
placement as an additional factor in the model, to ensure the between-
group results were controlled for motion effects (see Table 5).
3.4. Association between connectivity patterns and ADHD severity scores

Connectivity strength between the left inferior frontal seed region
and all other regions was significantly associated with ADHD severity
except for connectivity with the middle temporal, occipital, and medial
frontal gyrus. Inspection of the B-values from these tests indicated that
connectivity strength between the inferior frontal gyrus seed and pre-
supplementary motor area was negatively correlated with ADHD



Fig. 2. Functional connectivity patterns from the inferior frontal seed node, during successful stop condition (A) and failed stop condition (B); and functional connectivity from the superior
frontal seed node, during successful stop condition (C) and failed stop condition (D). Red/yellowhues indicate positive connectivity values; bluehues indicate negative connectivity values.
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severity, while connectivitywith the temporal pole, precuneus, and cer-
ebellum was positively correlated with ADHD severity.

Connectivity of the left superior frontal seed regions with all other
regions except the inferior frontal nodewas also significantly associated
with ADHD severity. B-values indicated negative correlations between
thalamus and operculum andADHD severity, while the nodes in tempo-
ral, cerebellum, and precuneus areas were positively correlated with
ADHD severity (see SI Table 4).
Table 4
Connectivity patterns from the left superior frontal gyrus seed region.

Left SFG network Valence Side a

Successful stop condition
Lingual gyrus + L/R
Frontal pole, middle frontal gyrus + R
Frontal pole, middle frontal gyrus + L
Inferior frontal gyrus, insula, putamen + L
Medial prefrontal cortex − L/R
Precuneus − L/R
Lateral occipital cortex − L
Middle temporal gyrus − L
Lateral occipital cortex − R
Failed stop condition
Inferior/medial frontal gyrus + R
Middle temporal gyrus + R
Insula, caudate, anterior cingulate + L
Temporal/parietal junction + R
Frontal pole, superior frontal gyrus, anterior cingulate − R
Precuneus, lateral occipital cortex − L
Frontal pole, superior frontal gyrus − L

Note: BA = Brodmann area.
a Side indicates the hemisphere (left/right).
b Correction for multiple comparisons applied using a cluster threshold of z N 2.3 and signifi
c # voxels indicates the number of voxels in a cluster.
3.5. Association between connectivity patterns and stop-task outcome
measures

Several associations were found between connectivity measures in
the nodes indicated in the group-contrast and stop-task outcome mea-
sures. Specifically, connectivity between the left inferior frontal seed
and the anterior middle temporal gyrus was positively associated with
ICV and SSRT (B = .792, p b .001, R2 = .044; B = .009, p = .009,
Peak voxel (MNI) BA p-Value b # voxels c

x y z

−18 −72 6 19,18 b.0001 3178
36 40 34 8–10, 46 .0094 877

−38 44 28 8–10 .0132 827
−40 0 20 47, 45, 13 .0574 616
−12 38 12 22,9,8,6 b.0001 4509
−6 −48 30 31 b.0001 2061

−50 −60 26 40, 39, 22 b.0001 1629
−62 −24 −8 21 .0002 1488
52 −58 34 39 .0020 1122

46 32 20 45,46,9 .0002 1650
56 −54 0 37 .0054 1062
−6 0 20 24,13 .0205 838
54 −46 12 41,40 .0302 776
24 44 18 32,24,9,8 b.0001 1754

−22 −52 20 41,40,31 .0002 1731
−22 50 30 8–10 .0006 1471

cance threshold of p b .05 corrected.

Image of Fig. 2
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R2 = .011; respectively) in the successful-stop condition. Thus, in-
creased connectivity was related to higher variability and poorer re-
sponse inhibition performance. In the failed-stop condition, a positive
association between inferior frontal and medial frontal connectivity
and error rates was found (B = .003, p = .019, R2 = .006), indicating
that increased connectivity between these regions was associated
with worse task performance, though this latter result did not survive
the Bonferonni–Holm correction for multiple-comparisons.

Connectivity between the superior frontal seed region and thalamic
connectivity was negatively associated with error rates (B = .002, p =
.005, R2 = .05). Operculum connectivity was additionally negatively
correlated with SSRT (B = −.022, p = .031) during successful stop tri-
als, though this result did not survive Bonferonni-Holm correction. In
other words, higher thalamus connectivity was associated with better
task performance (see SI Table 3).

4. Discussion

Using psycho-physiological interaction analysis to investigate func-
tional neural connectivity patterns during response inhibition, the cur-
rent study provided evidence for altered functional connectivity
patterns underlying response inhibition in adolescents with ADHD
and their unaffected siblings, compared to healthy controls. Behavioral
response inhibition deficits were only present in subjects with ADHD,
as reported previously (Van Rooij et al., 2014).

Task related connectivity over all subjects in the successful-stop con-
dition showed positive connectivity between the left inferior frontal and
superior frontal seed regions with the right inferior frontal gyrus, basal
ganglia, thalamus, and supramarginal areas, indicating strong connec-
tivity within the response inhibition network and nodes belonging to
the ventral attention network (Cortese et al., 2012). Negative connectiv-
ity was observed between seed regions and nodes in themedial frontal,
precuneus, and temporal areas, which are generally attributed to the
default mode network (DMN). During the failed-stop condition, posi-
tive connectivity patterns remained relatively stable, while negative
connectivity patterns were largely reduced. These results provide evi-
dence that the integration of the response inhibition and attention net-
works is key for proper response inhibition and support previous
findings on the role of these networks in response inhibition (B.B.
Zandbelt et al., 2013a,b; Chevrier et al., 2007; D.J. Sharp et al., 2010;
Jahfari et al., 2011;M.C. Stevens et al., 2007; N.C. Swann et al., 2012). Ad-
ditionally, recent studies have shown that suppression of activation in
irrelevant networks, such as the DMN, is necessary for successful task
performance (Fox et al., 2005; Gao and Lin, 2012; Spreng et al., 2010).
The pattern of negative correlations between seed regions and task-
irrelevant nodes during successful versus failed inhibitions in our
study suggests that suppression of irrelevant networks is key for proper
response inhibition.

When compared with controls, subjects with ADHD showedweaker
connectivity within the response inhibition network and stronger con-
nectivity between the seed regions and nodes in temporal cortex and
precuneus. This pattern of increased and decreased connectivity in ado-
lescents with ADHD largely matches the pattern of positive and nega-
tive task related connectivity described above, i.e. subjects with ADHD
showedweaker integration between the relevant nodes in the response
inhibition network than controls and stronger connectivity with DMN
nodes, which are irrelevant for task performance. The continued func-
tional connectivity with task irrelevant nodes is a likely source of inter-
ference and may cause poorer task performance in these subjects
(Hampson et al., 2010), as has previously been indicated in several
other disorders (H. Liu et al., 2012; Hamilton et al., 2011). This interpre-
tation is also supported by the associations between connectivity and
ADHD severity. Thedirection of these associations followed the samedi-
rection as the group contrasts, with higher frontal, opercular, and sub-
cortical connectivity related to lower ADHD severity and higher
posterior connectivity related to higher ADHD severity. This indicates,



Fig. 3. Differences in functional connectivity based on F-test comparing all three diagnostic groups. Connectivity patterns depicted from the inferior frontal seed region, in the successful
stop condition (A) and the failed stop condition (B); aswell as from the superior frontal seed region, in the successful stop condition (C) and the failed stop condition (D). Red hues indicate
significantly higher connectivity in controls; blue hues indicate higher connectivity in ADHD subjects or unaffected siblings.
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in line with our hypothesis, that increased connectivity with DMN
nodes was related to higher ADHD severity, while connectivity with
nodes within the functional response inhibition network was related
to lower severity. The exception within this pattern of results was the
stronger connectivity with cerebellum shown by subjects with ADHD,
whichwas also related tomore severe ADHD symptoms. However, pre-
vious studies in healthy subjects have indicated a role for the cerebel-
lum in the frontal-striatal-cerebellar network during response
inhibition (H. Garavan et al., 2003, 1999; Mostofsky et al., 2003), while
other studies have indicated decreased cerebellar volumes in children
with ADHD (Ivanov et al., 2014; Mackie et al., 2007). More research
will be required to specifically delineate whether this additional con-
nectivity with the cerebellum in probands reflects compensatory strat-
egy during response inhibition, or is unrelated to response inhibition
performance and associated with decreased cerebellar volumes.

Our analyses of the relationship between behavioral task outcome
measures and connectivity further supports the potential functional im-
portance of proper integration and suppression, as connectivity with
the thalamus and operculumwas related with better task performance,
andmedial temporal activationwithworse performance. Medial frontal
activation was also related with worse performance, although this may
be related to increased errormonitoring activation after failed inhibition
(Van Meel et al., 2007). However, effect sizes of these relations were
small, and connectivity from other nodes did not significantly correlate
with performance. Further research should establish which factors de-
termine this potential relation between connectivity and task
performance.

In unaffected siblings, the observed pattern of connectivity was al-
most identical to the healthy controls in the successful-stop condition,
while during the failed-stop condition the patterns resembled those of
subjects with ADHD. This pattern of partially overlapping hypo-
connectivity between subjects with ADHD and their siblings supports
the familial nature of functional connectivity, and is in line with our hy-
pothesis regarding shared genetic risk factors between subjects with
ADHD and their siblings and supports the utility of neural measures of
response inhibition as a putative endophenotype for ADHD. Moreover,
siblings showed partly unique patterns of functional connectivity
between the seed regions, medial frontal, and motor areas as compared
to both other groups. Since these unique patterns of hypo-connectivity
are all located in task-irrelevant nodes, and since the connectivity values
in these nodes are all positively associated with ADHD severity, we
argue that the increased suppression of these areas may constitute a
compensatory mechanism for decreased integration of the response-
inhibition. Specifically, the primarymotor areas are amain downstream
target of the response inhibition network (Aron and Poldrack, 2006;
Aron et al., 2007b; Aron, 2011), suppression of which is necessary for
motor inhibition (Swann et al., 2009b; Stinear et al., 2009). Stronger in-
hibition of the primary motor areas may provide unaffected siblings
with an alternative strategy to achieve appropriate levels of inhibition,
distinct from the response inhibition network proper. In our previous
study, no compensatory neural activation during response inhibition
was found in unaffected siblings. The current results therefore suggest
that compensatory connectivity may be able to offset hypoactivation
in the response inhibition network.

The hyper-connectivity shown by subjects with ADHD and siblings
between the left inferior frontal seed and right supramarginal gyrus
also warrants further attention. The supramarginal areas are considered
part of the ventral attention network (Cortese et al., 2012; Dosenbach
et al., 2008), and showgenerally positive connectivitywith the response
inhibition network over both conditions. Previous studies have attribut-
ed increased neural activation in supramarginal areas during response
inhibition to compensatory activation utilized by subjects with ADHD
to normalize task performance (Dillo et al., 2010; Durston et al., 2003;
Karch et al., 2010). However, this explanation cannot directly be extrap-
olated to the current data, aswe found no relation between connectivity
with supramarginal areas and task outcome measures and only ob-
served increased connectivity in subjects with ADHD during failed but
not successful stop trials. It is therefore unclear from the current data
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if enhanced connectivity with the supramarginal areas in participants
with ADHD and their siblings reflects the recruitment of additional neu-
ral resources, beneficial to the response inhibition process, or an addi-
tional source of unrelated or interfering activity.

Several interesting observations can be made when comparing the
current groupdifferences in PPI connectivitywith our previously reported
activation differences in the same sample (Van Rooij et al., 2014). The
connectivity and activation data have similar effect sizes (the average
Cohen3s d for connectivity betas is 0.425 and the average Cohen3s d for
clusters reported in the previous activation research was 0.407). Since
the PPI analysis is corrected for the main task-contrast, the resulting cor-
relation between PPI beta values from any nodes with any beta values
from the task activation was as low as−0.02 (SD= 0.04). This indicates
that both the connectivity and activation parameters uniquely explain
variance in ADHD severity. These observations, taken together with
abovementioned unique patterns of negative connectivity aswell as com-
pensatory connectivity patterns in unaffected siblings both unseen in the
activation data, further support the added value of employing both activa-
tion and connectivity analyses within fMRI research.

Our study and its findings should be viewed in the context of its
strengths and weaknesses. Clear strengths of the current paper are
the large sample size, as well as the inclusion of unaffected siblings
in the design, which provides insight into the familial nature of func-
tional connectivity patterns. However, our current analyses do not
allow inferences about causal pathways within the response inhibi-
tion network and the specific role of the ventral attention network
in response inhibition. Future studies might use causal connectivity
models (Stevens et al., 2007) or interfering transcranial magnetic
stimulation (Zandbelt et al., 2013a,b) in connected nodes to dissoci-
ated these pathways.

In conclusion, we showed hypo-connectivity during response inhi-
bition in both adolescents with ADHD and their unaffected siblings
alongwith concomitant hyper-connectivity with DMNnodes in adoles-
cents with ADHDwith possible compensatory mechanisms in their un-
affected siblings. Additionally, we showed that the degree of functional
connectivity in the response inhibition network is correlated with
ADHD symptom severity. We conclude that altered functional connec-
tivity may represent a significant part of the neurobiological alterations
underlying ADHD.
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