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Abstract

Numerous studies have presented that curcumin could have a positive effect in the prevention of cancer and then
in tumor therapy. Several hypotheses have highlighted that curcumin could decreases tumor growth and invasion
by acting on both chronic inflammation and oxidative stress. This review focuses on the interest of use curcumin in
cancer therapy by acting on the WNT/β-catenin pathway to repress chronic inflammation and oxidative stress. In
the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to
be upregulated. Curcumin administration participates to the downregulation of the WNT/β-catenin pathway and
thus, through this action, in tumor growth control. Curcumin act as PPARγ agonists. The WNT/β-catenin pathway
and PPARγ act in an opposed manner. Chronic inflammation, oxidative stress and circadian clock disruption are
common and co-substantial pathological processes accompanying and promoting cancers. Circadian clock disruption
related to the upregulation of the WNT/β-catenin pathway is involved in cancers. By stimulating PPARγ expression,
curcumin can control circadian clocks through the regulation of many key circadian genes. The administration of
curcumin in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their
role in regulating WNT/β-catenin pathway and PPARγ activity levels.
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Background
The complex process of cancer can be defined in terms
of three stages: initiation, promotion and progression
[1–3]. Many cancers are initiated by chronic inflamma-
tion, involving numerous physical, chemical and bio-
logical determinants [4]. Several studies have examined
the relationship between chronic inflammation and can-
cer [5, 6] and indeed have highlighted the promising role
of anti-inflammatory treatments for cancer [7]. Chronic
inflammation is responsible for the different stages ob-
served in cancers, such as invasion, angiogenesis, prolif-
eration and metastasis [8–10].
In parallel, oxidative stress promotes DNA damages in

cancers [11]. Since few years, the combination formed
by oxidative stress and chronic inflammation is involved

in the initiation of cancer [12]. Reactive oxygen species
production (ROS) is increased by the activation of in-
flammatory factors [13] and thus also participates in the
process of invasion, proliferation, angiogenesis and then
metastasis [14]. The canonical WNT/β-catenin pathway
controls several other pathways involved in development
and tissue homeostasis. This pathway is regulated from
transcription-level regulations to post-transcriptional
modifications. An aberrant WNT/β-catenin pathway is
generally observed in cancers and leads to inflammation
and oxidative stress [12, 15].
The recent therapeutic strategies in cancer are associ-

ated with several limitations, such as high risk of relapse,
drug resistance, poor outcomes and unavailability of ther-
apy. However, plants are the site of promise sources of
bioactive natural components [16]. These natural com-
pounds could be interesting and novels strategies in
therapy. Curcumin (1,7-bis (4-hydroxy-3-methoxyphenyl)-
1,6-heptadiene-3,5-dione) is a natural product which oc-
curs polyphenolic phytochemical properties from the
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rhizome of the Curcuma longa L. [17]. Curcumin has been
discovered in 1815 by Vogel and Pelletier [18]. Its yellow-
colored hydrophobic component is traditionally used in
Asian countries for its several properties against patho-
physiological states including anticancer [19]. Several targets
of curcumin have been shown to have chemotherapeutical
properties. Curcumin use may have a major role in the con-
trol of inflammation, angiogenesis, metastasis and prolifera-
tion [20]. Curcumin can downregulate numerous pathways,
such as nuclear factor-ϰ B (NF-ϰB), cyclooxygenase-2
(COX-2), and the canonical WNT/β-catenin pathway [20].
The chronic inflammatory microenvironment of tu-

mors could be targeted by curcumin. It is well known
that the human body is capable of self-healing after a
short-term inflammatory response, but a long-term
chronic inflammation could lead to initiation of the can-
cer process. Many studies have shown that inflammatory
factors (including interleukins, TNF-α, NF-ϰB) and the
ROS production-induced inflammation infiltrate the in-
flammatory microenvironment leading to DNA damages
and ultimately initiation of cancer [21]. By acting on sev-
eral signaling pathways, especially the WNT/β-catenin
pathway, curcumin can have anticancer effect by inhibit-
ing chronic inflammation and oxidative stress [22].
Curcumin acts as peroxisome proliferator-activated re-

ceptor gamma (PPARγ) agonists and thus downregulate
the aberrant WNT/β-catenin pathway observed in cancers
[23]. PPARγ agonists offer an interesting therapeutic
solution in cancers by acting on both oxidative stress and
inflammation [24, 25]. Indeed, in several tissues, overacti-
vation of the canonical WNT/β-catenin pathway induces
the downregulation of PPARγ, while PPARγ activation in-
duces inhibition of canonical WNT/β-catenin pathway. In

mainly cancers, the canonical WNT/β-catenin pathway is
increased while PPARγ is downregulated [12].
In parallel, dysregulation of circadian rhythms (CRs) has

been observed in cancers [26]. This dysfunction leads to the
upregulation of the canonical WNT/β-catenin pathway
contributing to cancer initiation. PPARγ can control CRs by
regulating many key circadian genes, like Bmal1 (brain and
muscle aryl-hydrocarbon receptor nuclear translocator-like
1) [27] and then can target WNT pathway [28].
This review focuses on the interest of use curcumin in

cancer therapy by acting through the opposed inter-
action between the canonical WNT/β-catenin pathway
and PPARγ to repress chronic inflammation and oxida-
tive stress, and to control circadian rhythms.

Curcumin: a new agent for therapeutic strategy in cancers
Phytotherapy has claimed importance globally in cancer
therapies (Table 1). Curcumin, defined as bis-α, β-unsat-
urated β-diketone, is a natural component well docu-
mented since 1815. Curcumin is the active compound of
turmeric or Curcuma longa L. and presents surprising
wide range of beneficial properties, such as anticancer,
chemopreventive and chemotherapeutic activities [43].
The health benefits of curcumin are limited by its poor
oral bioavailability which can be attributed to the poor
absorption, high rate of metabolism and rapid systemic
elimination from body. Indeed, curcumin is converted to
its water-soluble metabolites and then excreted through
urine. This metabolism is composed by two steps. First,
a NADPH-dependent metabolism of reduction which
comprises the reduction of the double bonds of the
heptadiene-3, 5-dione structure catalyzed by
NADPH-dependent curcumin reductase. Secondly, a

Table 1 Curcumin an anticancer agent in several tumors

Type of cancer Actions Type of study References

Benign prostatic hypertrophy Improved quality of life, reduced symptoms Pilot product evaluation study [29]

Breast Inhibition cancer progression, decreased levels of VEGF Phase I clinical trial [30]

Chronic myeloid leukemia Reduction of nitric oxide levels Randomized controlled trial [31]

Colorectal Decrease inflammation (TNF-α), increase p53 Phase I clinical trial [32]

Colorectal Reduction in tumor growth Phase I clinical trial [33]

Colorectal Decrease PGE2 levels Phase I clinical trial [34]

Colon carcinoma Growth inhibition Randomized controlled trial [35]

Intestinal adenoma Diminution of adverse effects Randomized controlled trial [36]

Pancreatic Inhibition of toxicity profile of tumors Phase II clinical trial [37]

Pancreatic Diminution of NF-ϰB pathway Phase I clinical trial [38]

Prostate Increase survival Randomized controlled trial [39]

Prostate Enhanced antiproliferative efficacy and targeting Randomized controlled trial [40]

Ovarian carcinoma Increased cytotoxicity Randomized controlled trial [41]

Head and neck squamous cell carcinoma Decrease inflammatory mediators Randomized controlled trial [42]
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process of conjugation has been observed with
monoglucuronide via a β-glucuronidase. These two
mechanisms are responsible for the low solubility
and rapid metabolism of curcumin.
Even if some studies have related that pharmacokinet-

ics of curcumin have revealed poor bioavailability [44],
strong pharmacological and clinical applications have
been reported for curcumin [45]. Nevertheless, some of
possible ways to overcome this poor bioavailability can
be counteract by centering on these aspects. Strategies
can improve this bioavailability, such as phospholipid
complexes, liposomes and nanoparticles. Some polymers
have been used to prepare nanoformulations for curcu-
min drug delivery to improve its biological activity [46].
Biocompatible and biodegradable polymers are utilized
in drug delivery systems due to their lower risks of tox-
icity [47]. Advances in liposomes formulations results in
the improvement of therapy for drug-resistant tumors
and in the reduction of toxicity [48]. Liposomes consist
of phospholipid bilayer shells and aqueous cores result-
ing in a curcumin encapsulation by both hydrophobic
and hydrophilic components. Other curcumin delivery
systems are used, as nanogels [49], peptide and protein
formulations [50] and cyclodextrin complexes [51].

Chronic inflammation and oxidative stress in cancer process
Chronic inflammation
Numerous studies have presented that chronic inflamma-
tion leads to DNA damages and tissue injury [52]. Chronic
inflammation impairs cell homeostasis, metabolism to ini-
tiate cancer [53]. Moreover, DNA damages involved by
the chronic inflammation provides a point of origin for
the initiation of malignancy sites. Several studies have well
described the link between cancer and chronic inflamma-
tion [12]. Chronic inflammation activates ROS and react-
ive nitrogen species (RNS) production leading to DNA
damages [54]. Thus, genomic instabilities are initiated by
DNA damages and then cause cancer initiation. Numer-
ous sites of common pathogenic infections are related to
cancer initiation [55].
The immune system is also regulated by several in-

flammatory factors, such as tumor necrosis factor α
(TNF-α), interleukin-6 (IL-6), vascular endothelial
growth factor (VEGF) and tumor growth factor-β (TGF-
β) [56]. TNF-α expression leads to DNA damages and
cytokines stimulation (such as IL-17 [57]), which are re-
sponsible for tumor growth, invasion and angiogenesis
[58]. Interleukins, IL6 and IL-17, activate the signal
transducer and activator transcription (STAT) signaling
involved in the cancer process [59].
Chronic inflammation is also responsible for an in-

crease in cyclooxygenase 2 (COX-2, a prostaglandin-
endoperoxidase synthase). Numerous cytokines (TNF-α,
IL-1) activate COX-2 [60]. COX-2 stimulates ROS and

RNS production [61, 62]. Nuclear factor-ϰB (NF-ϰB)
stimulates several pro-inflammatory factors that activate
COX-2 and inducible nitric oxide synthase (iNOS) [53].
NF-ϰB is one of the major factors involved in chronic
inflammation in the cancer process [53]. Several studies
have shown that NF-ϰB stimulates the expression of
TNF-α, IL-6, IL-8, STAT3, COX-2, BCL-2 (B-cell lymph-
oma 2), metalloproteinases (MMPs), VEGF [53], and
thus the ROS production [63]. Il-6 and VEGF activates
STAT-3 pathway involved in proliferation, angiogenesis
and metastasis [64]. Several cancers presents an over-ac-
tivation of the STAT-3 pathway [65]. Furthermore,
iNOS, an enzyme catalyzing nitric oxide (NO), is acti-
vated during chronic inflammation and increases p53
gene mutations [60].

Oxidative stress
Oxidative stress is considered as an imbalance between
the production and elimination of ROS and RNS [11,
66]. ROS production is enhanced by cell damages from
oxidation and nitration of macromolecules, such as
RNA, DNA, proteins and lipids.
The NADPH oxidase (NOX) enzyme increases ROS

production through the oxidation of intracellular NADPH
to NADP+. Superoxide anion is then produced, and mo-
lecular oxygen phenomenon is reduced due to the transfer
of electron through the mitochondrial membrane.
ROS production has a key role in numerous signaling

involved in changes of microenvironment [67]. Thus, dys-
function in the respiratory chain of mitochondria is re-
sponsible for ROS production [68]. The inflammation
observed, where there are damages, involves the uptake of
oxygen leading in the release of ROS and its accumula-
tion. NF-ϰB, STAT, hypoxia-inducible factors (HIF) and
both activator protein-1 (AP-1) play a major role in the
stimulation of this process [53]. Moreover, in a vicious cir-
cle COX-2, TNF-α, IL-6, iNOS are induced by oxidative
stress [62]. NADPH-oxidase (NOX) is activated by
chronic inflammation resulting in oxidative stress and al-
teration of the nuclear signaling [69].

Interactions between oxidative stress and inflammation
(Fig. 1)
Several researches have demonstrated the mechanism by
which oxidative stress can lead to chronic inflammation,
which in turn could cause cancers [11]. The imbalance
caused by oxidative stress leads to damages in the signal-
ing in cells [66]. ROS play a central role both upstream
and downstream of the NF-κB and TNF-α pathways,
which are the main mediators of the inflammatory re-
sponse. The hydroxyl radical is the most harmful of all
the ROS. A vicious circle is observed between ROS and
these pathways. ROS are generated by NOX system.
Moreover, the proteins modified by ROS could result in
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initiation of the auto-immune response to stimulate
TNF-α and thus NOX [70]. Nuclear factor erythroid-2
related factor 2 (Nrf2) is mainly associated with oxida-
tive stress in inflammation [11]. Nrf2 is a transcription
factor which binds with the antioxidant response elem-
ent (ARE) [71]. The protective role of Nrf2 in cancer re-
lates to its capability to reduce inflammation and
oxidative stress [72]. Several studies have shown that
Nrf2 can play an anti-inflammatory role by regulating
MAPK (Mitogen-activated protein kinases), NF-ϰB, and
PI3K pathways [73]. Thus, Nrf2 may play a major role in
reducing oxidative damages [74]. Evidence also sug-
gested that mitochondrial dysregulation has a significant
role in the cancer mechanism [11].

The WNT pathway, chronic inflammation and oxidative
stress
Many studies have shown that canonical the WNT/β-ca-
tenin pathway stimulates inflammation [52]. Moreover, in-
fection pathogens activate the WNT/β-catenin pathway
enhancing thereby inflammation. ROS, stimulated by
NOX, activates the canonical WNT/β-catenin pathway
through the oxidization and inactivation of the nucleore-
doxin (a redox-sensitive regulator), thus stimulating the
cancer process [53]. ROS production leads to the activa-
tion of c-Myc, STAT, phosphatidylinositol-3-kinase (PI3K/
Akt) and the inhibition of PPARγ [75]. ROS production
stimulates the Akt signaling by inhibiting the phosphatase

and tensin homolog deleted from chromosome (PTEN)
[76]. Moreover, the canonical WNT/β-catenin pathway
may thus play a major role in cancer by modulating both
oxidative stress and inflammation [12].

The canonical WNT/β-catenin pathway: a major factor in
cancer process (Fig. 2)
WNT name is derived from Wingless Drosophila mela-
nogaster and its mouse homolog Int. The WNT pathway
is involved in several signaling and regulating pathways,
such as embryogenesis, cell proliferation, migration and
polarity, apoptosis, and organogenesis [77]. During the
adult stage, the WNT pathway is non-activated or silent.
However, during numerous mechanisms and patholo-
gies, such as inflammatory, metabolic and neurological
disorders, and cancers, the WNT pathway may become
dysregulated [78]. Recent studies have used the WNT
pathway for cell therapy-bioengineering processes [79].
WNT ligands are lipoproteins that activate specific co-

receptors. These WNT ligands activate the canonical
WNT pathway through the action of β-catenin. WNT li-
gands activate Frizzled (FZD) receptors and low-density
lipoprotein receptor-related protein 5 and 6 (LRP 5/6)
[80]. The complex formed by extracellular WNT ligands
and FZD/LRP5/6 stimulates intracellular Disheveled
(DSH). This activation inactivates the destruction com-
plex of β-catenin in the cytosol. Β-catenin accumulates
in the cytosol and then translocates into the nucleus.

Fig. 1 Relationship between ROS and chronic inflammation
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Nuclear β-catenin interact with T-Cell factor/lymphoid
enhancer factor (TCF/LEF) to stimulate gene transcrip-
tion, such as c-Myc STAT, PI3K/Akt, and cyclin D1 [81].
During the “off-state” of the WNT/β-catenin pathway,

WNT ligands do not bind FZD and LRP 5/6. The β-catenin
destruction complex, formed by AXIN, APC (adenomatous
polyposis coli) and GSK-3β (glycogen synthase kinase 3β),
phosphorylates β-catenin. Thus, phosphorylated β-catenin
is degraded into the proteasome.
Several WNT inhibitors inactivates the canonical WNT/

β-catenin pathway. GSK-3β is the major inhibitor of the
WNT pathway. GSK-3β is a neuron-specific intracellular
serine-threonine kinase that regulates several signaling
pathways such as inflammation, neuronal polarity and cell
membrane signaling [82]. GSK-3β inhibits β-catenin cyto-
solic stabilization and nuclear migration. Dickkopf (DKK)
and soluble Frizzled-related proteins (SFRP) are also WNT
inhibitors and binds FZD, LRP5 and LRP6 [83].

WNT and inflammation in cancers
Positive interplay between WNT/β-catenin and NF-ϰB
has been highlighted [84]. The activation of the WNT/β-
catenin leads to the enhancement of IϰB-α (nuclear factor

of kappa light polypeptide gene enhancer in B-cells inhibi-
tor, α) degradation and then NF-ϰB stimulation [85].
Stimulation of the target gene, CRD-BP (Coding Region
Determinant-Binding Protein, an RNA-binding protein),
by activated β-catenin stabilizes mRNA of βTrCP (Beta-
transducin repeat-containing protein) [86]. In colon can-
cer, activation of both βTrCP and CRD-BP is correlated
with the stimulation of the β-catenin and NF-ϰB, leading
proliferation and metastasis. In breast cancer, TLR3 activa-
tion stimulates β-catenin leading to over-activation of the
NF-ϰB pathway [87]. Moreover, the β-catenin and NF-ϰB
pathways stimulates each other in diffuse large B-cell
lymphomas [88]. The WNT/β-catenin pathway activates
COX-2, which then enhances the inflammatory response
[89]. E-cadherin and GSK-3β are downregulated in melan-
oma cells by β-catenin signaling [90]. Concomitant GSK-
3β and E-cadherin inhibition with cytosolic β-catenin ac-
cumulation leads to NF-ϰB-dependent iNOS expression
in hepatic cells [91]. The WNT/β-catenin pathway stimu-
lates its target TNFRSF19 in colon cancer, which leads to
the activation of the NF-ϰB signaling [92]. Nevertheless,
the observed synergistic interaction between β-catenin
and NF-ϰB depends on the β-catenin-TCF/LEF link [93].

Fig. 2 The canonical WNT/β-catenin pathway. WNT (−). Under resting condition, the cytoplasmic β-catenin is bound to its destruction complex,
consisting of APC, AXIN and GSK-3β. After CK-1 phosphorylates on Ser45 residue, β-catenin is further phosphorylated on Thr41, Ser37, and Ser33
residues by GSK-3β. Then, phosphorylated β-catenin is degraded into the proteasome. Therefore, the cytosolic level of β-catenin is kept low in
the absence of WNT ligands. If β-catenin is not present in the nucleus, the TCF/LEF complex cannot activate the target genes. DKK1 inhibits the
WNT/β-catenin pathway by binding to WNT ligands or LRP5/6. WNT (+). When WNT ligands bind to both FZD and LRP5/6, DSH is recruited and
phosphorylated by FZD. Phosphorylated DSH in turn recruits AXIN, which dissociates the β-catenin destruction complex. Therefore, β-catenin escapes
from phosphorylation and subsequently accumulates in the cytosol. The accumulated cytosolic β-catenin goes into the nucleus, where it binds to
TCF/LEF and activates the transcription of target genes
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NF-ϰB over-expression inactivates GSK-3β whereas it
stimulates β-catenin signaling [94, 95]. GSK-3β activation
results in the downregulation of TNF-α-induced NF-ϰB
stimulation in carcinoma cells [94]. IϰB is stabilized by
GSK-3β activation resulting in the downregulation of the
NF-ϰB pathway [95]. NF-ϰB signaling can modulate the
WNT/β-catenin pathway through the use of IKKα (IϰB
Kinase-α) and RelA [96]. IKKα stimulates β-catenin sig-
naling while IKKβ inhibits β-catenin signaling [97]. IKKα
activates the β-catenin/TCF/LEF link [98]. Activation of
IKKα leads to the cytosolic β-catenin accumulation result-
ing in GSK3-β and APC inactivation [99].

WNT and oxidative stress in cancers
The over-activated PI3K/Akt pathway observed in the
cancer process is stimulated by ROS production [100].
PTEN is the main inhibitor of the PI3K/Akt pathway
[101]. NADPH oxidase and superoxide dismutase
oxidize PTEN to inhibit it. Inhibition of PTEN leads to
an increase in Akt activity, which enhances the phos-
phorylation of GSK-3β. Thus, GSK-3β inactivated by Akt
does not bind β-catenin. Inactivation of PTEN activates
Akt and β-catenin [102]. Moreover, ROS production par-
ticipates in the stabilization of HIF-1α thereby activating
glycolytic enzymes [103]. The WNT/β-catenin pathway
stimulates HIF-1α by activating the PI3K/Akt pathway
[104]. Although this mechanism remains unclear, recent
studies have shown that ROS production stimulates the
WNT/β-catenin pathway [105]. In parallel, Akt [106]
and c-Myc [107] enhance ROS production.

PPARγ in cancers
The ligand-activated transcriptional factor peroxisome
proliferator receptor γ (PPARγ) is a member of the nu-
clear hormone receptor super family. It forms a hetero-
dimer with retinoid X receptor (RXR), leading to a
PPARγ-RXR complex which binds to specific peroxi-
some proliferator response element (PPRE) regions in
the DNA and activating several target genes involved in
fatty acid transport (FABP3), cholesterol metabolism
(CYP7A1, LXRα, CYP27), glucose homeostasis (PEPCK,
GyK) and lipid catabolism (SCD-1). This dimer interacts
with other coactivators proteins such as PGC-1α, and in-
duces specific genes expression [108]. Glucose homeo-
stasis, insulin sensitivity, lipid metabolism, immune
responses, cell fate and inflammation are regulated by
PPARγ activation [109]. Circadian variations of blood
pressure and heart rate are regulated by PPARγ through
its action on Bmal1 [27]. PPARγ modulates the expres-
sion of several genes involved in inflammation, and it
decreases the activity of inflammation-related transcrip-
tion factors such as NF-ϰB [110]. Several studies have
shown decreased PPARγ expression in association with
chronic inflammation in cancers [12].

Interplay between PPARγ and the WNT/β-catenin pathway
in cancers
The action of PPARγ agonists remains unclear in cancer
cells even if their role is well understood in the regula-
tion of differentiation and stemness programs [111]. In
physiological cells, PPARγ inhibits tumorigenesis and
WNT signaling by targeting phosphorylated β-catenin at
the proteasome through a process that involves its ca-
tenin binding domain within PPARγ. In contrast, onco-
genic β-catenin counteracts proteasomal degradation by
downregulating PPARγ activity, which requires its TCF/
LEF binding domain [112]. In adipocyte cells, PPARγ
leads to increased differentiation and a reduction in pro-
liferation by targeting the WNT/β-catenin pathway.
PPARγ binds with GSK3-β to activate the differentiation
factor C/EBPα leading to the production of adiponectin
[113]. PPARγ activation downregulates β-catenin at both
the mRNA and protein levels to induce differentiation
[114]. In metastatic prostate cancer LnCaP cells, PPARγ
decreases the WNT pathway by affecting phosphorylated
β-catenin in the proteasome [112, 115]. In colorectal
and gastric cancer cells, PPARγ inhibits β-catenin ex-
pression, subcellular localization and downstream effec-
tors, leading to the modulation of numerous genes, such
as telomerase reverse transcriptase and Sox9, both of
which are involved in cell differentiation and the survival
phenomenon [116]. PPARγ agonists, by decreasing the
WNT/β-catenin pathway, could be used in combination
with other drugs such as inhibitors of tyrosine kinases
[117], Akt [118], and MAPK cascades to maximize the
antitumor and pro-differentiating effect.

Circadian rhythms in cancers
Circadian rhythms: definition (Fig. 3)
Numerous biological processes in the body are regulated
by the circadian “clock” (circadian locomotors output cy-
cles kaput). The circadian clock is in the hypothalamic
suprachiasmatic nucleus (SCN). CRs are endogenous and
entrainable free-running periods that last approximately
24 h. Numerous transcription factors are responsible for
the control of CRs. These are called circadian locomotors
output cycles kaput (Clock), brain and muscle aryl-hydro-
carbon receptor nuclear translocator-like 1 (Bmal1),
Period 1 (Per1), Period 2 (Per2), Period 3 (Per3), and
Cryptochrome (Cry 1 and Cry 2) [119, 120]. These tran-
scription factors are subject to positive and negative self-
regulation mediated by CRs [121, 122]. Clock and Bmal1
heterodimerize and thus initiate the transcription of Per1,
Per2, Cry1 and Cry2 [123]. The Per/Cry heterodimer can
downregulate its stimulation through negative feedback. It
translocates back to the nucleus to directly inhibit the
Clock/Bmal1 complex and then repress its own transcrip-
tion [123]. The Clock/Bmal1 heterodimer also stimulates
the transcription of retinoic acid-related orphan nuclear

Vallée et al. Journal of Experimental & Clinical Cancer Research          (2019) 38:323 Page 6 of 16



receptors, Rev-Erbs and retinoid-related orphan receptors
(RORs). Through positive feedback RORs can stimulate
the transcription of Bmal1, whereas Rev-Erbs can inhibit
their transcription through negative feedback [123].

Circadian rhythms disruption in cancers
Epidemiological and fundamental evidence supports the
idea of linking circadian disruption with cancer [26]. DNA
repair, apoptosis and cell cycle regulation follow circadian
rhythms in humans [124]. Disruption of the CRs is associ-
ated with dysregulation in cell proliferation and thus the
initiation of cancer [125]. Clock/Bmal1, Per1 and Per2
maintain the rhythmic pattern of cell proliferation and re-
pair of DNA damage [126]. Bmal1 over-expression has
been observed in cell growth of NIH 3 T3 cells [127].
Metastatic cancers present high levels of Clock or Bmal1
genes [128]. Clock over-expression is often associated with
cell proliferation in colorectal carcinoma cells [129].
Bmal1 upregulation is found in certain types of pleural
mesothelioma while Bmal1 knockdown is associated with
reduced cell growth and induced apoptosis [130]. Bmal1 is
considered as an attractive target in leukemia cells [131].

Circadian rhythms and inflammation
Melatonin has been used in the treatment of chronic
bowel inflammation resulting in decreasing inflamma-
tion through inhibition of COX-2 and iNOS [132].
Moreover, melatonin can act on iNOS and COX-2 by
suppressing p52 acetylation and transactivation [133].
Melatonin inhibits NF-ϰB and COX-2 in murine macro-
phage-like cells [134]. An anti-inflammatory response of
melatonin has been observed through a decrease in NF-
κB activity [135]. Melatonin downregulates the nuclear
translocation of NF-κB, leading to an enhancement of
anticancer effects in lung cancer [136].

Circadian rhythms and oxidative stress
Recent studies have indicated that the hypoxic response in
cancer could be directly controlled by the circadian
rhythm Clock/Bmal1 [137]. In a similar way, blood oxygen
levels present daily rhythms influenced by clock genes
[138]. Metabolic dysregulation in cancers may results of
disruption of Bmal1 in a hypoxic-dependent way [139].
Considerable evidence connects circadian disruption with
hormone-dependent diseases, such as breast and prostate
cancers. One of the main factors is melatonin, a hormone
produced by the pineal gland in a circadian manner to
regulate sleep [140]. In the mitochondria, melatonin is
linked to the regulation of oxidative stress [141]. Mela-
tonin stimulates the activity of glutathione peroxidase and
glutathione reductase [142]. Moreover, melatonin directly
regulates the mitochondrial respiratory chain, which mod-
ulates ATP production [141]. Furthermore, alteration of
melatonin secretion by sleep disruption could increase
ROS and RNS production [143].

Interaction between the WNT/β-catenin pathway and circadian
rhythms (Fig. 4)
WNT/β-catenin pathway is the downstream target of
the RORs control factors and has several putative Bmal1
clock-binding sites within its promoter [144]. Through
such interactions, circadian genes can regulate cell cycle
progression through the WNT pathway [145]. The
WNT pathway can be inhibited by a Bmal1 knockdown
[146]. Expression levels of WNT-related genes in wild-
type mice are higher than those observed in Bmal1
knockdown mice [147]. Cell proliferation and cell cycle
progression are controlled by Bmal1 through the activa-
tion of the canonical WNT/β-catenin pathway [148].
Bmal1 enhances β-catenin transcription, inhibits β-ca-
tenin degradation and downregulates GSK-3β activity
[149]. Per2 degradation induced by β-catenin increases

Fig. 3 Circadian clock genes. The clock consists of a stimulatory loop, with the Bmal1/Clock heterodimer stimulating the transcription of Per and
Cry genes, and an inhibitory feedback loop with the Per/Cry heterodimer translocating to the nucleus and repressing the transcription of the Clock
and Bmal1 genes. An additional loop involves the RORs and RevErbs factors with a positive feedback by ROR and a negative feedback by RevErbs
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circadian disruption in the intestinal mucosa of Apc-
Min/+ mice [150].
In physiological conditions, the core circadian genes

work in accurate feedback loops and keep the molecular
clockworks in the SCN. They allow the regulation of
peripheral clocks [121]. Per1 and Per2 maintain cells cir-
cadian rhythm and regulate cell-related genes expres-
sion, including c-Myc, so as to sustain the normal cell
cycle [151]. Levels of mRNAs and proteins of circadian
genes oscillate throughout the 24 h’ period [121].

Action of PPARγ on the circadian rhythms (Fig. 4)
PPARγ acts directly with the core clock genes and pre-
sents diurnal variations in liver and blood vessels [27]. In
mice, impaired diurnal rhythms are induced by the inhib-
ition of PPARγ [152]. PPARγ agonists can regulate Bmal1
and then the formation of the heterodimer Clock/Bmal1
[27] and can target Rev-Erb [153]. Downregulation of the
clock-controlled gene Nocturin inhibits PPARγ oscilla-
tions in the liver of mice fed on a high-fat diet. In physio-
logical conditions, nocturin binds PPARγ to improve its
transcriptional activity [154]. PPARγ deletion alters the
circadian function of 15-Deoxy-D 12,14-prostaglandin J2
(15-PGJ2) [152]. The partner of PPARγ, RXR, interacts
with Clock protein in a ligand-dependent manner and
then blocks Clock/Bmal1 heterodimer formation and
transcriptional activity [155]. PPARγ acts on the mamma-
lian clock to control energy metabolism. Circadian metab-
olism is directly controlled by PPARγ [152]. Retinoic acid
receptor-related orphan receptor gamma t (ROR gammat)

is considered as a major transcriptional factor for Th17
differentiation [156]. PPARγ can influence the function of
Th cells clones [157]. PPARγ agonists inhibits Th17 differ-
entiation through the inhibition of ROR gammat induc-
tion [158]. CD4+ T cells fail to express ROR gammat
under the action of PPARγ agonists [159].

Curcumin in cancers
Curcumin, an angiogenesis and metastasis inhibitor (Fig. 5)
Numerous studies have shown that curcumin inhibits the
precursors of angiogenesis in cancers [160]. Chemical ago-
nists of curcumin also induces the suppression of angio-
genesis [16]. Curcumin downregulates the osteopontin
(OPN, a secreted phosphoprotein 1)-induced cells leading
to the downregulation of VEGF signaling and then the
NF-ϰB/AT-4-dependent pathway [161]. Moreover, tetra-
hydrocurcumin, an analog of curcumin, can decrease the
expression of several targets, such as COX-2, VEGF,
MMP-9 [162].
The complex process of metastasis involves numerous

alterations and degradations of the ECM by MMP which
leads to the over-expression of chemokine receptors, in-
flammation and then angiogenesis. Curcumin inhibits
cell migration in colorectal cancer by inhibiting MMP-9
activity and NF-ϰB and in the same time by activating
AP-1 [163]. Furthermore, in prostatic cancer, cell migra-
tion is inhibited by curcumin which acts by decreasing
inflammatory environment through the abolition of pro-
inflammatory cytokines [164].

Fig. 4 Interactions between PPARγ, WNT pathway and circadian rhythms in cancer. Dysregulation of melatonin and nocturin decreases the expression
of PPARγ in cancer. Decreased PPARγ dysregulates Bmal1/Clock heterodimer. Decreased PPARγ expression directly activates the formation of the
heterodimer Bmal1/Clock and β-catenin cytosolic accumulation but inhibits the activity of GSK3, the main inhibitor of the WNT/β-catenin pathway.
Bmal1/Clock knockout also decreases GSK3 activity and activates the WNT/β-catenin pathway and its downstream gene c-Myc through the activation
of the heterodimer Per/Cry. The activation of the WNT/β-catenin pathway by the cytosolic accumulation of the β-catenin and the activation of c-Myc
lead to cancer initiation (oxidative stress and chronic inflammation)
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Curcumin inhibits the canonical WNT/β-catenin pathway (Fig. 5)
Cell-cycle is arrested in G2/M step in medulloblastoma
cells by using curcumin inhibiting the WNT/β-catenin
pathway [165]. Curcumin directly stimulates GSK-3β ac-
tivity leading to the loss of nuclear β-catenin level and
thus the inactivation of cyclin D1. In osteosarcoma cells,
curcumin analogs disrupt β-catenin nuclear translocation
[166]. In the 43-existing analog of curcumin, 6 analogs
present a more potent activity compared to curcumin in
the inhibition of the WNT pathway. Curcumin downregu-
lates the 12–0-tetradecanoylphorbol-13-acetate (TPA)-in-
duced WNT pathway in xenograft mice models [167].
Curcumin and its analog (CHC007) inhibit β-catenin/
TCF/LEF complex in both colon, gastric, intestinal cancer
cells [168]. Moreover, curcumin increases GSK-3β mRNA
level in DAOY cells of medulloblastoma and thus downre-
gulates the WNT/β-catenin pathway [169]. Through the
inhibition of the WNT/β-catenin pathway, curcumin in-
hibits cyclin D1 and participates to the repression of the
development and proliferation of gliomas [169].

Curcumin inhibits Akt pathway (Fig. 5)
In Burkitt’s lymphoma cells, curcumin increases radiation-
induced apoptosis through the inhibition of the PI3K/Akt

pathway [170]. Moreover, the efficacy of curcumin is
equivalent to Akt-specific inhibitors, such as LY294002 for
PI3K and SH-5 for Akt. In prostatic cancer, curcumin dir-
ectly targets the PI3K/Akt pathway [171]. The combin-
ation of curcumin with the PI3K-specific inhibitor
LY294002 has shown a beneficial effect by increasing the
inhibition of Bcl-2 protein [172].

Curcumin stimulates PPARγ (Fig. 5)
Few studies have reported the PPARγ agonist role of
curcumin. However, curcumin is known to induce apop-
tosis, and to inhibit cell proliferation and inflammation
by stimulating PPARγ [173]. Through the activation of
PPARγ, curcumin inhibits tumor growth by downregu-
lating cyclin D1 and EGFR expression [174]. In parallel,
the inhibition of EGFR signaling by curcumin is associ-
ated with the increase of PPARγ expression in hepatic
stellate cell of rats [175].

Curcumin and inflammation (Fig. 6)
Several studies have suggested that curcumin can allevi-
ate oxidative stress and inflammation through the Nrf2-
keap1 pathway [176]. In various cancer cells, curcumin
decreases pro-inflammatory signaling related and then

Fig. 5 Curcumin actions on the WNT pathway in cancer therapy. Curcumin modulates cancer progression through the regulation of several
signaling pathways. Attachment of ligands to their corresponding receptors leads to the activation of downstream pathways, including PI3K,
STAT, caspase. These signaling pathways have a major role in cell survival, proliferation, apoptosis, angiogenesis, migration and metastasis. The
decrease of Akt pathway by curcumin leads to the activation of p53 signaling and Bad-mediated apoptotic pathway contributing to cancer cell
survival. Moreover, the downregulation of Akt pathway is associated with the inhibition of NF-ϰB signaling pathway, responsible for the inflammation.
By decreasing WNT pathway, curcumin leads to the activate GSK-3β activity which induces β-catenin phosphorylation and then its degradation. The
inhibition of the WNT pathway is associated with the control of proliferation and angiogenesis. The increase of caspase pathway by curcumin leads to
apoptosis whereas curcumin decreases the STAT3 signaling pathway to counteract migration and proliferation. The activation of PPARγ by curcumin
leads to the downregulation of the WNT pathway and the control of inflammation. WNT pathway downregulation results in the decrease of PI3K and
STAT3 signaling pathways but the increase of caspase
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inhibits the activation of TNF-α [177]. Moreover, curcumin
decreases the release of different interleukins by acting on
the NF-κB pathway. Curcumin acts as a stress response
mimetic which leads to many compounds of the protein
homeostasis network [178]. Curcumin present several clin-
ical therapeutic potentials in many type of cancer cells
[179]. Curcumin acts as a modulator of cellular pathways
on multiple targets which control tumor growth, angiogen-
esis, metastasis, inflammation, and apoptosis [180].
Cancer process is responsible for the activation of the

NF-κB pathways leading to the over-expression of pro-in-
flammatory factors, including COX-2, iNOS, cytokines,
TNF-α [181]. Curcumin presents an anti-proliferative role
thought the inhibition of the NF-κB and its downstream
genes, such as p53, VEGF, Bcl-2, COX-2, NOS, cyclin D1,
TNF-α, interleukins and MMP-9) [182]. Curcumin is con-
sidered as an interesting therapeutic way in melanoma
cells through the inhibition of NF-ϰB, STAT3 and COX-2
pathways [183]. Curcumin inhibits pro-inflammatory cy-
tokines CXL1 and CXCL2 to decrease the formation of
prostatic and breast metastases [184]. Curcumin inhibits
the HPV-16-induced viral oncogenesis in oral tumor cell
lines. Curcumin induces the blockage of the DNA-binding
capacity of NF-ϰB through the alteration of its subunits
from p50/p50 to p50/p65. The suppression of the NF-ϰB
activity by curcumin is associated with the downregulation

of AP-1 families of transcription factors [185]. Moreover,
in mouse melanoma cells, curcumin induces the activation
of the caspase-3 and the dose-dependent inhibition of the
NF-ϰB activity and thus the inhibition COX-2 and cyclin-
D1 expression [186].

Curcumin and oxidative stress (Fig. 6)
Recent findings have shown that curcumin presents anti-
inflammatory effects mediated by the inactivation of the
NF-ϰB pathway [187], but rather on its oxidized products
[188]. Oxidative metabolites of curcumin inhibit IKK.
Treatment with N-acetylcysteine, a biosynthetic precursor
of glutathione (GSH), the effect of curcumin was de-
creased, probably due to GSH-mediated scavenge and
thus inactivating of curcumin-derived electrophile [188].
Oxidative stress, observed in cancer process, is based on
the hypothesis of chronic inflammation [189]. The recent
anti-tumorigenic role of curcumin in human leukemic
cells may confirmed the presence of oxidized curcumin
metabolites [188]. Indeed, curcumin is known to be a nat-
ural component presenting antioxidant effects [190]. Due
to its chemical structure, curcumin is indeed a scavenger
of ROS and RNS [191]. In addition, curcumin is a lipo-
philic compound, which makes it an efficient collector of
peroxyl radicals. Curcumin controls the activity of GSH,
catalase, and SOD enzymes activated in the neutralization

Fig. 6 Beneficial role of curcumin in cancer. (1) Curcumin reduces oxidative stress; (2) Curcumin reduces chronic inflammation; (3) Curcumin
inhibits Akt pathway activity; (4) Curcumin downregulates WNT pathway and its target genes, inhibits Bcl-2 and activates GSK-3beta; (5) Curcumin
inhibits NF-ϰB and COX-2

Vallée et al. Journal of Experimental & Clinical Cancer Research          (2019) 38:323 Page 10 of 16



of free radicals. Curcumin decreases ROS-generating en-
zymes such as lipoxygenase/cyclooxygenase and xanthine
hydrogenase/ oxidase [192]. Inhibition of oxidative-stress
induced DNA damage has been shown in curcumin
treated mouse fibroblast cells [193]. In the leukemic cells,
curcumin directly targets Nrf2 to downregulate ROS pro-
duction [194].

Curcumin and circadian rhythms
Few studies have investigated the role of curcumin with
circadian clock in cancers [195]. However, Bmal1 ap-
pears to be a target of curcumin through the stimulation
of PPARγ [27, 196]. Curcumin activates sirtuin 1 (SIRT1)
which regulates circadian rhythms. SIRT1 indirectly
modulates circadian clock through the downregulation
of NF-ϰB [197], the inhibition of nuclear localization of
Per2 [198] and the binding to Clock/Bmal1 [199].

Relevance of “chronotherapy” in cancer clinical therapy
The numerous interactions between clock dysregulation
and cancer underline the interest of circadian thera-
peutic actions [26]. The temporal peak of cell activity
could be targeted by pharmacological drugs used at an
optimal time of day. Few studies have focused on the po-
tential role of WNT and PPARγ with circadian clocks in
cancer development. Nevertheless, interest in the associ-
ation between PPARγ agonists and melatonin in cancer
therapy is not new [200]. In cultured cells, the addition
of melatonin with a PPARγ agonist (such as troglitazone)
is associated with a significant reduction in cell numbers
[201]. Moreover, other studies have shown a potent
apoptotic effect of a combination of melatonin with
PPARγ agonists in breast cancer cells [202, 203]. In par-
allel, recent studies have shown that melatonin could in-
hibit WNT pathway expression [204, 205].
In mouse ovaries, melatonin administration protects

against ROS production and mitochondrial damage
[206]. In colorectal cancer, the combination of 5-fluoro-
uracil and melatonin is associated with the inhibition of
cell proliferation through suppression of the PI3K/Akt
pathway, NF-ϰB pathway and nitric oxide synthase sig-
naling [207]. Moreover, melatonin inhibits GSK3-β to
stop invasion in breast cancer cells [208]. The link be-
tween carcinogenesis and the circadian clock remains
complex and difficult to unravel. Strong evidence sug-
gests the involvement of the circadian clock in cancer
development. Numerous molecular pathways are dy-
namically circadian, such as the WNT/β-catenin path-
way and PPARγ. Thus, the time at which these pathways
are targeted may be critical. Curcumin, by acting as
PPARγ agonists and focusing on the WNT/β-catenin
pathway, should be used in concordance with the circa-
dian clock genes, and therefore administered at the
optimum time of day. Further studies should focus on

the importance of the day/night cycle in cancer therapy
and the circadian profiles of cancer cells.

Conclusion
Cancers are associated with chronic inflammation, oxida-
tive stress and circadian clock disruption. The over-activa-
tion of the WNT/β-catenin pathway increases these
pathological phenomena. In cancers, the WNT/β-catenin
pathway is upregulated whereas PPARγ is downregulated.
These two signaling pathways act in opposing manners
and this could explain their unidirectional profile observed
in cancers. Moreover, in cancers, the disruption of circa-
dian clock leads to the increase of the WNT/β-catenin
pathway and to decrease of PPARγ expression. The
strongly link between circadian rhythms, chronic inflam-
mation and oxidative stress appears to be a major mech-
anism underlying cancers. The use of curcumin, which
acts as PPARγ agonists, could be interesting in the reduc-
tion of both chronic inflammation and oxidative stress,
and in the control of circadian clock by inhibiting the
WNT/β-catenin pathway. Due to the considerable impact
of cancers on mortality and morbidity rates worldwide, it
would appear of the utmost importance to better under-
stand the action of curcumin in cancers and particularly
its role in the inhibition of the major signaling system
known as the WNT/β-catenin pathway.
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