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Abstract: Efforts to develop more environmentally friendly alternatives to traditional broad-spectrum
pesticides in agriculture have recently turned to RNA interference (RNAi) technology. With the
built-in, sequence-specific knockdown of gene targets following delivery of double-stranded RNA
(dsRNA), RNAi offers the promise of controlling pests and pathogens without adversely affecting
non-target species. Significant advances in the efficacy of this technology have been observed in
a wide range of species, including many insect pests and fungal pathogens. Two different dsRNA
application methods are being developed. First, host induced gene silencing (HIGS) harnesses dsRNA
production through the thoughtful and precise engineering of transgenic plants and second, spray
induced gene silencing (SIGS) that uses surface applications of a topically applied dsRNA molecule.
Regardless of the dsRNA delivery method, one aspect that is critical to the success of RNAi is the
ability of the target organism to internalize the dsRNA and take advantage of the host RNAi cellular
machinery. The efficiency of dsRNA uptake mechanisms varies across species, and in some uptake
is negligible, rendering them effectively resistant to this new generation of control technologies.
If RNAi-based methods of control are to be used widely, it is critically important to understand the
mechanisms underpinning dsRNA uptake. Understanding dsRNA uptake mechanisms will also
provide insight into the design and formulation of dsRNAs for improved delivery and provide clues
into the development of potential host resistance to these technologies.

Keywords: clathrin-mediated endocytosis; double stranded RNA; dsRNA uptake; fungi; insects;
plant protection; RNA interference; SID proteins; spray induced gene silencing

1. Introduction

Each year, crop pests and pathogens cause approximately 300 billion USD of damage to plant-based
food supplies worldwide [1]. For five of the major food crops (rice, wheat, maize, soybean, and potato),
17–30% of annual global yield losses can be directly attributed to these biotic factors [2]. Latest projections
suggest that, by 2050, we will need to increase food production by more than 50% to feed a population
that will be nearing 10 billion people [3]. Furthermore, as agriculture has shifted to an intensive,
monoculture state to accommodate rising demand, this has favoured the occurrence of widespread
epidemics and outbreaks from pests and pathogens [4]. Climate change also creates additional stresses
on land suitable for food production. The frequency and intensity of droughts is expected to increase,
promoting further desertification, particularly in Africa and Asia [5]. Rising sea levels also contribute
to soil erosion and increased salinity and increased extreme weather events such as floods and cyclones
will also reduce arable land mass [6]. The challenges posed by pests and pathogens, a rapidly growing
global population, and unpredictable climactic conditions demand that we find new and innovative
solutions to maintain healthy crops without losing yield.
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Current approaches to manage insect pests and to minimize damage relies on the use of
broad-spectrum chemical pesticides such as neonicotinoids, organophosphates, carbamates and
pyrethroids. Each year an average of 1 billion pounds of active ingredient is applied globally to crops
such as corn, cotton, fruits and vegetables to control these insect pests [7]. Although improvements
have been made in terms of environmental toxicity compared to early pesticide compounds such
as dichloro-diphenyl-trichloroethane (DDT), concerns remain for existing chemistries relating to
environmental dispersal and persistence causing lethal non-target effects [8]. Evidence suggests
populations of beneficial arthropods such as pollinators and aquatic invertebrates have been harmed
by the presence of these traditional chemistries leading to several nations placing legislation against
the use of the certain classes of chemicals [9–11].

Similar to insect pest control, the control of phytopathogenic fungi relies heavily on broad-spectrum
chemistries. Commonly used fungicidal classes include mitosis disruptors (methyl benzimidazole
carbamates), cell membrane disruptors (triazoles), and respiration inhibitors (strobilurins) [12–14].
Like insecticides, unintentional off-target effects present a problem to traditional fungal control technologies.
Fungicides have been shown to adversely affect insect species, especially key pollinators such as bees,
aquatic species from chemical runoff into waterways, and beneficial soil microorganisms [15–22]. In some
cases, broad-spectrum chemistries targeting either fungi or insects are becoming less effective as resistance
to these chemicals evolves [23–26]. Taken together, an environmentally safe alternative that poses less risk
to the agroecological environment may provide a solution to improve crop health.

One alternative to chemical pesticides with the potential for species-specificity is RNA interference
(RNAi). RNAi has been observed in a wide range of eukaryotic organisms and has emerged as a
powerful tool to study gene function [27]. RNAi mediates RNA destruction following the introduction
of dsRNA molecules, thereby reducing the expression of a target gene. Data show that synthetic
dsRNA can be used to target and knockdown specific genes within an organism [28–31]. In insects,
the order Coleoptera is highly sensitive to RNAi [32,33], however the Diptera [34,35] Hemiptera [36,37],
and Lepidoptera [38–41] have shown varying levels of sensitivity. In fungi, most species contain the
enzymatic machinery necessary for RNAi and gene knockdown is achievable with a few exceptions,
including Saccharomyces cerevisiae and Ustilago maydis [42]. Researchers have harnessed and applied
this technology to control agricultural pests by designing dsRNAs targeting essential genes and
thus are able to disrupt cellular functions thus impairing or killing the target species [31,43–45].
The uptake of dsRNA targeting essential genes by insect and fungal pests can lead to growth inhibition,
reduced pathogenicity and mortality. Unlike chemical pesticides, which may affect a broad range of
species, RNAi is sequence specific and can target a single species, leaving other beneficial organisms
unharmed. Seminal studies of RNAi-based pest control employed a strategy known as host induced
gene silencing (HIGS), where the host plant is engineered to express the dsRNA molecules for insect or
fungal protection [44,46,47]. For insects, the dsRNA molecules are absorbed through intestinal uptake
following feeding, allowing for systemic spread. Currently, the only commercialized example of HIGS
technology is in maize and targets the vacuolar sorting protein Snf7 of the western corn rootworm
(Diabrotica virgifera).

While HIGS offers the promise of long-lasting protection, RNAi can also be used as a topical
formulation to avoid difficulties associated with plant transformation and the regulation of genetically
modified organisms in different markets [48]. Spray induced gene silencing (SIGS) involves the foliar
applications of dsRNA to the plant surface. A number of studies in both fungi and insects have
demonstrated the effectiveness of this technology [31,45,49,50]. Unlike many chemical pesticides,
environmental persistence of dsRNAs appears to be limited, which, from an environmental protection
perspective, is an attractive feature [51,52]. Studies have shown a half-life of less than 24 h for dsRNA
within the soil, due primarily to bacterial degradation [51]. However, they are stable within the
phyllosphere, where they can remain biologically active for several weeks [53]. Unlike transgenic
approaches, spray-based control methods are more appropriate for the control of pests or pathogens
that affect multiple crops. For example, SIGS does not require the development and approval of
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genetically engineered technologies for each crop species and does not limit the technology to single
gene or application [54]. Due to the large number of coding genes within organisms, this presents
the opportunity to design dsRNAs to multiple targets. In several studies, multiple gene targets were
shown to be effective when dsRNAs were applied as a foliar treatment, thus providing insurance and
allowing for alteration of targets between growing seasons [45,55,56].

This review will explore proposed mechanisms of dsRNA uptake in eukaryotes as a means to
control both insect pests and fungal pathogens through RNAi. SIGS provides considerable promise,
both in terms of offering a new generation of pesticides that are environmentally more benign than
most current pesticides, and in terms of applying RNA technologies in a delivery method that
avoids the challenges surrounding the regulation of genetic modification. Understanding the uptake
of dsRNAs through SIGS will help accelerate the development, implementation, and application
of this technology outside of the laboratory or greenhouse environment. While recent studies
clearly demonstrate the potential of SIGS as a tool to control insect pests and fungal pathogens,
we still require a deeper understanding of target species that are sensitive or those refractory to
RNAi. The current review updates our understanding of RNAi and provides novel insight into the
requirements necessary to develop successful alternatives to exogenously-applied broad-spectrum
chemistries. Specifically, we provide strategies to improve dsRNA uptake through the optimization
and development of exogenously-applied dsRNA formulations and delivery methods.

2. Core Components of the RNAi Machinery

Since the first description of sequence-specific gene silencing in the nematode Caenorhabditis elegans in
1998 [57], RNAi has been well documented in almost all eukaryotic organisms, including protozoans,
invertebrates, vertebrates, plants, fungi, and algae. Before the term RNAi was widely adopted,
RNA silencing had been described as post transcriptional gene silencing in plants and quelling in
fungi [58,59], but each of these different names refer to a common process, with shared intracellular
machinery. The core components of RNAi have now been identified in all major branches of eukaryotes.

The protein Dicer is the initiator of the RNAi pathway. Dicer belongs to the RNase III family,
an evolutionarily conserved protein group with specificity for dsRNAs and is responsible for processing
long dsRNAs into smaller duplex fragments of discrete sizes [60]. While Dicer is found in virtually
all eukaryotes, it has diversified structurally as well as functionally, producing several types of small
RNA [61]. Dicers are essential for the biogenesis of both small interfering (si)RNA and micro (mi)RNA,
however only siRNAs are involved in the targeting of exogenous mRNA while miRNAs play a
regulatory role [60]. The Dicer generated siRNAs are subsequently co-opted by the RNAi-induced
silencing complex (RISC), which unwinds the siRNA duplex. The exact molecular composition of
RISC has yet to be defined but must at least contain an Argonaute protein [62]. Argonaute cleaves
the passenger (sense) strand of the siRNA while the guide (antisense) strand remains connected with
the RISC [63]. The guide strand of the siRNA within RISC to base pairs with complementary target
mRNAs, which are then cleaved by Argonaute, thereby preventing translation [64]. Some species also
possess RNA-dependent RNA polymerases (RdRPs), which catalyze the replication of dsRNA from
aberrant single stranded-RNA transcripts [65]. RdRPs function to amplify the RNA silencing signal,
thus promoting systemic spread.

While many of the core RNAi components are conserved throughout taxa, RNAi efficiency varies
across species, and many of the variations are due to differences in the efficiency of dsRNA uptake,
intracellular distribution, and/or systemic dispersal. For the remainder of this review, the different
modes of uptake and dsRNA movements will be examined, highlighting where there are gaps in
our understanding, and how these should be addressed if RNAi technologies are to be deployed
more widely.
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3. Mechanisms of dsRNA Uptake

3.1. Caenorhabditis elegans: Systemic RNAi Defective (SID) Proteins

In addition to the discovery of RNAi, the mechanism of dsRNA uptake and cell to cell spread
(systemic RNAi) was also first described in C. elegans. Soaking nematodes in dsRNA or feeding them
bacteria producing dsRNA induces RNAi both within the intestine and in tissues distal from the site of
ingestion. This systemic RNAi in nematodes [66] is mediated by multiple SID proteins that facilitate
the transfer of dsRNAs or siRNAs throughout the body. SID-1, a dsRNA specific membrane channel,
has been studied extensively [67–69]. Sid-1 mutants are insensitive to RNAi and unable to spread the
silencing signal to adjacent cells. However, silencing can still be achieved through cell autonomous
RNAi using a direct injection delivery or by transgenic expression [67]. Additionally, there does not
appear to be selective uptake based on dsRNA length through the channel [70].

SID-2 is a single pass transmembrane protein located specifically in the luminal membranes
of the intestine and is involved in dsRNA uptake within the gut of C. elegans. SID-2 is thought to
mediate uptake through interaction and delivery of the dsRNA to SID-1 or through endocytosis,
with SID-1 thereafter enabling the dsRNA to escape the endosome and enter the cytoplasm [71,72].
SID-3, like SID-1, is also required for efficient import of dsRNA [73]. SID-3 is ubiquitously expressed
in most tissue types and is important in the uptake of dsRNA in the recipient cell. In addition to being
associated with endocytic vesicles, SID-3 appears to be an ortholog of ACK tyrosine kinase although
its phosphorylation targets and its interaction with SID-1 have yet to be described [73].

Another SID protein, SID-5, has been shown to be required for extracellular spreading of the
RNAi signal [74]. SID-5 is predicted to have a single transmembrane domain and interacts with late
endosomal proteins such as RAB7 [75]. Since Rab7 GTPases are responsible for the regulation of
late endosomal trafficking into lysosomes, Hinas et al. [74] proposed that SID-5 functions to block
exosomal fusion with lysosomes and allows for exosomal release from the cell. The complex roles and
interactions of the multiple SID proteins in C. elegans still need to be fully resolved, but it is clear that
endocytic pathways are integral to the uptake and dispersal of dsRNAs in this species.

3.2. Insects: SID-Like Proteins

Orthologous proteins to C. elegans SID-1, called SID-like (SIL-A, SIL-B, and SIL-C), have been
identified in several insect species, although their direct involvement in dsRNA uptake has yet to be
determined in many cases [76]. In cotton and soybean aphids (Aphis gossypii, Aphis glycines), for example,
the SIL proteins are structurally similar to C. elegans SID-1, [77,78], but their role in mediating dsRNA
uptake has not been confirmed. In the honeybee (Apis mellifera), expression of a SIL gene increased
following exposure to dsRNA, suggesting a role in mediating RNAi, but again, the role of the encoded
protein in dsRNA uptake was not determined [79]. Reduced RNAi efficiencies were observed in the
Western corn rootworm (D. virgifera) and Colorado potato beetle (Leptinotarsa decemlineata) following
knockdown of the SIL mRNAs, indicating at least a partial role of SIL proteins in modulating RNAi in
these two beetles [80,81]. In contrast, the flour beetle Tribolium castaneum has three orthologs of SID-1,
but when all three were silenced, there was no effect on RNAi efficiency [82]. Similarly, the SIL proteins
in the desert locust (Schistocerca gregaria) or diamondback moth (Plutella xylostella) appear to play no
role in RNA efficiency [83,84]. In dipteran insects, no SIL orthologues have been found, and yet RNAi
has been demonstrated in many flies and mosquitoes [85–87], indicating that SIL proteins are likewise
not required for dsRNA uptake in these insects. Based on the range of insects studied thus far, the role
of SIL proteins in dsRNA uptake in these organisms is clearly variable, with SIL facilitating RNAi in
some species, but not in others.

Reverse BLAST searches between insect SIL proteins and the C. elegans proteome suggest that SIL
proteins more closely resemble TAG-I30/CHUP-1 proteins than SID-1 [82]. CHUP-1 genes have no
apparent role in uptake or systemic RNAi within the nematode and when C. elegans CHUP-1 genes
were transfected into Drosophila S2 cells, no dsRNA uptake was observed [69]. CHUP-1 has a role in the
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cellular uptake of cholesterol [88], and there is some speculation that a depletion of cholesterol levels
may perturb or disrupt clathrin-mediated endocytosis and vesicle transport, possibly affecting the
amount of dsRNA that enters the cell [89]. Moreover, the efficacy of dsRNA uptake may be influenced
by the fatty acid composition of the cellular membrane. The ratio of the poly-unsaturated fatty acids,
linoleic acid, and arachidonic acid in the membrane was shown to be important, and the injection of
arachidonic acid improved the RNAi response in Bactrocera dorsalis [90].

3.3. Insects: Endocytosis

Uptake of dsRNAs in several insect species has been shown to involve clathrin-mediated
endocytosis. The involvement of endocytosis was first described in S2 Drosophila cells, which lack
any SID-like proteins. through experiments providing both direct and indirect evidence of this
process [91,92]. Accumulation of fluorescently labelled dsRNA within distinct cytoplasmic vesicles
of S2 cells provided direct evidence of uptake, and pretreatment of cells with inhibitors of endocytic
processes such as chlorpromazine and bafilomycin A1 indicated that clathrin-mediated endocytosis
was facilitating the process [91,92]. RNAi-mediated knockdown of genes encoding proteins involved in
clathrin dependent endocytosis, resulted in impaired RNAi of a secondary reporter gene, confirming that
uptake of dsRNA was occurring by this process [91,92]. The proteins identified in the RNAi knockdown
screens encompassed the entire endocytic pathway, from early vesicle formation (clathrin, AP50) to
late endosomal release (Rab7 and Vacuolar H+ ATPase), indicating that the dsRNA was traversing
through the endosomal pathway, only to be released to the cytoplasm before being degraded within the
lysosomes. Knockdown of these same endocytic components in C. elegans also impaired subsequent
RNAi, providing additional evidence that endocytosis is an important component of the dsRNA uptake
process even in species that rely on SID proteins to support uptake [91].

Clathrin-mediated endocytosis has been demonstrated to be involved in uptake of exogenous
dsRNA in several more insect species, using labeled dsRNA to track cellular entry. In T. castaneum,
fluorescent labeling and endocytic inhibitors provided direct evidence of clathrin-mediated endocytosis
in uptake [93]. In B. dorsalis and D. virgifera clathrin related genes were identified through an RNAi
mediated knockdown approach (Figure 1) [94,95]. Interestingly, in some species such as L. decemlineata,
both SIL channels and endocytosis appear to be involved (Figure 1) [81]. Vacuolar H+ ATPase and the
clathrin heavy chain were identified through RNAi mediated knockdown experiments, in addition to
SIL-A and SIL-C. However, the relative contribution of each uptake mechanism remains uncertain.
The endocytic process encompasses dsRNA binding to a receptor, inducing the invagination of the
membrane. Clathrin and its adaptors are then recruited and a vesicle forms and releases from the
membrane. The endosomal vesicle matures and via pH shifts from proton pumps, the dsRNA is
released into the cytoplasm. It is still unknown when the dsRNA is released and how it is moved
throughout the cells. It is interesting to note that in lepidopteran cells, which are generally more
recalcitrant to RNAi, the dsRNA can enter the cells but remains trapped in the endosomes [96]. It is
unclear what factors are preventing the dsRNA escape from the endosomal pathway, but for these
species, efforts to improve RNAi efficiency have focused on alternative delivery molecules to help the
dsRNA reach the cytoplasm (see dsRNA Formulation section). In contrast to SID proteins, length of the
dsRNA does appear to play a role in endocytic-mediated uptake. For example, shorter molecules do
not appear to enter through this transport system as efficiently as longer ones [97,98]. In T. castaneum,
a 31 base-pair dsRNA fragment was unable to achieve successful knockdown while a 69 base-pair long
fragment was able to reduce the accumulation of the target mRNA. The authors suggest that short
dsRNAs are not efficiently recognized by the dsRNA uptake machinery and may not be incorporated
into the cell thus preventing sufficient target knockdown [98].
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sclerotiorum and B. dorsalis. Following endosomal release and maturation (f), dsRNAs are released into 
the cytoplasm from the endosome (g), potentially facilitated by SIL proteins in L. decemlineata. 

Figure 1. Proposed modes of dsRNA uptake within insect pests and fungal pathogens using
L. decemlineata, S. sclerotiorum and B. dorsalis as representative species. (a) Spray application of dsRNA
formulations; (b) dsRNAs are transferred to the insect pest or fungal pathogen upon (c) ingestion of
plant material by the insect gut or absorption by fungal hyphae. dsRNAs are internalized by SIL proteins
(d) in L. decemlineata or through clathrin-mediated endocytosis (e) in L. decemlineata, S. sclerotiorum and
B. dorsalis. Following endosomal release and maturation (f), dsRNAs are released into the cytoplasm
from the endosome (g), potentially facilitated by SIL proteins in L. decemlineata.
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Two Drosophila scavenger receptors, SR-CI and Eater were also identified in Ulvila’s [92] screen and
were found to account for over 90% of dsRNA uptake in Drosophila S2 cells. These receptors are involved
in receptor mediated phagocytosis of gram negative and positive bacteria in Drosophila. In the desert
locust (S. gregaria) SR-CI and Eater were also identified to be important to uptake through chemical
inhibition of the receptor [83]. However, only a weak response of knocking down another scavenger
receptor, SC-R2, was observed in Colorado potato beetle cell lines [99]. In the Aedes aegypti mosquito
cells, where clathrin-mediated endocytosis facilitated uptake, chemical inhibition of scavenger receptors
had no impact on dsRNA uptake [100]. Based on these findings, it seems likely that dsRNAs can
bind to different, and perhaps multiple receptors in each species. Determining the identity, structure,
and selectivity of these receptors will prove valuable in the design of dsRNAs with improved binding
affinities and uptake capabilities.

3.4. Fungal Uptake

Without orthologs to SID proteins, fungi also appear to rely on endocytosis to facilitate uptake
of dsRNA. Uptake of fluorescently labelled dsRNA in fungi was first reported in Botrytis cinerea by
Wang et al. [31], although the uptake mechanism was not identified. A study by Wytinck et al. [101]
demonstrated that uptake of dsRNA in Sclerotinia sclerotiorum occurs through clathrin-mediated
endocytosis, analogous to insect systems that do not rely on SIL channels (Figure 1). While a dsRNA
specific receptor was not identified in the study, endocytic proteins CHC, Arf72A, AP2, FCHO1,
amphiphysin, and VH+ ATPase were shown to be involved in dsRNA uptake and processing through
RNAi mediated knockdown experiments. They demonstrated that uptake is localized to the hyphal
tip in younger, more actively growing hyphae through live cell imaging. Endocytosis has also been
shown to localize at the hyphal tip of the developing fungus [102].

Fungi lack homologues to the insect scavenger receptors, and therefore genome wide screens
may be necessary in order to identify potential candidate dsRNA receptors. The list of candidates
could then be narrowed to those that specifically bind dsRNA through affinity capture techniques.
The role of the putative receptor in dsRNA uptake could then be assessed through RNAi mediated
knockdown. Within the fungal kingdom, most fungi assessed are amenable to RNAi, however a couple
such as U. maydis and S. cerevisiae lack the core RNAi components such as Dicer or Argonaute [103].
One notable exception is Zymoseptoria tritici which encodes the core components however is still
insensitive to dsRNA [104]. Through live cell imaging, the authors showed that conidiospores of
Z. tritici were unable to uptake dsRNA, suggesting that there may be not be a dsRNA receptor encoded
or there is a defect in the uptake pathway. Overall, there is a dearth of information relating to dsRNA
uptake in fungi and this may be a result of fewer studies demonstrating the efficacy of SIGS against
phytopathogenic fungi.

4. Importance of Understanding dsRNA Uptake

4.1. Resistance

Historically speaking, following the deployment of a novel pest or pathogen control measure,
strains resistant to the technology eventually emerge [105]. Given that RNAi is a sequence-specific
process, changes in a target gene’s sequence could potentially render the pest or pathogen resistant,
but this type of resistance can be easily and quickly overcome by changing gene targets or sequences.
A more problematic resistance to overcome would be a change in the uptake mechanism. While it seems
unlikely that an organism would tolerate substantive changes to essential proteins such as clathrin,
it is possible that dsRNA-specific receptors or channels could be modified to no longer function in
promoting uptake [106]. Reduced dsRNA uptake through resistance has already been demonstrated
in a laboratory strain of corn rootworm (D. virgifera) that was exposed to progressively higher doses
of dsRNA through several generations [107]. Within eleven generations, insects had greater than a
130-fold increase in resistance. The nature of the resistance was attributed to significantly reduced
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gut luminal uptake, and the molecular mode behind the mutations was linked to a single recessive
locus. The mechanism of which these mutations altered uptake is unknown. Although this resistant
strain was developed in a laboratory setting, it highlights that resistance through reduced uptake
can indeed occur. Researchers are attempting to minimize this risk by investigating multiple modes
in which dsRNA can be delivered to the cells by different vehicles or carriers. If different modes of
uptake can be achieved that are not reliant on a single dsRNA specific receptor, then the risk of RNAi
insensitivity will be reduced. While much remains to be understood about many of these different
carriers, they show considerable promise in using dsRNA-based control methods for a wide range of
pests and pathogens.

4.2. dsRNA Formulations

SIGS using naked dsRNA has been shown to be an effective control method against both insect
pests and fungal pathogens [31,52,108]. Despite these advances, topically applied dsRNA molecules
are vulnerable to degradation. Environmental factors such as water, sunlight/UV light, and interactions
with soil microbes all contribute to a reduced availability of dsRNA on plant surfaces and possible
absorption into plant tissues [109–111]. Upon ingestion by an insect, dsRNA also must contend with
dsRNA-degrading enzymes and an unfavorable pH level within the gut [112,113]. To solve these issues,
carrier molecules can be utilized to protect the dsRNA, increasing bioavailability and improving control
of pathogens and pests [114]. For most carrier particles, a primary goal is to increase stability and
persistence of the dsRNA before and after ingestion, to protect the dsRNA from abiotic environmental
factors and biotic factors within the insect gut [115,116]. While the dsRNA carriers are often providing
some degree of protection from the gut environment of insects, it is important to understand how
these carriers interact at the cellular level of uptake, and whether they also play a role in translocating
dsRNA into cellular compartments where they can take effect.

There has been extensive work on human therapeutics on the delivery of dsRNA and siRNA-based
treatments through carrier molecules and these may also prove to be valuable to agricultural pest
control [117]. While most investigations of dsRNA carriers for plant protection have focused on insects,
the enhanced stability and penetrability of some formulations will also be applicable to phytopathogenic
fungi. While the barriers of gut pH and nucleases are not an issue for fungi, stability from environmental
conditions is still critical. It is difficult to predict when a fungal outbreak is going to occur, and therefore
the longer the preventative antifungal treatment can remain intact on the plant surface, the more likely
it will be effective when the infection emerges. Additionally, several necrotrophic pathogens, such as
S. sclerotiorum, can become systemic within the plant in a matter of days [118]. This underlies the
importance of getting the optimized load of dsRNA into the fungus as quickly as possible, and carriers
enhancing penetrability have the potential to do this.

4.3. Nanoparticles

When dsRNA is ingested by an insect, degradation by gut nucleases continues until absorption
into the cells occurs. The RNAi effect diminishes the longer the naked dsRNA is exposed to this harsh
environment [48]. One of the most commonly used polymers to generate nanoparticles to protect
and deliver dsRNA and siRNA to target cells is chitosan [119]. Chitosan is a biodegradable and
nontoxic polymer, prepared through the deacetylation of the highly abundant biopolymer chitin [120].
Electrostatic binding between the dsRNA and the chitosan occurs through the negative charges
on the phosphate backbone of the dsRNA binding to the positively charged amino group of the
chitosan [121]. Chitosan-based formulations have been shown to improve stability from endonucleases
and uptake in a number of insect species including Anopheles gambiae, A. aegypti, Chilo suppressalis,
and S. frugipera [121–124]. Interestingly, chitosan appears to improve uptake in lepidopteran insects
such as S. frugipera, which are normally inefficient in terms of RNAi response [124]. Naked formulations
of dsRNA appear to get trapped in endosomes and are unable to induce silencing, however dsRNA
complexed with chitosan showed reduced accumulation within these endosomes. While it is unknown
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if the dsRNA-chitosan conjugate enters through endocytic mechanisms similar to naked dsRNA or
through alternative mechanisms, it is highly encouraging that this formulation can improve efficiency
in species that were previously insensitive to RNAi.

Layered double hydroxide clay nanosheets are another nanoparticle delivery system that shows
promise in increasing RNAi efficiency in pest control. Stacks of positively charged nanosheets are
able to electrostatically bind the negative charges of the dsRNA and provide improved protection
against environmental elements and nuclease activity. Mitter et al. [125] showed that atmospheric
conditions slowly break down the clay nanosheets on the plant surface releasing the dsRNA. In their
study, the clay nanosheet provided protection against pepper mild mottle virus up to 20 days post
spraying, providing a much longer window of protection compared to the naked dsRNA treatment.
This technology also holds potential to be of utility in insect and fungal protection due to this increased
length of bioactivity. Interestingly, this formulation also appears to encourage uptake and systemic
spread within the host plant that was sprayed. Mitter et al. [125] were able to detect dsRNA in distal,
unsprayed regions of the plant indicating that whole plant protection can be achieved after spraying
only a portion of the plant.

4.4. Ribonucleotide Protein dsRNA Carriers

The plasma membrane is the primary barrier of uptake, and dsRNA’s negative charge prevents
passive transport through the negatively charged membrane. To remedy this, cell penetrating peptides
(CPPs) can facilitate uptake into the epithelial gut cells and provide protection from nucleases. CPPs are
a class of peptides able to cross cellular membranes and can function as a carrier for siRNAs, proteins,
additional peptides, and other small molecules [126]. More specifically, the cationic, arginine-rich
Tat peptides have been shown to successfully internalize plasmid DNA and hormones within insect
cells [127,128]. An improved version of this Tat peptide is the peptide transduction domain (PTD),
which unloads the carrier’s cargo by destabilizing the vesicle membrane following endocytosis [129].
By pairing the PTD with a dsRNA binding domain (DRBD), ribonucleoprotein particles (RNP) can
be formed to carry dsRNA past the plasma membrane, escape the endosome, and induce silencing.
Gillet et al. [116] demonstrated that RNPs can improve oral delivery of dsRNA and enhance RNAi effects.

PTD-eGFP applied to a cotton boll weevil (Anthonomus grandis) gut cell suspension showed
PTD-eGFP clustered at the membrane of gut cells within 2 min and showed colocalization with
FM4-64 endosomal stain within vesicles. When A. grandis midgut was incubated with Cy3-labeled
dsRNA complexed with PTD-DRBD, the particles were shown to associate with the plasma membrane,
within endovesicles, and ultimately into the cytoplasm. Transcript knockdown of a chitin synthase
gene was improved with oral delivery of the RNPs compared to naked dsRNA, demonstrating the
utility of CPPs in delivering dsRNAs to the cytoplasm of insect cells. The PTD peptide used in this
study was optimized to carry short dsRNAs or siRNAs [130,131] and may need to be modified to
ensure the effective delivery of long dsRNAs typically used in insect RNAi applications. With the
research being conducted to overcome negatively charged membranes using cell-penetrating peptides,
there may be discoveries that could transfer to fungal-based systems since CPPs have been shown to
be effective nanocarriers of other antifungal compounds in fungal systems [132,133].

4.5. Cationic Liposome dsRNA Carriers

In pharmacological studies where efficient drug delivery is highly dependent on absorption
into cells, lipid carrier molecules have been observed to facilitate gene delivery. Cationic liposomes
consist of cationic and neutrally charged lipids that encapsulate nucleic acid to form lipoplexes [134].
The positively charged outer lipid coating allows association with the plasma membrane and isolates
the negative charges to inside the liposome. One of the first instances of using a liposome-based
delivery method was to encapsulate an antiviral, immunomodulating dsRNA to protect against
influenza in mice [135]. Since then, this technology has been applied in insects, fungi, nematodes,
and crustacean viruses [136–139] with successes in lowering gene expression and/or mortality.
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In the limited number of studies conducted so far, interactions between insect gut epithelial
cells and lipoplexes have yet to be understood. However, insights from recent papers in other
cell types may provide a better understanding of the role lipoplexes have in associating with the
plasma membrane and subsequent release into the cytosol. Sarker [140] reported that cationic
liposomes containing a fluorescently marked phallotoxin were indeed associated with the plasma
membrane of HeLa cancer cells and were translocated via an endocytic pathway. Interestingly the
phallotoxin was not released within 30 min of incubation but was released into the periphery of
the cell by 24 h. To confirm liposomes were entering via endocytosis, HeLA cells were treated with
chemical inhibitors of clathrin-mediated endocytosis (chlorpromazine), caveolae-mediated endocytosis
(nystatin), and micropinocytosis (cytochalasin D). Fluorescent confocal imaging appeared to show
caveolae-mediated endocytosis is a primary pathway for lipoplexes, but the other two endocytic
pathways also had some role in uptake. A similar study [141] in mosquitoes (A. aegypti) found
caveolae-mediated endocytosis is essential for nanoparticle (anhydride) internalization into epithelial
cells. This is especially true for smaller particles (<100 nm) but could also allow larger particles such as
lipoplexes which can easily exceed that size. Pharmacological studies have also confirmed that dsRNA
lipoplexes are an effective mode of treatment against the human fungal pathogen Aspergillus flavus,
however no mode of uptake was described [137]. Chavan et al. [142] showed that liposomes have
an affinity for the β-glucan in Aspergillus cell walls, which is primarily exposed at the septa of the
hyphae during growth and division of the cells. Given that lipoplexes appear to deliver dsRNA
by a mechanism other than clathrin-mediated endocytosis, they could potentially prove effective in
administering dsRNAs to RNAi insensitive organisms such as the lepidopterans, as well as strains
resistant to clathrin-mediated uptake.

4.6. Concluding Remarks

RNAi technologies hold the potential to generate a novel class of pesticides to provide growers
with additional tools to overcome unpredictable changes and guidelines to traditional chemistries.
Despite recent advances in dsRNA uptake mechanisms in insect species, much remains to be discovered.
In fungi, even less is known, where the formulation, uptake, and processing of dsRNAs remains
relatively undescribed. Studying the durability and delivery methods of dsRNAs, and more specifically
the uptake of these dsRNAs into the target organism remains ripe for investigation. As with any crop
protection strategy, resistance is always a concern. Uptake mechanisms will shine a light on potential
areas where resistance may develop. Ultimately, the answers to these questions will play an important
role in the successful implementation of RNAi in agriculture. The development of successful dsRNA
formulations that protect, facilitate delivery, and discourage resistance buildup, will guarantee RNAi
as the next generation of crop protection tools for improved agricultural outputs.
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