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A B S T R A C T

Background: Age-related macular degeneration (AMD) is one of the leading causes of vision loss in the elderly
population. The application of artificial intelligence (AI) provides convenience for the diagnosis of AMD. This
systematic review and meta-analysis aimed to quantify the performance of AI in detecting AMD in fundus
photographs.
Methods: We searched PubMed, Embase, Web of Science and the Cochrane Library before December 31st,
2020 for studies reporting the application of AI in detecting AMD in color fundus photographs. Then, we
pooled the data for analysis. PROSPERO registration number: CRD42020197532.
Findings: 19 studies were finally selected for systematic review and 13 of themwere included in the quantita-
tive synthesis. All studies adopted human graders as reference standard. The pooled area under the receiver
operating characteristic curve (AUROC) was 0.983 (95% confidence interval (CI):0.979�0.987). The pooled
sensitivity, specificity, and diagnostic odds ratio (DOR) were 0.88 (95% CI:0.88�0.88), 0.90 (95%
CI:0.90�0.91), and 275.27 (95% CI:158.43�478.27), respectively. Threshold analysis was performed and a
potential threshold effect was detected among the studies (Spearman correlation coefficient: -0.600,
P = 0.030), which was the main cause for the heterogeneity. For studies applying convolutional neural net-
works in the Age-Related Eye Disease Study database, the pooled AUROC, sensitivity, specificity, and DOR
were 0.983 (95% CI:0.978�0.988), 0.88 (95% CI:0.88�0.88), 0.91 (95% CI:0.91�0.91), and 273.14 (95%
CI:130.79�570.43), respectively.
Interpretation: Our data indicated that AI was able to detect AMD in color fundus photographs. The applica-
tion of AI-based automatic tools is beneficial for the diagnosis of AMD.
Funding: Capital Health Research and Development of Special (2020�1�2052).
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Age-related macular degeneration (AMD) is an ocular disorder
that affects the macular region of the retina. With increasing life-
spans, AMD has emerged as one of the leading causes of vision
impairment in the elderly population in both developing and devel-
oped countries. [1] By 2020, the number of people with AMD is pro-
jected to be approximately 196 million globally, and the number will
increase to 288 million by 2040, [2] representing a major public
health issue with substantial socioeconomic impacts.
Early AMD includes clinical signs such as drusen and abnormali-
ties of the retinal pigment epithelium (RPE), while advanced AMD
presents neovascular (also called wet or exudative AMD) or central
geographic atrophy (also called dry or nonexudative AMD). Advanced
AMD often leads to the loss of central visual acuity, which causes con-
siderable impacts on quality of life. [3,4] The pooled global preva-
lence of any AMD, early AMD, and advanced AMD in the population
aged 45�85 years old is 8.69%, 8.01%, and 0.37%, respectively. [2] It
has also been estimated that the 15-year incidence was 22.7% for
early AMD and 6.8% for advanced AMD in subjects aged more than 49
years old. [5] Due to the high incidence and risk, it is urgent to
improve the efficiency of the screening and diagnosis of AMD.

Artificial intelligence (AI) is a branch of computer science that
aims to build machines to mimic brain function, which has attracted
considerable global interest. [6] Machine learning is a kind of AI
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Research in context

Evidence before this study

Artificial intelligence (AI) has shown high prospects in biomedi-
cal science, particularly in the diagnosis of ocular diseases.
Some AI -based investigations have focused on the detection of
age-related macular degeneration (AMD) from color fundus
images, while the results have been inconsistent due to various
confounding factors, such as databases, methods, and sample
sizes. The assessment of AI performance has significant clinical
and public health impacts for primary prevention and policy
making.

Added value of this study

In this systematic review and meta-analysis, we searched elec-
tronic databases for studies reporting the application of AI in
detecting AMD from retinal images. 19 studies were selected
for systematic review and 13 of them were included in the
meta-analysis. Reference standard was labeled by human
graders in all included studies. The pooled area under the
receiver operating characteristic curve (AUROC), sensitivity,
specificity, and diagnostic odds ratio (DOR) with 95% confi-
dence intervals (CIs) were 0.983 (95% CI: 0.979�0.987), 0.88
(95% CI: 0.88�0.88), 0.90 (95% CI: 0.90�0.91), and 275.27 (95%
CI: 158.43�478.27), respectively. The main cause for the high
heterogeneity among the studies was threshold effects (Spear-
man correlation coefficient: �0.600, P = 0.030). Age-Related
Eye Disease Study (AREDS) database was the most commonly
used data set for the development and validation of AI models.
For studies applying convolutional neural networks (CNNs) in
AREDS database, the pooled AUROC, was 0.983 (95% CI:
0.978�0.988).

Implications of all the available evidence

Our study found that AI is promising in detecting AMD from
color fundus photographs. The application of AI-based auto-
matic tools can provide substantial benefits for the screening
and diagnosis of AMD. However, since the diagnostic power of
the AI-based algorithms decreases in larger data sets, caution is
needed when applying these algorithms in a larger population
under different settings and conditions.
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process in which the machine writes its programming and learns to
achieve a task on its own. [7] Deep learning (DL) is a subset of
machine learning and is based on the framework of an artificial neu-
ral network (ANN), which is composed of multiple inputs and a single
output. The neuron between the input and output layers (known as
hidden layers) receives multiple signals from the dendrites and sends
a single stream of action through the axon. [8] Each hidden layer can
learn different features for the stimuli, which allows the model to
complete complex tasks. Among the various DL architectures, convo-
lutional neural networks (CNNs) show the best performance in ana-
lyzing imaging data. [9] CNNs include special layers that apply a
mathematical filtering procedure called convolution, which makes
each neuron process data only for its receptive field and response to
visual stimuli. [9] The development of CNNs plays a critical role in
bringing DL into the spotlight.

To date, AI has shown high prospects in biomedical science, par-
ticularly in the diagnosis of ocular diseases. AI techniques have been
applied for detecting diabetic retinopathy (DR. . .), AMD, retinopathy
of prematurity (ROP), glaucoma, and papilledema from multimodal-
ity imaging, including fundus photographs, optical coherence tomog-
raphy (OCT), and fundus fluorescence angiography (FFA). [10-14]
Although some investigations have tried to assess the performance of
AI in detecting AMD, the results have been inconsistent due to vari-
ous confounding factors, such as databases, methods, and sample
sizes. The assessment of AI performance has significant clinical and
public health impacts for primary prevention and policy making.
Therefore, we performed this systematic review and meta-analysis to
quantify the performance of AI for the detection of AMD in color fun-
dus photographs.

2. Methods

2.1. Literature search

The protocol of the meta-analysis was registered in PROSPERO
website (University of York, York, UK) with a registration number of
CRD42020197532. We searched PubMed, Embase, Web of Science
and the Cochrane Library using the following keywords with various
combinations: “deep learning”, “DL”, “artificial intelligence”, “AI”,
“algorithm”, “neural networks”, “CNN”, “age-related macular degen-
eration”, “macular degeneration”, “geographic atrophy”, and “AMD”.
The searches were from inception to December 31st, 2020, and were
limited to human studies.

2.2. Study selection

The inclusion criteria were as follows: (1) studies reporting an
outcome of the AI-based algorithm and AMD detection; (2) studies
presenting a clear definition of AMD; (3) studies providing clear
information about the database and number of images in various
data sets; (4) studies including more than 50 fundus photographs for
validation; (5) studies providing information on evaluation indices,
such as sensitivity (SEN), specificity (SPE), accuracy, and area under
the curve (AUC); (6) studies describing the algorithms and proce-
dures used in AMD detection; (7) studies presenting clear informa-
tion of the reference standard; and (8) English-language literature
only.

The exclusion criteria were as follows: (1) ongoing investigations
or unpublished studies; (2) studies applying multimodality imaging,
such as OCT and FFA; (3) publication forms including reviews, meta-
analyses, comments, letters, and editorials; and (4) no access to
obtain the original data. The articles were independently screened
and selected by two researchers (LD, RHZ), and any disagreements
between them were resolved through consensus.

2.3. Quality assessment

The articles that passed the primary screening were then
reviewed by the two reviewers (LD, RHZ) individually. They indepen-
dently assessed the quality of the studies according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement. [15] Quality Assessment of Diagnostic Accuracy Studies-2
(QUADAS-2) tool was applied for the risk of bias assessment of the
included studies. [16] The QUADAS-2 scale consists of 4 aspects for
risk of bias including patient selection, index test, reference standard,
and flow & timing as well as 3 domains for applicability concerns
including patient selection, index test, and reference standard. The
risk of bias was classified into 3 categories (i.e. low, high, and unclear
risk bias). Studies with low quality or with evident defects in design
and procedure were excluded from this survey. Any disagreements
between the two authors were resolved by discussion or judged by
senior researchers (WBW).

2.4. Data extraction

The following data were extracted: (1) the basic characteristics of
the included studies and participants, including the methods,



Table 1
Definition of referable AMD and non-referable AMD in this study.

Category Stage Definition Classification

1 No AMD No drusen or only small drusen �63mm, and no pigment abnormalities Non-referable AMD
2 Early AMD Medium drusen >63mm and �125 mm, and no pigment abnormalities
3 Intermediate AMD Large drusen >125 mm or any pigment abnormalities Referable AMD
4 Advanced AMD Neovascular AMD or geographical atrophy

AMD: age-related macular degeneration.

Fig. 1. Flow diagram of literature selection.
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algorithms, databases, sample sizes, outcomes, and procedures; and
(2) the evaluation indices of the algorithms, including the number of
true positive (TP), true negative (TN), false positive (FP), and false
negative (FP) outcomes as well as the SEN, SPE, accuracy, and AUC.

2.5. Statistical analysis

The pooled quantitative analysis, threshold analysis, meta-regres-
sion, and subgroup analysis were performed using Meta-Disc 1.4
software (U. de Bioestadística, Madrid (Espa~na)). The flow diagram
for literature selection and quality assessment for the included stud-
ies were performed using RevMan 5.3 software (Cochrane Collabora-
tion, Denmark). Some included studies adopted referable AMD as an
outcome, which was defined as intermediate and advanced AMD
(Table 1). The pooled area under the receiver operating characteristic
curve (AUROC), SEN, SPE, positive likelihood ratio (LR+), and negative
likelihood ratio (LR-) were calculated with 95% confidence intervals
(CIs) and were presented in forest plots. The diagnostic odds ratio
(DOR) was calculated to evaluate how much greater the odds of hav-
ing AMD were for the participants with a positive test result than for
those with a negative test result. The statistical heterogeneity among
studies was analyzed using the chi-squared test and was presented
as the I2 statistic (less than 50%: low heterogeneity; 50%�75%: mod-
erate heterogeneity; and more than 75%: high heterogeneity). Fixed-
effects models were used when the heterogeneity was lower than
50%; otherwise, random-effects models were applied. Threshold
analysis was applied to test whether the heterogeneity resulted from
the threshold effects. [17] Meta-regression with the backward
method was used to detect the cause of heterogeneity. Then, sub-
group analysis was performed according to the various methods
(CNN and support vector machine (SVM)), number of images, defini-
tion of AMD, publication year, and regions (Asian countries and the
western countries). Two-tailed P<0.05 was considered statistically
significant.

2.6. Role of funding source

The funder of the study had no role in study design, data collec-
tion, data analysis, data interpretation, and writing of the manuscript.
The corresponding author had full access to all study data and had
final responsibility for the decision to submit for publication.

3. Results

3.1. Study selection

Fig. 1 shows the literature selection process. At the initial
searches, a total of 1123 articles were potentially eligible for inclusion
(432 from PubMed, 373 from Embase, 317 from Web of Science, and
1 from the Cochrane Library). After primary screening and the
removal of duplicates, 109 potentially eligible articles were selected.
After full-text reviews, 19 eligible studies with supervised learning
approaches were finally selected for inclusion in the systematic
review, [18-36] and 13 of them were included in the quantitative
synthesis. [18-30]
3.2. Study characteristics

The basic characteristics of the included studies were presented in
Table 2. These studies included more than 1.2 million color fundus
images for training, validation, and testing. CNN was applied in 12
studies, SVM was used in 6 studies, ANN was used in 1 study. And 1
study applied both SVM and random forest (RF). The Age-Related Eye
Disease Study (AREDS) database was the most commonly used data-
base and was adopted in 9 studies. [37] Referable AMD was regarded
as the primary outcome in 8 investigations, and AMD severity with
various classes was evaluated in 8 studies. In addition, all studies
adopted human graders as the reference standard.
3.3. Quality assessment

In the present study, we also evaluated the risk of bias of the
included studies based on the QUADAS-2 tool (Fig. 2). Ten included
studies were of high quality with low risk of bias and applicability
concerns. The risk of bias for patient selection was unclear for 8 stud-
ies, and only 1 study had an unclear risk of bias for the reference stan-
dard. High risk of bias or applicability concerns was not detected in
any included study



Table 2
Basic characteristics of the included studies.

First author Publication
year

Country Database Total images Method Outcome Classification Performance

Keenan [18] 2019 United States AREDS 59,812 CNN Dry AMD Disease/no disease ACC: 0.965;
AUC: 0.976

Zapata [19] 2020 Spain Optretina 306,302 CNN AMD Disease/no disease ACC: 0.863;
AUC: 0.936

Zheng [20] 2012 United Kingdom ARIA, STARE 258 SVM AMD Disease/no disease ACC: 0.996
Kunumpol [21] 2017 Thailand STARE 106 ANN AMD Disease/no disease ACC: 0.989
Mookiah [22] 2014a Singapore Private dataset 540 SVM Dry AMD Disease/no disease ACC: 0.937
Keel [23] 2019 Australia LabelMe 56,113 CNN Wet AMD Disease/no disease ACC: 0.965;

AUC: 0.995
Gonz�alez-

Gonzalo [24]
2019 The Netherlands 1. DR. . .-AMD

2. AREDS
134,421 CNN Referable AMDa Disease/no disease ACC1: 0.880;

AUC1: 0.949
ACC2: 0.859;
AUC2: 0.927

Burlina [25] 2017a United States AREDS 133,821 CNN Referable AMD Disease/no disease ACC: 0.916;
AUC: 0.96

Burlina [26] 2017b United States AREDS 5664 CNN Referable AMD 1. Disease/no disease
2. AMD severity (4 classes)

ACC1: 0.934
ACC2: 0.794

Ting [27] 2017 Singapore SIDRP 108,558 CNN Referable AMD Disease/no disease ACC: 0.888;
AUC: 0.932

Kankanahalli [28] 2013 United States AREDS 2772 CNN Referable AMD 1. Disease/no disease
2. AMD severity (3 classes)

ACC1: 0.955
ACC2: 0.918

Burlina [29] 2011 United States Private dataset 66 SVM AMD Disease/no disease ACC: 0.955
Bhuiyan [30] 2020 United States AREDS 116,875 CNN 1. Referable AMD

2. AMD
1. Disease/no disease

2. AMD severity (4 classes)
ACC1: 0.992

ACC2: 0.961
Phan [31] 2016 Canada Private dataset 279 SVM, RF 1. AMD

2. Referable AMD
Disease/no disease AUC1: 0.877

AUC2: 0.899
Govindaiah [32] 2018 United States AREDS 116,875 CNN 1. Referable AMD

2. AMD
1. Disease/no disease

2. AMD severity (4 classes)
ACC1: 0.953

ACC2: 0.861
Grassmann [33] 2018 German AREDS 120,656 CNN AMD AMD severity (13 classes) ACC: 0.633
Mookiah [34] 2014b Singapore 1. Private dataset

2. ARIA
3. STARE

784 SMV AMD AMD severity (4 classes) ACC1: 0.902
ACC2: 0.951
ACC3: 0.950

Peng [35] 2019 United States AREDS 59,302 CNN AMD AMD severity (6 classes) ACC: 0.671
Mookiah [36] 2015 Singapore 1. Private dataset

2. ARIA
3. STARE

784 SMV AMD AMD severity (4 classes) ACC1: 0.935
ACC2: 0.914
ACC3: 0.978

AREDS: Age-Related Eye Disease Study, CNN: convolutional neural networks, AMD: age-related macular disease, ACC: Accuracy, AUC: area under curve, ARIA: Automated Reti-
nal Image Analysis, STARE: Structured Analysis of the Retina, SVM: support vector machine, ANN: artificial neural network, DR. . .: diabetic retinopathy, SIDRP: Singapore
National Diabetic Retinopathy Screening Program, RF: random forest.

a Referable AMD was defined as intermediate and advanced AMD.
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3.4. Performance of AI in AMD detection

As shown in Fig. 3, the pooled AUROC of AI-based algorithms in
detecting AMD or referable AMD was 0.983 (95% CI: 0.979�0.987).
The pooled SEN, SPE, and DOR were 0.88 (95% CI: 0.88�0.88;
I2=98.7%), 0.90 (95% CI: 0.90�0.91; I2=99.7%), and 275.27 (95% CI:
158.43�478.27; I2=99.6%), respectively. For studies applying CNN in
the AREDS database, the pooled AUROC, SEN, SPE, and DOR were
0.983 (95% CI: 0.978�0.988), 0.88 (95% CI: 0.88�0.88; I2=99.0%), 0.91
(95% CI: 0.91�0.91; I2=99.2%), and 273.14 (95% CI: 130.79�570.43;
I2=90.0%), respectively (Fig. 4).

3.5. Heterogeneity analysis

Since high heterogeneity was found among the studies, we first
applied threshold analysis to test whether there was a threshold
effect. The results showed a potential threshold existed among the
included studies (Spearman correlation coefficient: �0.600,
P = 0.030). Then, meta-regression was performed to analyze the cause
of heterogeneity. Potential factors included various methods (classi-
fied as CNN, SVM, and others), databases (classified as AREDS and
others), number of images for validation (classified as <500,
500�5000, and >5000), outcomes (classified as AMD and referable
AMD), publication year (classified as before 2015 and after 2015),
and regions (classified as Asian countries and Western countries).
The results showed that the DOR was not correlated with any factors
(all P values>0.10). However, when excluding Bhuiyan's study, [29]
the DOR was significantly lower in studies with larger validation data
sets (P = 0.018), which contributed most to the heterogeneity.
3.6. Subgroup analysis

Subgroup analysis was performed according to different methods,
number of images for validation, definition of AMD, publication year,
and regions (Table 3). The results showed that SVM had a higher DOR
(917; 95% CI: 97�8861; I2=71.4%) than CNN (225; 95% CI: 123�409;
I2=99.7%). The pooled AUC for detection of AMD and referable AMD
was 0.993 (95% CI: 0.984�1.000) and 0.983 (95% CI: 0.978�0.988),
respectively. The DOR and AUC were lower in studies with larger vali-
dation data sets. Similar AUCs were detected for studies from Asian
countries and studies fromWestern countries (0.979 versus 0.984).

4. Discussion

Our results demonstrate that AI-based algorithms are able to
detect AMD in fundus images with a pooled AUC, SEN, and SPE of
0.983 (95% CI: 0.979�0.987), 0.88 (95% CI: 0.88�0.88), and 0.90 (95%
CI: 0.90�0.91), respectively, which is almost comparable to the per-
formance of retinal specialists. [18,26,33,35] Although AMD remains
one of the leading causes of irreversible vision impairment world-
wide, the incidence of wet AMD with visual loss has decreased due to
the introduction of treatment targeting vascular endothelial growth
factor (VEGF). [38] With available effective treatment, early diagnosis
and treatment are crucial for these patients to retain functional
vision. Therefore, the application of AI-based tools for AMD detection
may provide substantial benefits in disease management.

In this study, the pooled DOR of AI models for detecting AMD was
275.27 (95% CI: 158.43�478.27). The value of a DOR ranges from 0 to
infinity, with higher values indicating better discriminatory test



Fig. 2. Bias assessment of the included studies via Quality Assessment of Diagnostic
Accuracy Studies-2 (QUADAS-2) tool.
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performance. A value of 1 means that a test does not discriminate
between patients with the disorder and those without it. And values
lower than 1 mean improper test interpretation (more negative tests
among the diseased). The DOR offers considerable advantages in
diagnostic meta-analysis that pools data from various studies into
summary estimates with increased precision. [39]

The AREDS database is the largest publicly available database with
more than 130 thousand fundus photographs and has been broadly
applied for investigating AMD. [37] In this study, the AREDS database
was used in 9 included studies. For studies applying CNN in the
AREDS database, the pooled AUROC, SEN, SPE, and DOR were 0.983
(95% CI: 0.978�0.988), 0.88 (95% CI: 0.88�0.88), 0.91 (95% CI:
0.91�0.91), and 273.14 (95% CI: 130.79�570.43), respectively. How-
ever, it should be noted that some of the nuances of hard drusen and
age-related changes for clinical classification of AMD as enlightened
by Ferris et al. [40] did not exist in the 1980s during AREDS, which
might make AREDS database inadequate for develop AI. Moreover,
these photographs were all film images that were digitized.

The present study shows that the diagnostic power of AI is lower
in studies with larger validation data sets, with only Bhuiyan's study
being an exception. [30] As a more recent research, Bhuiyan et al.
trained and validated the CNN-based algorithm in AREDS database,
which finally achieved an accuracy of 99.2% for detecting referable
AMD. So far, this is the best screening accuracy among such existing
models. However, it should be also noticed that these models are
tested in research data sets rather than real-world data. Caution is
needed when applying AI-based screening in larger populations
under different settings and conditions.

In this study, CNN and SVM were the most commonly used mod-
els, both of which showed high SEN and SPE. CNN contains multilayer
neurons that can recognize visual patterns and learn the features
directly from the raw image pixels. [41] There are various types of
CNN architectures, such as AlexNet, Inception v1 (GoogLeNet), and
CifarNet. [42] SVM is a machine learning that classifies data in catego-
ries with supervised learning. [43] CNN and SVM are both good at
data handling, and the optimal choice for use depends on the study
aims and data types.

The performance of different AI-based algorithms varies a lot in
the included studies, with accuracy from 0.633 to 0.996. Many factors
may account for it. First, different architectures of algorithms are
basic cause for the performance variation. Second, data size for train-
ing and validation of the algorithms, as mentioned above, is another
reason. Third, the quality of the included images for algorithm devel-
opment is also an important factor. Fourth, there still lacks reference
standards to define AMD and threshold effects exist among the stud-
ies. Therefore, comprehensive evaluation should be placed when we
compare the performance of the different AI system.

It is interesting that all included studies were performed in Asia,
western Europe, and the United States, while no study from Africa,
eastern Europe, and the Middle East was found. This may imply that
AMD has become one of the leading causes for vision loss in those
countries and the automatic tools for AMD detection are more
needed in regions with more populations.

Other than fundus images, it has also been reported that AI can
learn to detect AMD from multimodality imaging data. Some
researchers have succeeded in developing CNN models to detect
advanced AMD based on spectral domain optical coherence tomogra-
phy (SD-OCT) images. [44,45] Yoo et al. [46] demonstrated that the
combination of OCT and fundus images could improve the diagnostic
accuracy of their DL models for detection of AMD over fundus images
alone. Another study further detected a higher accuracy for CNN-
based models trained by multimodality imaging (fundus photo-
graphs, OCT, and angio-OCT) than those trained by a single imaging
modality. [47] Moreover, a DL algorithm was trained to identify geo-
graphic atrophy in fundus autofluorescence (FAF) images. [48] Future
interest may focus on the methods to improve diagnostic power or
disease progression prediction using multimodality image analysis.
However, it should be clarified that, so far at least, none of these tech-
niques is applicable for screening in the primary care setting due to
the much higher cost of the devices than non-mydriatic automatic
cameras. Additionally, they may not be useful for retinal specialists
who can read the images themselves.

Our results have some significant clinical and public health impli-
cations. First, a fundus camera with AI-based software may help oph-
thalmologists reduce the workload as well as the rates of
misdiagnosis and missed diagnosis. Second, implementation of the AI
system in the community can help to detect AMD at an early stage so
that necessary management will be applied to prevent the conver-
sion to advanced AMD. Third, AI significantly improves the efficiency
for screening ocular disorders, particularly in remote areas where
skilled ophthalmologists are not always available. However, several
challenges also exist and should be addressed. First, algorithms are
commonly developed to detect only one disease or sign; thus, some
other important eye conditions may be missed. Second, most algo-
rithms are trained on limited data sets, and the performance remains
doubtful when validated in larger cohorts under different settings
and conditions. Third, the diagnostic power of AI algorithms depends
on the quality of the data, and image quality software is needed to
reject images that are unreadable. Fourth, the feasibility and



Fig. 3. Performance of artificial intelligence for the detection of AMD. -Fig. 3A. The pooled area under the receiver operating characteristic curve (AUROC) was 0.983 (95% CI:
0.979�0.987). -Fig. 3B. The pooled sensitivity was 0.88 (95% CI: 0.88�0.88). -Fig. 3C. The pooled specificity was 0.90 (95% CI: 0.90�0.91). -Fig. 3D. The pooled diagnostic odds ratio
was 275.27 (95% CI: 158.43�478.27).

Fig. 4. Performance of the convolutional neural network (CNN) models for the detection of AMD in the AREDS database. -Fig. 4A. The pooled area under the receiver operating char-
acteristic curve (AUROC) was 0.983 (95% CI: 0.978�0.988). -Fig. 4B. The pooled sensitivity was 0.88 (95% CI: 0.88�0.88). -Fig. 4C. The pooled specificity was 0.91 (95% CI: 0.91�0.91).
-Fig. 4D. The pooled diagnostic odds ratio was 273.14 (95% CI: 130.79�570.43).
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performance of AI software compared with those of clinical physi-
cians are still unclear, and whether patients will trust the machines is
another important question. Furthermore, since AI is a “black box”,
[49] it may affect the perception and acceptance of AI in further
applications. The main obstacle to deploy AI may be the risk of miss-
ing false negative cases and no action would be taken until routine
physical examinations. Participants undergoing AI-assisted screening
should be informed that referrals are needed if any symptoms occur.



Table 3
Subgroup analysis showing the performance of the artificial intelligence for the detection of AMD.

Variables No. of
study

AUC (95% CI) Sensitivity
(95% CI)

Specificity
(95% CI)

LR+ (95% CI) LR- (95% CI) DOR (95% CI) Heterogeneity for DOR

I2,% P value

Methods
CNN 9 0.980 (0.975�0.985) 0.88 (0.88�0.88) 0.90 (0.90�0.91) 16.0 (11.1�23.1) 0.07 (0.06�0.10) 225 (123�409) 99.7 <0.001
SVM 3 0.994 (0.988�1.000) 0.94 (0.92�0.96) 0.97 (0.95�0.99) 30.9 (11.9�79.8) 0.04 (0.01�0.16) 917 (97�8861) 71.4 0.030
Images for

validation
<500 3 0.997 (0.995�1.000) 0.99 (0.96�1.00) 0.99 (0.97�1.00) 54.6 (13.9�215.0) 0.02 (0.01�0.07) 2656 (286�24,635) 42.0 0.178
500�5000 4 0.982 (0.970�0.994) 0.93 (0.92�0.94) 0.93 (0.93�0.94) 16.3 (5.7�46.8) 0.07 (0.03�0.13) 252 (50�1274) 98.1 <0.001
>5000 6 0.980 (0.974�0.985) 0.88 (0.88�0.88) 0.90 (0.90�0.91) 17.0 (10.9�26.5) 0.08 (0.06�0.11) 216 (105�445) 99.8 <0.001
Outcomes
AMDa 4 0.993 (0.984�1.000) 0.92 (0.90�0.93) 0.85 (0.83�0.87) 29.2 (3.4�248.4) 0.04 (0.01�0.14) 853 (39�18,403) 88.2 <0.001
Referable AMDb 6 0.983 (0.978�0.988) 0.88 (0.88�0.88) 0.90 (0.90�0.90) 15.8 (10.2�24.3) 0.06 (0.05�0.08) 276 (132�579) 99.8 <0.001
Publication year
Before 2015 4 0.989 (0.985�0.993) 0.95 (0.94�0.96) 0.96 (0.95�0.97) 22.7 (16.9�30.3) 0.05 (0.03�0.10) 474 (197�1142) 58.1 0.067
After 2015 9 0.980 (0.975�0.985) 0.88 (0.88�0.88) 0.90 (0.90�0.91) 15.9 (10.8�23.3) 0.08 (0.06�0.10) 224 (120�418) 99.7 <0.001
Regions
Asian countries 3 0.979 (0.970�0.988) 0.93 (0.91�0.94) 0.89 (0.88�0.89) 20.6 (2.6�163.5) 0.08 (0.06�0.11) 212 (73�613) 77.9 0.011
The western

countries
10 0.984 (0.980�0.988) 0.88 (0.88�0.88) 0.91 (0.91�0.91) 19.0 (12.0�30.2) 0.07 (0.05�0.09) 288 (155�536) 99.7 <0.001

AUC: area under curve, CI: confidence interval, LR+: positive likelihood ratio, LR-: negative likelihood ratio, DOR: diagnostic odds ratio, CNN: convolutional neural networks, SVM:
support vector machine.

a Studies detecting dry-AMD only or wet-AMD only were excluded in this analysis.
b Referable AMD was defined as intermediate and advanced AMD.
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So far, therefore, physicians cannot be free from reading thousands of
normal tests.

The limitations of the present study should also be noted. First,
different definitions of AMD among the included studies might have
influenced the pooled analysis, though subgroup analysis was per-
formed. Second, some included studies involved relatively small sam-
ple sizes, which may reduce the representativeness of AI
performance. Third, the heterogeneity among those investigations
was large, which mainly resulted from threshold effects. To reduce
the effects of heterogeneity for the analysis, we applied random-
effects models for the pooled analysis. We also performed subgroup
analysis to dig out the potential factors that resulted in the high het-
erogeneity. Fourth, we did not compare the performance between AI
and human experts since limited data were available. To some extent,
the diagnostic performance of AI models cannot be well presented
unless comparing to human ophthalmologists. Fifth, we evaluated
only the diagnostic power of AI in detecting AMD, while the perfor-
mance for classifying AMD severity was not assessed. AMD is a spec-
trum of presentations with various classifications, such as referable/
non referable AMD, dry/wet AMD, and early/advanced AMD, etc.
Future interest may focus on optimizing AI models in assisting AMD
classifications for clinical application. Sixth, the search of this study
was only restricted to standard sources, and other sources including
conference abstracts, ongoing clinical trials were excluded, which
might increase the risk of publication bias. Seventh, a potential bias
for pooled analysis might exist since 9 included studies used the
same database (AREDS database), while this could be also an advan-
tage of being able to compare performance of different algorithms in
the same population. Additionally, we failed to provide data on AI-
based prediction of AMD progression. Predicting the AMD progres-
sion may help to improve the therapeutic regimens and management
of disease.

Our study found that AI is promising in detecting AMD from color
fundus photographs. The application of AI-based automatic tools can
provide substantial benefits for the diagnosis of AMD. However, AI is
likely to have better ability to detect advanced AMD than early AMD,
similarly to humans, which may have contributed to the very high
AUCs observed. Since the diagnostic power of the AI system
decreases in larger data sets and the performance has not been tested
in the real world, caution is needed when applying these algorithms
in populations under different settings and conditions. And
particularly if such algorithms are applied autonomously, additional
safeguards must be implemented.
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