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Balanced motor primitive can 
explain generalization of motor 
learning effects between unimanual 
and bimanual movements
Ken Takiyama1 & Yutaka Sakai2

Motor learning in unimanual and bimanual planar reaching movements has been intensively 
investigated. Although distinct theoretical frameworks have been proposed for each of these 
reaching movements, the relationship between these movements remains unclear. In particular, the 
generalization of motor learning effects (transfer of learning effects) between unimanual and bimanual 
movements has yet to be successfully explained. Here, by extending a motor primitive framework, 
we analytically proved that the motor primitive framework can reproduce the generalization of 
learning effects between unimanual and bimanual movements if the mean activity of each primitive for 
unimanual movements is balanced to the mean for bimanual movements. In this balanced condition, 
the activity of each primitive is consistent with previously reported neuronal activity. The unimanual-
bimanual balance leads to the testable prediction that generalization between unimanual and bimanual 
movements is more widespread to different reaching directions than generalization within respective 
movements. Furthermore, the balanced motor primitive can reproduce another previously reported 
phenomenon: the learning of different force fields for unimanual and bimanual movements.

In our daily life, we flexibly switch between unimanual and bimanual movements. We can adapt to novel inter-
faces as we unimanually manipulate a smartphone or bimanually manipulate a tablet, which are actions achieved 
through the motor learning of unimanual and bimanual movements. The nature of motor learning in unimanual 
and bimanual movements has been intensively investigated. A theoretical framework for describing motor learn-
ing is that of motor primitives1–5. In this framework, the activity of a single motor primitive Ai (i =  1, ..., N, N is the 
number of motor primitives) mimics nonlinear neural activity, and a linear combination of the nonlinear activity 
∑ = W Ai

N
i i1  determines a motor command. Thus, each linear coefficient, Wi is updated to achieve desired move-

ments. The original framework of motor primitives successfully and simultaneously reproduced nonlinear motor 
commands to move a nonlinear two-link arm, represented linear equations of trial-dependent changes of motor 
commands in unimanual movements, and demonstrated how the learning effect trained with an unimanual 
movement is generalized (transferred) to other unimanual movements1,2. It is also suggested that activities of 
motor primitives likely correspond to neural activities in motor-related brain regions1. The transfer of learning 
effects from a trained movement to other untrained movements is referred to as generalization in this manuscript. 
An extended framework of motor primitives has been proposed to reproduce the generalization pattern within 
bimanual movements5.

However, such distinct modeling of unimanual and bimanual movements can never explain the relation-
ship between these two types of movements. The learning effects in bimanual reaching movements toward a 
fixed target or direction are partially generalized to unimanual movements6,7. That is, the learning effects trained 
with a bimanual movement are available not perfectly but partially in untrained unimanual movements, which 
is referred to as partial generalization in this manuscript. In contrast, learning effects in bimanual movements 
toward variable target directions sampled from eight radial directions are perfectly generalized to unimanual 
movements7. The learning effects trained with various bimanual movements are available not partially but per-
fectly in untrained unimanual movements, which is referred to as perfect generalization in this manuscript. The 
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generalization pattern depends on the pattern of bimanual training; it is partial when it is trained with a single 
type of bimanual movement, but it is perfect when it is trained with various types of bimanual movements. The 
difference in generalization thus originates from the number of target directions present during the bimanual 
training phase, but it is not clear why the number of training target directions affects the generalization between 
bimanual and unimanual movements. A previous study proposed a model that consists of three different com-
ponents for only unimanual, only bimanual, and both movements, respectively, and succeeded to explain the 
“partial” generalization on the condition of the fixed target direction8. However, this model cannot reproduce 
the perfect generalization in the condition of variable target directions. Taken together, we can conclude that a 
framework that explains the generalization between the two types of movements is unknown.

Here, we propose a novel model to explain the generalization of motor learning effects between unimanual 
and bimanual movements by incorporating the findings from neurophysiological studies into a conventional 
framework of motor primitives. In reaching movements, the activity of motor cortex neurons depends on the 
movement direction9, which means that neuronal activity can be considered a function of the movement direc-
tion (tuning curve). The preferred direction (PD) is defined as the movement direction in which the neuron 
shows its maximal activity. Some studies have observed neuronal activity in both unimanual and bimanual move-
ments, and these studies have reported that many neurons that exhibited different tuning curve properties for 
unimanual and bimanual movements. For example, neural activity during unimanual and bimanual movements 
were modeled well by a cosine function, but the PD was modulated during unimanual and bimanual move-
ments10–12. On the basis of these neurophysiological findings, we analytically investigated how the activity of 
motor primitives should be modulated between unimanual and bimanual movements to reproduce the generali-
zation between unimanual and bimanual movements.

Results
General framework.  The present study focused on reaching movements towards radially distributed target 
directions: θ1, … , θK. The target direction was randomly sampled from the K target directions in each trial. During 
each reaching movement, an unpredictable perturbation was given, such as a force field13 which yields a move-
ment error e perpendicular to the movement direction (Fig. 1a,c). The aim of the task was to accurately reach 
toward a given target by generating the additional motor command x perpendicular to the movement direction 
to compensate for the movement error.

Following the original motor primitive model1,2, we assumed that the motor command x was a linear summa-
tion of motor primitive activities A1(θ), ..., AN(θ) determined by a target direction θ (Fig.  1a,c), i.e. 

θ= ∑ =x W A ( )i
N

i i1 , where Wi determines how the i-th primitive contributes to the generation of a motor com-
mand. Each weight Wi was modified by −η ∂

∂
e
W2 i

2
 (gradient descent rule) in each trial to reduce the squared move-

ment error e2 (see Methods), where the positive constant η denoted the learning rate. This framework can explain 
trial-dependent changes of the movement error and the generalization effects on untrained movements1,2.

The framework of motor primitives can be applied to bimanual reaching movements3. Throughout this study, 
we supposed a perturbation imposed only on the left arm (the left arm was trained, and the right arm was 
untrained). Therefore, the additional motor command x should be considered only for left arm movements. We 
considered parallel bimanual movements toward extrinsically identical directions (Fig. 1b), because previous 
behavioral6,7 and neurophysiological10,11 experiments focused on these types of bimanual movements. In this 

Figure 1.  Reaching tasks and motor primitive framework. (a) Motor primitive framework for motor learning 
in bimanual movements. A given target direction (desired movement direction) θ determines the activity of 
motor primitives θA ( )i

bi  through motor planning, and the linear summation of primitive activity determines an 
additional motor command x to compensate for the movement error e induced by a given perturbation p. (b) In 
the unimanual reaching task, a target is given (red circle) for the left arm in the direction θL (red arrow). In the 
bimanual reaching task, two targets are given for the left and right arms in the directions θL and θR. We focused 
on parallel bimanual movements in which the target directions are the same for the left and right arms (red and 
orange arrows, θL =  θR). (c) Motor primitive framework for motor learning in unimanual movements.
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case, the target direction θ is common for two arms. The present study assumed that the activity pattern of each 
motor primitive for parallel bimanual movements, θA ( )i

bi , may differ from that for unimanual (left arm only) 
movements, θA ( )i

uni . Each weight Wi was assumed to be common for unimanual and bimanual movements. This 
assumption did not mean common contributions of a weight Wi to unimanual and bimanual movements. The 
contribution of Wi depended on the primitive activities θA ( )i

uni  and θA ( )i
bi . That is, each motor primitive contrib-

uted to the generation of a motor command through θW A ( )i i
uni  or θW A ( )i i

bi .

Generalization between unimanual and parallel bimanual movements.  The learning effect of 
training bimanual reaching towards a fixed target direction, K =  1, is partially generalized to unimanual move-
ments6,7, whereas the learning effect for K =  8 is perfectly generalized7. When the generalization is partial, the 
movement error increases in the trial in which bimanual movements are switched to unimanual movements. 
In contrast, when the generalization is perfect, movement error does not change in the trial in which bimanual 
movements are switched to unimanual movements. Our goal was to analytically derive the condition to reconcile 
the partial generalization when K =  1 and the perfect generalization when K =  8. Notably, the phrase “the perfect 
generalization when K =  8” can be indicated to be an overstatement because we are not sure whether K =  8 is the 
minimal number of targets for achieving the perfect generalization. However, a previous study7 reported that a 
perfect generalization only when K =  8, and there was no other evidence of the perfect generalization. We thus 
use this phrase in this manuscript. It was also found that the learning speed for unimanual movements was not 
significantly different from that for bimanual movements14.

Under the assumption of equivalent learning speeds between unimanual and bimanual movements, we ana-
lytically proved that the generalization is perfect if and only if θ θ∑ = ∑= =A A( ) ( )k

K
i k k

K
i k1

uni
1

bi  for all primitives, 
and it is partial otherwise (see Methods). The partial generalization for K =  1 was observed in the case of a certain 
target direction θ6,7, and hence, activity patterns of motor primitives for unimanual and bimanual movements 
toward θ are different. That is,

θ θ≠A A( ) ( ), (1)i i
uni bi

for some primitives. The perfect generalization for K =  8 was observed in the case of the equally distributed tar-
gets, θk =  2πk/87. Hence, the condition for perfect generalization implied that the integrals of tuning curves might 
be balanced,

∫ ∫π
θ θ

π
θ θ=

π

π

π

π

− −
A d A d1

2
( ) 1

2
( ) , (2)i i

uni bi

for all primitives i =  1, ..., N. This unimanual-bimanual balance indicated that, for unimanual and bimanual 
movements, the tuning patterns of each motor primitive might be different, but the integrals of tuning curves 
should be balanced. These integrals signified the mean activity of the i-th primitive for unimanual and parallel 
bimanual movements when the target direction θ was uniformly distributed within − π and π. Equations (1) and 
(2) were the only plausible candidates to reconcile the partial generalization when K =  16,7, the perfect general-
ization when K =  87, and the equivalent learning speeds14. Additionally, the weight values for unimanual and 
bimanual movements needed to be common

= =W W W (3)i i i
uni bi

for all primitives to reconcile those phenomena.
We first derived equations (1) and (2) by assuming equation (3) (please see at Equivalent condition to the per-

fect or partial generalization section). Notably, the same equations could be achieved by assuming equation (2) 
and weight values that could not be common for unimanual and bimanual movements: Wi

uni and Wi
bi. In this case, 

analytical calculations revealed that the conditions θ θ≠A A( ) ( )i i
uni bi  for a certain i (equation (1)) and 

=W Wi i
uni bi for all i (equation (3)) should be satisfied to reconcile the partial generalization when K =  1, the per-

fect generalization when K =  8, and equivalent learning speeds (detailed descriptions are provided in Another 
derivation of equivalent condition to the perfect or partial generalization in the Methods section). Thus, equa-
tions (1), (2), and (3) should be satisfied to reconcile the partial and perfect generalizations. Inspired mainly by 
equation (2), we referred to these conditions as a unimanual-bimanual balance in this manuscript.

The unimanual-bimanual balance could be simplified when the activity of each primitive was described with 
a common tuning curve g(⋅) for unimanual and bimanual movements, θ α θ ϕ= −A g( ) ( )i i i

uni uni uni , and 
θ α θ ϕ= −A g( ) ( )i i i

bi bi bi , where the amplitude αi and the PD ϕi were parameters for the i-th primitive, and g(⋅) 
was a periodic function, g(θ) =  g(θ +  2π). Under the assumption of a common tuning curve, the conditions (1) 
and (2) are equivalent to the conditions: α α=i i

uni bi for all primitives and ϕ ϕ≠i i
uni bi for some primitives. 

Namely not the amplitude but the PD was modulated by movements of the opposite arm. Notably, these analytical 
results were independent of the shape of the tuning curve, the distribution of PDs, and the distribution of differ-
ence in PDs between unimanual and bimanual movements.

To validate the analytical results, we numerically simulated the following three models; overlap model, ampli-
tude modulation model, and PD modulation model.

Overlap model.  A neural population related to unimanual movements overlaps with that related to bimanual 
movements, or some neurons are related only to unimanual or bimanual movements, whereas some are related to 
both10. Based on this neurophysiological result, a conventional computational model8 succeeded in reproducing 
a partial generalization when K =  1. In the present framework of motor primitives, this overlap could be modeled 
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as parameters α α( , )i i
uni bi , which were randomly sampled from a subset {(αi, 0), (αi, αi), (0, αi)} (three modula-

tion types shown in the upper side of Fig. 2a). For instance, the i-th primitive is activated only in unimanual 
movements when α α α=  ( , ) ( , 0)i i i

uni bi . Figure 2a shows example activity pattern of primitives for a certain target 
direction in the overlap model.

Figure 2.  Generalization between unimanual and parallel bimanual movements in several models.  
(a–c) Example modulation types (upper) and an example activity pattern (lower) of primitives in the overlap 
model (a), amplitude modulation model (b), and PD modulation model (c). Red and blue lines indicate tuning 
curves for unimanual and parallel bimanual movements, respectively. Red and blue circles represent activities of 
primitives for unimanual and parallel bimanual movements when θ =  0. The primitives were sorted by their 
unimanual PDs. The circles were thinned out and shown for only 100 primitives out of 1000. (d–f) Trial-
dependent changes of movement errors in the overlap (d), the amplitude modulation (e), and the PD 
modulation (f) models for a fixed target direction (K =  1). After 50 trials of the bimanual task (blue lines), the 
task switched to the unimanual task (red lines). (g–i) Trial-dependent changes of movement errors in the 
overlap (g), the amplitude modulation (h), and the PD modulation (i) models for target directions sampled 
from eight radial directions (K =  8). After 200 trials of the bimanual task (blue lines), the task switched to the 
unimanual task (red lines). The movement error at the first trial of the unimanual task was equivalent to that at 
the last trial of the bimanual task (perfect generalization) in only the PD modulation model (i). Red dotted lines 
denote learning curves with unimanual movements. (j–l) Relationships between the number of targets (K) and 
the degree of generalization at the 200th trial, which was calculated as θ

θ

x

x

( )
( )

200
uni

200

200
bi

200

. The generalization values are 

averaged one across 20 simulation runs. (m–o) Generalization effects after training with a parallel bimanual 
movement towards a target direction θtrain =  0 λ  on movements towards different directions θtest in the overlap (m), 
the amplitude modulation (n), and the PD modulation (o) models. The generalization to unimanual movements 
(red line) towards some target directions is larger than the generalization within bimanual movements (blue 
line) in the PD modulation model (hyper-generalization, indicated by red triangles in (o)), whereas the 
generalization within bimanual movements are always larger than the generalization to unimanual movements 
in the overlap and the amplitude modulation models (m,n).
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Amplitude modulation model.  In the overlap model, the amplitude of each primitive was modulated in an 
all-or-nothing manner. This constraint could be reduced as α<0 i

uni, α<0 i
bi, and α α≠i i

uni bi. In fact, many neu-
rons in the motor cortex exhibited tuning curves to the movement directions for both unimanual and bimanual 
movements in which the amplitudes were modulated10–12. We called this model the amplitude modulation model. 
Example modulation types and example activity patterns of primitives are presented in Fig. 2b.

PD modulation model.  In addition to the amplitudes of tuning curves, many neurons in the motor cortex exhib-
ited different PDs for unimanual and bimanual movements10–12. Hence, another candidate is a PD modulation 
model in which α α=i i

uni bi and ϕ ϕ≠i i
uni bi, which corresponded to the unimanual-bimanual balance. Example 

modulation types and an activity pattern of primitives are shown in Fig. 2c.
When a constant clockwise perturbation was applied, all three models could reduce the movement errors 

(Fig. 2). After the task was switched from the bimanual task (blue lines) to the unimanual task (red lines), the 
errors that occurred during unimanual movements in all three models showed smaller values than the errors that 
occurred at the beginning of the bimanual task (the 1st trial of the task). Namely, the learning effects of biman-
ually training were transferred to untrained unimanual movements. In the condition of fixed target directions 
(K =  1), the error in the first trial of the unimanual task was larger than the error in the last trial of the bimanual 
task in all three models (Fig. 2d–f). This meant that the generalization effects were partial in all three models. 
Thus, we confirmed that all the three models reproduced the experimental results in the condition of fixed target 
directions (K =  1)6,7.

However, when the target direction in each trial was sampled from the eight radial directions (K =  8), only the 
PD modulation model exhibited perfect generalization (Fig. 2i), whereas the overlap and the amplitude modu-
lation models still exhibited partial generalization (Fig. 2g,h). The red dotted lines in Fig. 2g–i denoted learning 
curves when trained with unimanual movements when K =  8. As the figures indicate, most of the curves over-
lapped with the curve representing trained with bimanual movements. That is, an equivalent learning speed was 
achieved between unimanual and bimanual movements in those models. Thus, we confirmed that only the PD 
modulation model could concurrently reproduce partial generalization when K =  16,7, perfect generalization for 
K =  87, and equivalent learning speeds between unimanual and bimanual movements14. Hence, these findings 
validated our analytical results. Figure 2j–l denote the relationship between the number of targets K and the 
degree of generalization from (trained) bimanual to (untrained) unimanual movements. As seen in the figure, 
a large number of targets resulted in a larger generalization only in the PD modulation model (Fig. 2l). In this 
case, K =  8 was the minimal number of targets for achieving a perfect generalization in the model. Therefore, the 
unimanual-bimanual balance is the key factor for explaining generalization of motor learning effects between 
unimanual and bimanual movements.

Reproduction of Other Phenomena
The unimanual-bimanual balance could explain other types of phenomena. Although it is difficult to simultane-
ously adapt to clockwise p =  1 and counter-clockwise force fields p =  − 1 (conflicting force fields)15, the conflict-
ing force fields can be learned with unimanual and parallel bimanual movements toward a fixed target direction 
(K =  1)6. For example, a clockwise force field was learned with unimanual movements and a counter-clockwise 
force field was learned with bimanual movements, and vice versa. The PD modulation model could learn the con-
flicting force fields during unimanual and parallel bimanual movements toward a fixed target direction (K =  1) 
(Fig. 3c), which was also true for the overlap and the amplitude modulation models (Fig. 3a,b). These models 
could also reproduce the difficulty of learning a conflicting force field with only unimanual or bimanual move-
ments (green lines in Fig. 3a–c). Because the motor primitives exhibited different recruitment patterns for uni-
manual and bimanual movements when K =  1 (Fig. 2c), a certain population could learn to increase the strength 
of its contribution to a clockwise (counter-clockwise) force field to exceed the contribution of other populations, 
and a different population could learn to strengthen its contributions to a counter-clockwise (clockwise) force 
field. In contrast, the unimanual-bimanual balance predicted that subjects could not learn the conflicting force 
field when K =  8 (Fig. 3f). In this case, the generalization from bimanual to unimanual movements was perfect. 
Each motor primitive for unimanual movements needed to learn both the clockwise and counter-clockwise force 
field simultaneously, which caused an averaged movement error of 0 and no motor learning. In other words, the 
conflicting force field could be learned when the generalization was partial, but it could not be learned when the 
generalization was perfect. In addition, the PD modulation model could reproduce a partial generalization from 
unimanual training to bimanual movements when K =  1 (Fig. 3f)6, as well as the overlap and the amplitude mod-
ulation models (Fig. 3d,e). Furthermore, the perfect generalization could be observed from (trained) unimanual 
to (untrained) bimanual movements if the unimanual-bimanual balance was satisfied (Fig. 3l). Because learning 
in the presence of a conflicting force field when K =  8 and the perfect generalization from unimanual to biman-
ual movements when K =  8 have not been reported in previous studies, these were our predictions based on the 
unimanual-bimanual balance.

Discussion
We proposed the unimanual-bimanual balance based on a motor primitive framework to explain the generaliza-
tion of motor learning effects between unimanual and bimanual movements. The unimanual-bimanual balance 
(equations (1), (2), and (3), or PD modulation) successfully reproduced generalization patterns between uni-
manual and bimanual movements. The partial generalization on the condition that the training target direction 
is fixed6, and the perfect generalization on the condition that the training target is sampled from the eight radial 
directions in parallel bimanual movements7 (Fig. 2f,i). The unimanual-bimanual keeps the ability to explain other 
phenomena of motor learning in unimanual and bimanual movements: learning under a conflicting force field in 
unimanual and bimanual movements (Fig. 3c), the partial generalization from unimanual training to bimanual 
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movements toward a fixed target direction6 (Fig. 3i). The present framework of unimanual and bimanual primi-
tives is symmetric for unimanual and bimanual movements. Therefore, the same conclusion regarding the gener-
alization from bimanual to unimanual movements can be applied for the generalization from unimanual training 
to bimanual movements (Fig. 3i,l).

Comparison with conventional models.  Conventional frameworks of motor primitives successfully 
reproduced generalization patterns when the kinematics of reaching movements (e.g., target direction) changed 
in unimanual1,2,4 or bimanual movements5. However, those models could explain the generalization pattern only 
in unimanual movements or those only in bimanual movements. In the model for unimanual movements, some 
motor primitives were activated when the desired movement direction was 0°, but it was unclear how these prim-
itives were activated in bimanual movements. In the model of bimanual movements, some motor primitives were 
activated when the desired movement direction for the left and right arms were 0°. However, it remains unknown 
how these primitives are activated in unimanual movements. One potential explanation is an overlap. A partial 
generalization between unimanual and bimanual movements could be reproduced by an overlap of a neural 
population for unimanual movements and that for bimanual movements8. In that model, the learning effects 
were embedded into both non-overlapped and overlapped neural populations. Learning effects in the overlapped 
neural population were shared between unimanual and bimanual movements, resulting in partial generalization 
between those movements. Nevertheless, based on the overlap model, the generalization was always partial inde-
pendent of the number of targets, which contradicted to the results of behavioral experiments7 (Fig. 2g). Taken 
together, the unimanual-bimanual balance was the first framework that could explain generalization of learning 
effects between unimanual and bimanual movements.

Figure 3.  Learning of conflicting force fields and generalization from unimanual to parallel bimanual 
movements in several models. (a–c) Trial-dependent changes of movement errors in the overlap (a), the 
amplitude modulation (b), and the PD modulation (c) models in which conflicting force fields were learned: 
p =  1 with parallel bimanual movements (blue lines) and p =  − 1 with unimanual movements (red lines) 
toward a fixed target direction (K =  1). The two conditions were alternated in every trial. After 400 trials of 
the conflicting force field task, the perturbation was turned off (p =  0). In all models, the movement error 
diminished and the after effects were induced after the perturbation was turned off. Hence, all models could 
learn conflicting force fields. (d–f) Learning curves for conflicting force field when K =  8. Other settings were 
the same as those in (a–c). (g–i) Trial-dependent changes of movement errors and generalization functions in 
the three models in the case of the unimanual training when K =  1. (j–l)Trial-dependent changes of movement 
errors and generalization functions in the three models in the case of the unimanual training when K =  8.
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Relationships between unimanual and bimanual movements.  The unimanual-bimanual bal-
ance might suggest a novel relationship between unimanual and bimanual movements regarding the special-
ization and generalization of learning. In Fig. 2o, we note the hyper-generalization as a testable prediction of 
the unimanual-bimanual balance. The generalization pattern within bimanual movements was higher but nar-
rower than that from bimanual to unimanual movements, which meant that the generalization after training with 
bimanual movements was restricted only to the bimanual movements with kinematics that were similar to trained 
movements. In other words, specialization was prioritized over generalization. In contrast, the generalization 
pattern from bimanual to unimanual movements was lower but wider than that within bimanual movements, 
leading to a partial generalization to the same target direction but widespread generalization to different target 
directions. Generalization was prioritized over specialization. The unimanual-bimanual balance supported the 
compatibility of specialization and generalization in a single primitive framework.

Relationship with neural activity.  When Ai(θ) was modeled as αig(θ −  ϕi), the balanced motor primitive 
was equivalent to the PD modulation, ϕ ϕ≠i i

uni bi. Although neural implementation of the PD modulation or 
unimanual-bimanual balance remains unclear, a candidate of its implementation was sparse corpus callosum 
connectivity between neurons in right and left motor cortices16, i.e., a small portion of neurons were connected 
through the corpus callosum. Not sparse but all-to-all callosal connections do not cause PD modulation16 or they 
cause only a PD shift17, ϕ ϕ= + ci i

bi uni  for all i, where c is a common constant for all i, and the shift does not seem 
biologically plausible. Further, an anatomical study reported that the callosal connections between the motor 
cortices are sparse18. Thus, sparse callosal connections can be a candidate to implement PD modulation, or a 
unimanual-bimanual balance.

The PD modulation seemed to be contradictory to a previous neurophysiological result: both the PD and 
amplitude were modulated between unimanual and bimanual movements11. However, previous studies focused 
on parallel and opposite movements (target directions for left, θL, and right arm, θR, are related to each other as 
|θL −  θR| =  180°), which is in contrast to the current study where we focused only on parallel bimanual movements 
inspired by previous behavioral experiments6,7. These differences could have caused the discrepancy. Further, the 
PD modulation is just a simple solution of the unimanual-bimanual balance with assuming a common tuning 
curve. As long as it is balanced, the amplitude modulation is also allowed if the shape of the tuning curve is also 
modulated. Hence, the unimanual-bimanual balance can be consistent with the neurophysiological result.

Several studies have previously discussed a relationship in the neural activities between unimanual and biman-
ual reaching movements by decomposing those movements into two parts: motor planning and execution11,16. 
The motor planning phase is defined as the phase in which a target position or a desired movement direction 
is determined before the onset of a reaching movement. In the framework of motor primitive, the recruitment 
pattern of primitives is determined in motor planning. Motor execution is defined as the phase around the onset 
of the movements. In motor primitive framework, motor commands x are determined during motor execution. 
Although the difference in neural activity between unimanual and bimanual movements is mainly caused by the 
corpus callosum, it remains unclear whether the corpus callosum affects neural activity only in motor planning, 
only in motor execution, or in both motor planning and execution. Some computational studies suggested that 
neural activity was significantly modulated mainly in motor planning11,16. Our results also support that the corpus 
callosum significantly affects neural activity mainly in motor planning. The unimanual-bimanual balance deter-
mines the recruitment pattern of motor primitives in motor planning, which suggests that the difference in neural 
activity between unimanual and bimanual movements can be observed mainly in motor planning.

Limitations and future work.  Although the present study analytically revealed a relationship between 
unimanual and bimanual movements by focusing on parallel bimanual movements, the balanced motor primitive 
needs to be extended to include motor learning in various types of bimanual movements. The perfect general-
ization from bimanual to unimanual movements when K =  8 could be observed in the case of not only paral-
lel bimanual movements but also symmetrical bimanual movements (the sign of target angle for left arm was 
opposite to that for right arm, e.g., θ =  30° for left arm and θ =  − 30° for right arm)7. This result could lead to the 
unimanual-bimanual balance (equations (1) and (2)) both for parallel and symmetrical bimanual movements. A 
previous study extensively investigated generalization within various types of bimanual movements5. Another 
previous study reported that learning speed is not significantly different between unimanual movements and 
bimanual movements when the target directions were random and independent for the left and right arms14. The 
partial transfer when K =  1 was likely to be specialized for bimanual movements because it could not be observed 
with simultaneous movements of unimanual or ankle movements6. An extended version of the balanced motor 
primitive framework needs to be proposed to simultaneously reproduce these results. Further, we proposed that 
motor primitives whose activities were determined on the basis of a prospective (predicted) movement error 
could reproduce several motor-learning-related phenomena within a unified manner3. How to reconcile the 
unimanual-bimanual balance and the prospective error model is another future work.

Methods
Learning rule and generalization function.  The movement error feedback e perpendicular to the move-
ment direction was supposed to be proportional to the difference between the given perturbation p (p was set to 
1 or − 1 in this study) and the generated motor command x, e ∝  p −  x. The motor command x to be generated for 
a target direction θ was described as θ θ θ= ∑ = ⋅= W Ax W A( ) ( ) ( )i

N
i i1 , where the vectors represented W =  (W1, 

..., WN) and A(θ) =  (A1(θ), ..., AN(θ)) respectively, and the dot · denoted the inner product of vectors. The gradient 
of the square error e2 for a weight Wi was obtained as θ∝ −∂

∂
eA2 ( )e

W i
i

2
. Thus the gradient learning rule in trial t 

was obtained as Wt+1 =  Wt +  ηeA(θ), where error feedback e and target direction θ were given in trial t. A positive 
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constant η represented the learning rate. This learning rule enabled us to predict how learning effects at the t-th 
trial with θ were available at the (t +  1)-th trial with θ′, where θ′  (that might be different from θ) was a target 
direction presented in the trial. Multiplying A(θ′ ) by the learning rule, we obtained xt+1(θ′ ) =  xt(θ′ ) +  ηetA(θ′ ) ⋅  A(θ), 
where xt(θ′ ) was the motor command to be generated for a target θ′ . Because the motor command xt(θ′ ) was 
unobservable, it indicated a predicted value. When A(θ) ⋅  A(θ′ ) =  0, xt+1(θ′ ) =  xt(θ′ ), indicating that the learning 
effects at the t-th trial with θ were not available at the next trial θ′ . In contrast, when A(θ) ⋅  A(θ′ ) =  A(θ) ⋅  A(θ),  
xt+1(θ′ ) −  xt(θ′ ) =  xt+1(θ) −  xt(θ), indicating that the learning effects at the t-th trial with θ were perfectly available 
at the next trial with θ′ . We referred to this perfect availability of the learning effects as perfect generalization. The 
case when θ′  =  θ was a self-evident case of perfect generalization. Further, when A(θ) ⋅  A(θ′ ) <  A(θ) ⋅  A(θ), xt+1(θ′ )  
−  xt(θ′ ) <  xt+1(θ) −  xt(θ), indicating that learning effects at the t-th trial with θ were partially available at the next 
trial with θ′ . We referred to this partial availability of learning effects as partial generalization. The generalization 
of learning was thus determined by the factor A(θ′ ) ⋅  A(θ). The factor for the same direction A(θ) ⋅  A(θ) =  |A(θ)|2 
determines the learning speed. This could be applied for generalization between unimanual and parallel bimanual 
movements. The generalization from unimanual training to parallel bimanual movements was determined by the 
factor Abi(θ′ ) ⋅  Auni(θ), and by the factor Auni(θ′ ) ⋅  Abi(θ), and vice versa. For example, when Auni(θ) ⋅  Abi(θ) <  Abi(θ) ⋅   
Abi(θ), θ θ θ θ′ − < ′ −+ +x x x x( ) ( ) ( ) ( )t t t t1

uni uni
1

bi bi , indicating that the partial generalization from bimanual to uni-
manual movements. When Auni(θ) ⋅  Abi(θ) =  Abi(θ) ⋅  Abi(θ), θ θ θ θ′ − = ′ −+ +x x x x( ) ( ) ( ) ( )t t t t1

uni uni
1

bi bi , indicating 
that the perfect generalization from bimanual to unimanual movements.

Equivalent condition to the perfect or partial generalization.  The generalization of the learning 
effects in each trial for bimanual movements toward multiple training directions was determined by the average 
over all training target directions, θ θ∑ ⋅= A A( ) ( )

K k
K

k
1

1
bi . The learning effect and the generalization effect were 

experimentally evaluated as the average over the test target directions which were common to the training  
directions7. Therefore, the average effects of bimanual learning and generalization to unimanual  
movements were determined by θ θ∑ ∑ ⋅′= = ′A A( ) ( )

K k
K

k
K i

k
i

k
1

1 1
b b

2  and θ θ∑ ∑ ⋅′= = ′A A( ) ( )
K k

K
k
K

k k
1

1 1
uni bi

2  respectively.  
Comparison between these two values determined whether the generalization from bimanual to unimanual  
movements was perfect or partial, i.e., when θ θ θ θ∑ ∑ ⋅ = ∑ ∑ ⋅′= = ′ ′= = ′A A A A( ) ( ) ( ) ( )

K k
K

k
K

k k K k
K

k
K

k k
1

1 1
uni bi 1

1 1
bi bi

2 2 , 
θ θ θ θ∑ ∑ − = ∑ ∑ −′= = + ′ ′= = + ′x x x x(( ( ) ( )) ( ( ) ( ))

K k
K

k
K

t k t k K k
K

k
K

t k t k
1

1 1 1
uni bi 1

1 1 1
bi bi

2 2
, indicating a perfect generalization 

from bimanual to unimanual movements.
Under the assumption of equivalent learning speeds, θ θ∑ = ∑= =A A( ) ( )k

K
k k

K
k1

uni 2
1

bi 2
, we obtained

∑ ∑ ∑ ∑ ∑θ θ θ θ θ⋅ ≤ =
′=

′
= ′=

′
= =

A A A A A( ) ( ) ( ) ( ) ( ) ,
(4)k

K

k
k

K

k
k

K

k
k

K

k
k

K

k
1

uni

1

bi

1

uni

1

bi

1

bi
2

using the Cauchy-Schwartz inequality. The equality condition of the Cauchy-Schwartz inequality was 
θ θ∑ = ∑′= ′ =A A( ) ( )k

K
k k

K
k1

uni
1

bi . Thus, under the assumption of equivalent learning speeds, the perfect generaliza-
tion occurred if and only if

∑ ∑θ θ=
′=

′
=

A A( ) ( ),
(5)k

K

k
k

K

k
1

uni

1

bi

and otherwise, the partial generalization occurred, i.e., partial generalization when K =  1 occurs if and only if 
Auni ≠  Abi.

Another derivation of equivalent condition to the perfect or partial generalization.  To validate 
our conclusion, we derived the condition to reconcile a partial and perfect generalization from another perspec-
tive. In the above derivations, we first assumed that weight values W were common for unimanual and bimanual 
movements. In this section, we assumed a normalization of each motor primitive activity, 

θ θ∑ = ∑= ′= ′A A( ) ( )
K k

K
i k K k

K
i k

1
1

uni 1
1

bi , and weight values that could be different between unimanual and bimanual 
movements, Wi

uni and Wi
bi. In this case, we needed to define a parameter β that determined how learning effects 

are generalized between unimanual and bimanual movements. Generalizations within bimanual and from 
bimanual to unimanual movements were determined by θ θ∑ ′= A A( ) ( )i

N
i i1
bi bi  and β θ θ∑ ′= A A( ) ( )i

N
i i1
bi uni , 

respectively.
Perfect generalization could be reproduced if and only if θ θ∑ ∑ ∑= = ′= ′A A( ) ( )i

N
K k

K
i
i

k k
K

i
i

k1
1

1
b

1
b

2  =  
  θ θ∑ ∑ ∑

β
= = ′= ′A A( ) ( )i
N

K k
K

i k k
K

i k1 1
bi

1
uni

2 . On the basis of the assumption θ θ∑ = ∑= ′= ′A A( ) ( )
K k

K
i k K k

K
i k

1
1

uni 1
1

bi , the 
condition to reproduce perfect generalization could be written as

β = .1 (6)

In this condition, learning rules for Wi
bi and Wi

uni with bimanual training could be written as 
η θ= ++W W Ae ( )t t t1

bi bi bi  and η θ= ++W W Ae ( )t t t1
uni uni bi , respectively. Similarly, learning rules with unimanual 

training could be written as η θ= ++W W Ae ( )t t t1
bi bi uni  and η θ= ++W W Ae ( )t t t1

uni uni uni . With the same initial val-
ues =W W0

bi
0
uni, these learning rules could lead Wbi =  Wuni.
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Partial generalization when K =  1 could be reproduced when

θ θ≠A A( ) ( ) (7)i i
uni bi

for a certain i.

Prediction of hyper-generalization.  The partial generalization for K =  1 and the perfect generalization 
for K =  8 led to the prediction of the hyper-generalization:

θ θ θ θ θ∃ ⋅ > ⋅ .A A A A, ( ) ( ) ( ) ( ) (8)k k
i

k
uni b

1
bi bi

1

This was because the summation of the left hand, θ θ∑ ⋅= A A( ) ( )k k1
8 uni bi

1 , equaled the summation of the right 
hand, θ θ∑ ⋅= A A( ) ( )k k1

8 bi bi
1 , because the condition of the perfect generalization (5) for K =  8, though the first 

term Auni(θ1) ⋅  Abi(θ1) <  Abi(θ1) ⋅  Abi(θ1) since the partial generalization for K =  1.
This prediction meant that the generalization between the different types of movements (from bimanual to 

unimanual) was larger than the generalization within the same type of movements (from bimanual to bimanual) 
for a certain test target direction θk.

Procedure to demonstrate behavioral task.  The perturbation imposed on the left arm was set to be 
constant (assumed as clockwise perturbation) (Fig. 2d–i). In the simulations for K =  1 (Fig. 2d–f), the fixed target 
direction was θ1 =  0. After 50 trials of the bimanually reaching task, the task was changed to the unimanual task. 
The perturbation was still consistent in the unimanual task. In the simulations for K =  8 (Fig. 2g–i), a target direc-
tion was sampled independently from θk =  πk/4 −  π (k =  1, ..., 8) in each trial. After 200 trials of the bimanual 
reaching task (parallel or symmetric), the task switched to the unimanual task. The perturbation was still consist-
ent in the unimanual task. In Fig. 3g–l, the same procedures were used with unimanual movements followed by 
bimanual movements.

In Fig. 3d–f, learning of a conflicting force field was simulated by assuming unimanual movements with 
p =  − 1 and bimanual movements with p =  1 alternately.

Motor primitives for Fig. 2.  The number of motor primitives N was set to 1000. We used a truncated 
Gaussian tuning curve1,2: θ ϕ θ ϕ− = − −

σ
g ( ) exp( )1

2
2

2 , where θ ϕ−  was a periodic function 
θ ϕ θ ϕ π− = − + 2  such that ||θ −  ϕ|| =  θ −  ϕ for − π ≤  θ −  ϕ <  π. The PD ϕ was sampled from a uniform 

distribution in the range [− π, π]. The tuning width σ was set to π/10. The learning rate was set as η =  1/N =  0.001. 
In the simulation of the overlap model, the amplitude pair α α( , )i i

uni bi  of each primitive was randomly sampled 
from {(α, 0),(0, α),(α, α)} with the even probability 1/3. The constant amplitude was set as α = 3/2 . In the 
simulation of the amplitude modulation model, the amplitudes αi

uni and αi
bi were independently sampled from a 

gamma distribution of the mean 2/3  and variance 1/3. In the simulation of the PD modulation model, the 
amplitudes were set as α α= = 1i i

uni bi . The preferred direction (PD) pair ϕ ϕ π π∈ −( , ) [ , ]i i
uni bi 2 of each prim-

itive was sampled from the probability distribution ϕ ϕ ϕ ϕ∝ − −
σ

P ( , ) exp( )uni bi 1
2

uni bi 2

p
2

, where σp =  1.5σ. 

These parameters were set such that the expected learning speeds η|A(θ)|2 for the three models are equal. In the 
all simulations, the initial values were set as Wi =  0 for all i.

References
1.	 Thoroughman, K. A. & Shadmehr, R. Learning of action through adaptive combination of motor primitives. Nature 407, 742–747 

(2000).
2.	 Donchin, O., Francis, J. T. & Shadmehr, R. Quantifying generalization from trial-by-trial behavior of adaptive systems that learn 

with basis functions: theory and experiments in human motor control. J. Neurosci. 23, 9032–9045 (2003).
3.	 Takiyama, K., Hirashima, M. & Nozaki, D. Prospective errors determine motor learning. Nat. Comms. 6, 5925 1–12 (2015).
4.	 Takiyama, K. Context-dependent memory decay is evidence of effort minimization in motor learning: a computational study. Front. 

Comput. Neurosci. 9, 1–10 (2015).
5.	 Yokoi, A., Hirashima, M. & Nozaki, D. Gain field encoding of the kinematics of both arms in the internal model enables flexible 

bimanual action. J. Neurosci. 31, 17058–17068 (2011).
6.	 Nozaki, D., Kurtzer, I. & Scott, S. H. Limited transfer of learning between unimanual and bimanual skills within the same limb. Nat. 

Neurosci. 9, 1364–1366 (2006).
7.	 Wang, J., Lei, Y., Xiong, K. & Marek, K. Substantial Generalization of Sensorimotor Learning from Bilateral to Unilateral Movement 

Conditions. PLoS ONE 8, e58495 1–7 (2013).
8.	 Nozaki, D. & Scott, S. H. Multi-compartment model can explain partial transfer of learning within the same limb between 

unimanual and bimanual reaching. Exp. Brain Res. 194, 451–463 (2009).
9.	 Georgopoulos, A. P., Kalaska, J. F., Caminiti, R. & Massey, J. T. On the relations between the direction of two-dimensional arm 

movements and cell discharge in primate motor cortex. J. Neurosci. 2, 1527–1537 (1982).
10.	 Donchin, O., Gribova, A., Steinberg, O., Mitz, A. R., Bergman, H. & Vaadia, E. Single-unit activity related to bimanual arm 

movements in the primary and supplementary motor cortices. J. Neurophysiol. 88, 3498–3517 (2002).
11.	 Rokni, U., Steinberg, O., Vaadia, E. & Sompolinsky, H. Cortical representation of bimanual movements. J. Neurosci. 23, 11577–11586 

(2003).
12.	 Ifft, P. J., Shokur, S., Li, Z., Lebedev, M. A. & Nicolelis, M. A. L. A brain-machine interface enables bimanual arm movements in 

monkeys. Sci. Transl. Med. 5 210ra154, 1–13 (2013).
13.	 Shadmehr, R. & Mussa-Ivaldi, F. A. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 

(1994).
14.	 Tcheang, L., Bays, P. M., Ingram, J. N. & Wolpert, D. M. Simultaneous bimanual dynamics are learned without interference. Exp. 

Brain Res. 183, 17–25 (2007).



www.nature.com/scientificreports/

1 0Scientific Reports | 6:23331 | DOI: 10.1038/srep23331

15.	 Osu, R., Hirai, S., Yoshioka, T. & Kawato, M. Random presentation enables subjects to adapt to two opposing forces on the hand. 
Nat. Neurosci. 7, 111–112 (2004).

16.	 Takiyama, K. & Okada, M. Recovery in stroke rehabilitation through the rotation of preferred directions induced by bimanual 
movements: a computational study. PLoS ONE 7, e37594 1–10 (2012).

17.	 Takiyama, K., Naruse, Y. & Okada, M. Statistical Mechanics of Mexican-Hat-Type Horizontal Connection. J. Phys. Soc. Jpn. 78, 
064002 1–6 (2009).

18.	 Rouille, E. M., Babalian, A., Kazennikov, O., Moret, V., Yu, X. H. & Wiesendanger, M. Transcallosal connections of the distal 
forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp. Brain Res. 102, 227243 
(1994).

Acknowledgements
This work was supported by a Grant-in-Aid for JSPS Fellows (13J06713) and Grant-in-Aid for Scientific Research 
on Innovative Areas (26120723) to K.T. This work was also supported by a grant of MEXT-Supported Program 
for the Strategic Research Foundation at Private Universities, 2013-2017.

Author Contributions
K.T. and Y.S. wrote the main manuscript text, prepared figures, and reviewed the manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Takiyama, K. and Sakai, Y. Balanced motor primitive can explain generalization of 
motor learning effects between unimanual and bimanual movements. Sci. Rep. 6, 23331; doi: 10.1038/srep23331 
(2016).

This work is licensed yunder a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Balanced motor primitive can explain generalization of motor learning effects between unimanual and bimanual movements

	Results

	General framework. 
	Generalization between unimanual and parallel bimanual movements. 
	Overlap model. 
	Amplitude modulation model. 
	PD modulation model. 


	Reproduction of Other Phenomena

	Discussion

	Comparison with conventional models. 
	Relationships between unimanual and bimanual movements. 
	Relationship with neural activity. 
	Limitations and future work. 

	Methods

	Learning rule and generalization function. 
	Equivalent condition to the perfect or partial generalization. 
	Another derivation of equivalent condition to the perfect or partial generalization. 
	Prediction of hyper-generalization. 
	Procedure to demonstrate behavioral task. 
	Motor primitives for Fig. 2. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Reaching tasks and motor primitive framework.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Generalization between unimanual and parallel bimanual movements in several models.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Learning of conflicting force fields and generalization from unimanual to parallel bimanual movements in several models.



 
    
       
          application/pdf
          
             
                Balanced motor primitive can explain generalization of motor learning effects between unimanual and bimanual movements
            
         
          
             
                srep ,  (2016). doi:10.1038/srep23331
            
         
          
             
                Ken Takiyama
                Yutaka Sakai
            
         
          doi:10.1038/srep23331
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep23331
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep23331
            
         
      
       
          
          
          
             
                doi:10.1038/srep23331
            
         
          
             
                srep ,  (2016). doi:10.1038/srep23331
            
         
          
          
      
       
       
          True
      
   




