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Abstract: Cannabis has been used to relieve the symptoms of disease for thousands of years. However,
social and political biases have limited effective interrogation of the potential benefits of cannabis
and polarised public opinion. Further, the medicinal and clinical utility of cannabis is limited by
the psychotropic side effects of ∆9-tetrahydrocannabinol (∆9-THC). Evidence is emerging for the
therapeutic benefits of cannabis in the treatment of neurological and neurodegenerative diseases,
with potential efficacy as an analgesic and antiemetic for the management of cancer-related pain
and treatment-related nausea and vomiting, respectively. An increasing number of preclinical
studies have established that ∆9-THC can inhibit the growth and proliferation of cancerous cells
through the modulation of cannabinoid receptors (CB1R and CB2R), but clinical confirmation remains
lacking. In parallel, the anti-cancer properties of non-THC cannabinoids, such as cannabidiol (CBD),
are linked to the modulation of non-CB1R/CB2R G-protein-coupled receptors, neurotransmitter
receptors, and ligand-regulated transcription factors, which together modulate oncogenic signalling
and redox homeostasis. Additional evidence has also demonstrated the anti-inflammatory properties
of cannabinoids, and this may prove relevant in the context of peritumoural oedema and the tumour
immune microenvironment. This review aims to document the emerging mechanisms of anti-cancer
actions of non-THC cannabinoids.

Keywords: cannabinoids; cannabidiol; ∆9-tetrahydrocannabinol; cannabinoid receptors; G-protein-
coupled receptors; cancer; apoptosis; inflammation

1. Introduction

The flowering herb Cannabis sativa L. (Cannabaceae) has been used in traditional Eastern medicines
as an analgesic, anxiolytic, anticonvulsant, sedative, and hypnotic, for almost 5000 years [1]. More
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recently, medicinal cannabis has been studied for its efficacy in the treatment of epilepsy, inflammation,
anxiety, nausea and cancer-related pain [1]. Emerging anecdotal and preclinical evidence has further
demonstrated that cannabis can also modulate tumour growth [2]: a finding that has renewed interest
in the use of cannabis as a potential anti-cancer therapeutic [3], in spite of the limited available clinical
trial data. Encouragingly, the recent rapid change to the legislative status of recreational and medicinal
cannabis is now enabling appropriate assessment of the use of cannabis and cannabinoids in the clinical
setting [4].

The two main cannabinoids in cannabis are ∆9-tetrahydrocannabinol (∆9-THC) and cannabidiol
(CBD). Each of these cannabinoids demonstrate very different pharmacological actions. Concerns about
the undesirable effects caused by the primary psychotropic constituent, ∆9-THC, have led to hesitancy
to prescribe cannabis for medicinal use. Tachycardia, anxiety, altered cognitive perception, as well as
other behavioural issues, are commonly reported symptoms stemming from the use of ∆9-THC [5,6].
Further, ∆9-THC can also alter immune system function, and increase the susceptibility of a patient
to microbial infections [7,8]. In spite of the demonstrated anti-cancer properties of ∆9-THC, this
cannabinoid has also been revealed to promote tumour growth, invasion and metastasis in some cancer
cell types. In breast cancer for example, ∆9-THC-mediated increased tumour growth and metastasis
was associated with inhibition of the anti-tumour specific immune responses in vivo [8]. A retrospective
analysis further demonstrated that cannabis use is associated with the markedly reduced effectiveness
of immune checkpoint inhibitors [9]. Therefore, rigorous and meticulous anti-cancer research, both
pre-clinically and clinically, is required to provide the necessary medical rationale to support the use of
medicinal cannabis as a complementary, or alternative, anti-cancer treatment option.

Conversely, the undesirable side effects, such as drug dependence/tolerance/abuse issues shrouding
the use of ∆9-THC is not seen with CBD (the second most abundant cannabinoid in cannabis). Indeed,
CBD is well-tolerated in patients, even at relatively high doses in contrast with ∆9-THC, which has a
maximum tolerated daily dose of only 15 to 90 mg in adult patients, and this daily maximum requires
ongoing, individualised adjustment, to ensure that side effects are managed for each patient [10].
Furthermore, CBD has anti-psychotic, anti-convulsive, anxiolytic, sedative and anti-inflammatory
properties, none of which have been reported for ∆9-THC [11]. The more recently reported positive
health benefits of CBD, and for other non-THC cannabinoids, has promoted and accelerated research
into non-THC cannabinoids [11–13]. In spite of these promising findings, legislation continues to lag.
For example, the concentration of ∆9-THC required by law to classify cannabis as being a ‘low-THC’
variety, varies from country to country. Presently, in the United States, cannabis is permitted for
therapeutic use in 24 states and territories, including the District of Columbia, Guam, Puerto Rico
and the U.S. Virgin Islands, with an additional 16 states allowing the use of low ∆9-THC/high CBD
products (commonly referred to as ‘hemp’) for medical reasons, albeit in limited situations [14].
In most Australian states and territories, the limit of ∆9-THC in hemp must be below 1% of total plant
material [15,16]. This is in direct contrast with the legislation of the U.S. For example, the state law of
New Jersey stipulates that a substance with a ∆9-THC content of less than 10% (by weight) classifies
the substance as low-THC [17]. This highlights the significant variation in global cannabis classification
systems, and as such, creates considerable complexity when attempting to reveal the clinical efficacy of
low-THC cannabis and non-THC cannabinoids.

Effects of Cannabis on Human Health

Medicinal cannabis is increasingly being used in the clinical setting [18–21]. However, contrasting
views on the long- and short-term impacts on patient health, following the sustained use of ∆9-THC
cannabis, persist. There is no doubt that recreational use is associated with substantial adverse
health effects. Still, the burden of disease stemming from the recreational use of cannabis is much
lower than other commonly used legal and illicit substances [22]. Reports of brain damage and
cognitive dysfunction [23] are contrasted by clinical studies that show improved cognitive function
with the controlled use of ∆9-THC cannabis [24]. Furthermore, ∆9-THC and synthetic cannabinoids
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(sCB) (discussed in Section 2), protected normal rat astrocytes from induced cell death post exposure
to ceramide (N-acetylsphingosine cell-permeable analogue; see Section 3.4.1), via the activation of
phosphatidylinositol 3-kinases –PI3K/protein kinase B–Akt/p90 ribosomal S6 kinase–RSK, survival
signalling pathways [25]. Conversely, Lenzi et al. showed that sCBs have mutagenic capabilities
in healthy human lymphoblasts and can cause chromosomal damage at the concentration range
of 25 to 50 µM [26]. Koller et al. also demonstrated that sCBs can cause DNA damage in human
lymphocytes [27].

There is unanimous support to encourage harm minimisation approaches in order to decrease
medicinal or recreational cannabis use while pregnant or postpartum [28]. For example, ∆9-THC
containing cannabis use is negatively correlated with foetal birth weight (up to a 450 g reduction) [29],
and the development of neurotransmission systems, with the endocannabinoid system playing a
number of important roles in brain development. Although the evidences so far are ambiguous, it is
unsurprising that prenatal exposure to cannabis may have neurocognitive consequences, including
affective mental disorders (anxiety and depression), and attention deficit hyperactivity disorders
(reviewed in [30]), which are also common occurrences in the adult life of long-term ∆9-THC cannabis
users (reviewed in [31]). Interestingly, CBD elicits different neurocognitive activity compared with that
of ∆9-THC [32]. In some cases however, CBD can induce somnolence and fatigue [33], akin to the use
of ∆9-THC. CBD also has the ability to cross the placenta and to reach breast-milk, further highlighting
the need to abstain while pregnant or when postpartum [33]. Due to the risk of accumulation, CBD
dose adjustment is required in patients with hepatic impairment [34]. CBD may cause hepatotoxicity,
as mouse modelling showed that an acute dose of 2460 mg/kg (24 hr), or a sub-acute dose of 615 mg/kg
(10 days), increased markers of liver damage, including liver-to-body weight ratios, plasma alanine
aminotransferase and aspartate aminotransferase enzyme levels, and total bilirubin after 3–4 days of
treatment [35]. Furthermore, there is currently limited evidence regarding the long-term safety and
cognitive consequences of the sustained consumption of CBD, either in the recreational or medicinal
setting [36].

2. Cannabinoids

To date, over 620 chemical compounds, including cannabinoids, cannabis-specific prenylated
flavones (cannflavin A and B), and terpenoids, have been isolated from traditional cannabis [37].
Unlike recreational varieties of the cannabis plant that contain high levels of ∆9-tetrahydrocannabinolic
acid (the biosynthetic precursor of ∆9-THC), the primary cannabinoids in low-THC cannabis/hemp
include cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabichromenic acid (CBCA), and
their decarboxylated forms cannabidiol (CBD), cannabigerol (CBG), and cannabichromene (CBC),
respectively [37,38].

Cannabinoids (a group of terpenophenolics) are highly abundant in this plant species, with more
than 100 different cannabinoids identified as constituents of the cannabis plant [37]. Endogenous and
exogenous cannabinoids can be separated into three main groups, including; (1) endocannabinoids
(eCBs); (2) phytocannabinoids (pCBs), and; (3) sCBs [39]. The eCBs are an endogenous group of
lipid-based, retrograde neurotransmitters that bind to cannabinoid receptors (CBRs) and related
receptor proteins in animals [40]. There are two major human eCBs, anandamide (AEA) and
2-arachidonoylgycerol (2-AG) [41]. Both AEA and 2-AG are derived from the non-oxidative metabolism
of membrane phospholipids [42], with AEA degraded by the fatty acid amide hydrolase (FAAH) [40],
whereas the monoacylglycerol lipase (MAGL) enzyme is primarily responsible for terminal 2-AG
degradation [43]. pCBs (or simply cannabinoids) are naturally occurring plant-derived cannabinoids
unique to the cannabis plant, with the two major chemicals derived from the common precursor,
cannabigerol (CBG) [44]. sCBs, such as WIN-55, 212-2, HU120, JWH-015 and JWH-133, are classified
on the basis of their chemical structure and affinity for CBRs [39].
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3. Role of Cannabinoids in Cancer

In vitro and in vivo animal models have shown that cannabinoids have selective anti-cancer
activity in a wide range of cancer cell lines, including breast [13], prostate [45], cervical [46], brain [47,48],
colon [49] and leukaemia/lymphoma [50,51] (Table 1). A variety of cannabinoids, and cannabinoid
extracts, have been subjected to several phase I/II clinical trials (summarised in Table 2). The mechanisms
of anti-cancer action for both ∆9-THC and non-THC cannabinoids remains enigmatic, however, most
studies suggest that ∆9-THC induces apoptosis and cytotoxicity via CBR-dependent pathways [50–52],
while non-THC cannabinoids, such as CBD, modulate the activity of other de-orphan and orphan
G-protein-coupled receptors (GPCRs) and non-GPCRs.



Cancers 2020, 12, 1033 5 of 27

Table 1. Anti-cancer effects of cannabinoids in various cancer cell lines.

Cancer Type Model/Cell Line Compound Effective Dose Effects References

Breast

MCF-7

Cannabidiol (CBD) 8.2 µM/2.6 mg/L

Inhibition of cancer cell growth and
proliferation

[13]
CBD-rich extract (~70%

CBD) 6.0 µM/2.7 mg/L

∆9-tetrahydrocannabinol
(∆9-THC)

14.2 µM/4.5 mg/L

AEA 1.4 µM/0.5 mg/L [53]

MDA-MB-231
CBD 2.2 µM/0.7 mg/L Inhibition of cancer cell growth,

induction of apoptosis [54]

WIN-55,212-2, JWH-133 10 µM/4.3 mg/L,
10 µM/3.1 mg/L Inhibition of proliferation [55]

Xenograft-MBA-
MD-231 cells

CBD 5 mg/kg (i.p.)
Reduced tumour size and volume [13]CBD-rich extract (~70%

CBD) 6.5 mg/kg (i.p.)

WIN-55,212-2, JWH-133 5 mg/kg (i.p.) Reduced tumour growth,
angiogenesis and metastasis [55]

Cervical

SiHa

CBD

3.2 µg/mL/3.2 mg/L
Inhibition of cancer cell growth,

induction of apoptosis [46]HeLa 3.2 µg/mL/3.2 mg/L

ME-180 1.5 µg/mL/1.5 mg/L

Colon

HCT8

CB-13 >50 nmol/L/0.02 mg/L Inhibition of cancer cell growth [49]
SW480

HCA7

HCT15

HCT-116 CBG ≥3.0 µM/0.9 mg/L Reduced viability of cancer cells
[56]Xenograft-HCT-

116 CBG 3 and 10 mg/kg (i.p.) Inhibition of tumour growth
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Table 1. Cont.

Cancer Type Model/Cell Line Compound Effective Dose Effects References

Glioma

U251
CBD 0.6 µM/0.2 mg/L

Inhibition of cancer cell growth
[47]∆9-THC 3.3 µM/1 mg/L

U87
CBD 0.6 µM/0.2 mg/L

∆9-THC 3.3 µM/1 mg/L

GSC3832 CBD 3.5 µM/1.1 mg/L Inhibition of viability [57]
GSC387 CBD 2.6 µM/0.8 mg/L

U87MG CBD >25 µM/>7.9 mg/L Reduced viability and induce
cancer cell death [58]

Xenograft-U87 CBD 6.7 mg with 75 mg micro-particles Inhibition of tumour growth [59]

Multiple
Myeloma

U266

CBD 32.2 µM/10.1 mg/L

Reduced cancer cell viability,
increased cytotoxicity, inhibition of

cancer cell migration
[60,61]

∆9-THC 39.5 µM/12.4 mg/L

CBD + ∆9-THC +
carfilzomib

(0–50 µM/0–15.7 mg/L) CBD +
(12.5–50 µM/3.9–15.7 mg/L) ∆9-THC +

(12.5–100 nM/0.009–0.072 mg/L) carfilzomib

U266TRPV2 CBD 19.8 µM/6.2 mg/L

RPMI

CBD 22.4 µM/7.0 mg/L

∆9-THC 30.8 µM/9.7 mg/L

CBD + ∆9-THC +
carfilzomib

(0–50 µM/0–15.7 mg/L) CBD +
(12.5–50 µM/3.9–15.7 mg/L) ∆9-THC +

(0.9–7.5 nM/0.0006–0.005 mg/L) carfilzomib

RPMITRPV2 CBD 13.5 µM/4.2 mg/L
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Table 2. Clinical trials using cannabinoids for the treatment of cancer *.

Trial No. Cancer Type/s Study Type/Phase Treatments Dose of Cannabinoids or
Cannabis Products Delivery Outcome ň

NCT01812603;
NCT01812616

Glioblastoma
multiforme (GBM)

Interventional (Clinical
Trial)/Phase 1 & Phase 2

Combination of
Temozolomide (TMZ)

and Sativex (1:1
∆9-THC:CBD)

Dose-intense TMZ with a
maximum of 32.4 mg THC

and 30 mg CBD per day
Oral spray Increased 39% of 1-year

survival rate

NCT02255292 Solid tumour Interventional (Clinical
Trial)/Phase 2 CBD Unknown Unknown Not yet recruiting

NCT01489826 Solid tumour Interventional (Clinical
Trial)/Phase 1

Dexanabinol (HU-211; a
synthetic cannabinoid)

2–36 mg/kg once weekly–3
doses in 21-day cycle

Intravenous
infusion

Progression-free survival
increased

NCT01654497 Brain cancer Interventional (Clinical
Trial)/Phase 1 Dexanabinol (HU-211) 2–44 mg/kg once weekly–4

doses in 28-day cycle
Intravenous

infusion
No relevant results

available

NCT03431363 Head and neck
cancer Observational

Medically certified
cannabis with adjuvant

chemoradiation

Dosing options to be stratified
into 3 groups viz. standard,

frail/elderly (age > 65 or
ECOG 2), and

cannabis-experienced

Smoke Recruiting

NCT02423239
Hepatocellular

carcinoma;
pancreatic cancer

Interventional (Clinical
Trial)/Phase 1

Dexanabinol (HU-211)
monotherapy and in

combination with
chemotherapy

MTD ** once a week Intravenous
infusion Ongoing

NCT03245658 Pancreatic cancer Interventional (Clinical
Trial)/Phase 2 1:2 ∆9-THC:CBD

Individually titrated doses on
daily basis; for 4 weeks Oral drops Not yet recruiting

NCT03529448 GBM Interventional (Clinical
Trial)/ Phase 1 & Phase 2

TN-TC11G (1:1
∆9-THC:CBD)

combination with
temozolomide and

radiotherapy

Total daily dose of 10–160 mg,
after meal Unknown Not yet recruiting

NCT03617692

Non-small-cell
lung carcinoma

(NSCLC)
metastasis

Observational Cannabis products
Products, dose and

administration frequency
decided by study participants

Oral
administration Recruiting
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Table 2. Cont.

Trial No. Cancer Type/s Study Type/Phase Treatments Dose of Cannabinoids or
Cannabis Products Delivery Outcome ň

NCT03052738 Paediatric CNS
tumour Observational

Medical
marijuana-derived

products

Method of delivery, strain used, dosing and
frequency decided by study participants Recruiting

NCT03687034 Glioblastoma Interventional (Clinical
Trial)/Phase 1

CBD with standard of
care Escalating doses of CBD

Oral
sublingual

formulation
Not yet recruiting

NCT03607643

GI malignancies
(pancreas, liver

rectum, colon, or
gall bladder),

multiple myeloma,
or GBM

Interventional (Clinical
Trial)/Phase 1 & Phase 2

CBD with standard of
care chemotherapy

100 mg twice daily before
meal

Oral
sublingual

formulation
Not yet recruiting

ACTRN1261700
1287325 GBM Interventional (Clinical

Trial)/Phase 2

1:1 ∆9-THC:CBD
(6 mg/mL:6 mg/mL) or

1:4 CBD:∆9-THC
(3.8 mg/mL:15 mg/mL)

and standard
treatment ***

Starts at 0.25 mL at night and
each night titrated up or

downwards by 0.05 mL based
on participant’s response

Oral oily
liquids

No relevant results
available

ACTRN1261900
0265178 Any cancer Interventional (Clinical

Trial)/phase 4

∆9-THC or 1:1
∆9-THC:CBD.

Combined with
standard treatment for
advanced cancer and

symptoms

Starts at 2.5 mg THC three
times a day in cannabis naive
patients, and 5 mg THC three
times a day in previous users.

Dosage adjusted based on
patient’s response up to a
maximum of 30 mg THC

per day.

Oral oily
liquids Recruiting

ACTRN1261900
0037101 Any cancer Interventional (Clinical

Trial)/Phase 2 1:1 ∆9-THC:CBD
Total daily dose of 2.5 mg:2.5

mg–30 mg:30 mg
Oral oily

liquid Recruiting

ACTRN1261800
1220257 Any cancer Interventional (Clinical

Trial)/Phase 2 CBD Total daily dose of
50 mg–600 mg

Oral oily
liquid Recruiting
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Table 2. Cont.

Trial No. Cancer Type/s Study Type/Phase Treatments Dose of Cannabinoids or
Cannabis Products Delivery Outcome ň

ACTRN1261800
1205224 Any cancer Interventional (Clinical

Trial)/Phase 1
CBD or ∆9-THC with

palliative care

Total daily doses of 50
mg–600 mg/day for CBD or

2.5 mg–30 mg for THC

Oral oily
liquid

Doses of THC and CBD
used in the study were
generally well tolerated

and up to 50% of the
participants had an overall

improvement in their
condition since starting

cannabis but results need to
be replicated in placebo

controlled trial [62]

ACTRN1261600
1036404 Any cancer Interventional (Clinical

Trial)/Phase 2 & Phase 3
1:1 ∆9-THC/CBD with

chemotherapy

2.5 mg THC and 2.5 mg CBD,
once the day before

chemotherapy and three times
daily for 5 days for the first 5

days of participants’
chemotherapy cycle and for

three consecutive cycles.

Oral Capsule Recruiting

* Sources: www.clinicaltrials.gov and www.anzctr.org.au (ANZCTR), ** Maximum Tolerated Dose, *** Includes chemotherapy, radiation, immunotherapy, or any other cancer related
treatment requested by the participants medical specialists and including best supportive and palliative care, ň As at 3 April 2020.

www.clinicaltrials.gov
www.anzctr.org.au
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3.1. Cannabinoid Receptors (CBRs)

Notably, ∆9-THC and sCBs elicit central and peripheral effects via stimulation of the cannabinoid
GPCRs, CB1R (CNR1) and CB2R (CNR2) [63,64], whereas CBD shows negligible affinity for CB1R
or CB2R [65]. CB1R and CB2R are expressed on both extracellular and intracellular membranes of
organelles, such as the nucleolus, mitochondria and Golgi apparatus [66]. CB1R is primarily found in the
brain and in the peripheral central nervous system (CNS), whereas CB2R is predominantly expressed in
immune cells [64]. Thus, the involvement of CB1R is more likely to drive psychotropic activity, with the
weight of evidence showing that CB2R activation modulates immunological responses [67]. However,
CB2R modulated neurological function and its expression in the CNS on microglia, astrocytes, and
subpopulations of neurons has also been reported (reviewed in [68]). Nevertheless, both CB1R and
CB2R are linked to the anti-cancer effects of ∆9-THC [69,70].

3.2. Non-THC Cannabinoids Are Ligands for Calcium Selective Ion Channels and Orphaned/De-Orphaned
G-Protein-Coupled Receptors

Non-THC cannabinoids, such as CBD, show a reduced affinity for the classical CBRs, acting
as an antagonist or inverse agonist of CBRs, with an inhibitory constant (Ki) of 1458.5 ± 158.5 nM
for CB1R and 372.4 ± 57.5 nM for CB2R [71]. Therefore, it is unlikely that CB1R and CB2R play a
significant role in the anti-cancer effects of CBD. Transient receptor potential vanilloid (TRPV) calcium
selective ion channels are targets for cannabinoids [72,73] (discussed in Section 3.2.1). The majority
of reports highlight a role for non-THC cannabinoids as ligands for de-orphaned GPCRs, such as
G-protein-coupled receptor 55 (GPR55) (discussed in Section 3.2.2) and GPR119. However, GPR119 is
only activated by eCBs analogues, including oleoylethanolamide and palmitoylethanolamide, rather
than pCBs or sCBs. Therefore, GPR119 is not discussed in detail here, other than to outline that its
agonism by specific ligands (such as MBX-2982 or GSK1292263), re-sensitises breast cancer cells that
have developed resistance to gefitinib [74]. Uniquely, CBD is a ligand for the orphan GPCRs, GPR3,
GPR6 and GPR12 (discussed in Section 3.2.3).

3.2.1. Transient Receptor Potential Channels of the Vanilloid Subtype–TRPV1/2

The transient receptor potential (TRP) superfamily of transmembrane ion channels TRPV1–TRPV4,
and TRPA1 and TRPM8, are termed the ionotropic CBRs. The activation of TRPV1 by CBD, and
of TRPV2 by CBD and ∆9-THC, inhibits human glioma cell proliferation and viability in vitro [58].
TRPV1 receptors regulate calcium influx to trigger apoptosis via the mitochondrial intrinsic and p38
MAPK-dependent pathways (Figure 1) [75]. TRPV1 also degrades EGFR (epidermal growth factor
receptor), which is known to be overexpressed and activated in a variety of cancers; findings that
highlight the tumour-suppressor capabilities of TRPV1, as well as identifying a role for CBD in cancer
cell types where EGFR is overexpressed or mutated [76]. Commensurate with the tumour-suppressor
capabilities of TRPV1, the expression of TRPV1 has been shown to be significantly decreased in the
high-grade glioma, glioblastoma multiforme (GBM), thereby potentially reducing the therapeutic
benefits of CBD in advanced patients [75]. In addition to TRPV1, TRPV2 plays a role in regulating
glioma cell survival and proliferation, with high levels of TRPV2 expression detected in benign
astrocytes, with progressively less expression of TRPV2 in high-grade gliomas corresponding with
histological grade [77]. Indeed, the repression of TRPV2 abundance in human glioma cell lines was
in turn demonstrated to result in the increased expression of cyclin E1, cyclin-dependent kinase 2
(CDK2), transcription factor E2F1 (E2F1), RAF proto-oncogene serine/threonine-protein kinase (RAF1)
genes, and the anti-apoptotic gene, Bcl-xL (BCL2L1) [58]. Increased cyclin E1, CDK2, E2F1, RAF1 and
BCL2L1 gene expression reduced the abundance of the cell death receptors and of proteins encoded
by apoptosis-related genes, Fas and procaspase-8, an expression change that enhanced cell survival
and proliferation (Figure 1). Interestingly, CBD has also been shown to enhance the cytotoxicity
of certain chemotherapeutics via triggering TRPV2-dependent calcium (Ca2+) influx, and this in
turn increased the degree of chemotherapeutic uptake, while simultaneously reducing the incidence
of chemoresistance in GBM cells. No such effect has been reported for normal human astrocytes
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(Table 1) [58]. A limitation of this study is, however, that parallel assessment of the TRPV2-dependent
Ca2+ influx and sensitisation to temozolomide (TMZ), carmustine (BCNU) or doxorubicin (DOXO)
was not performed following ∆9-THC treatment.
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Figure 1. Transient receptor potential channels of the vanilloid subtype proteins and G-protein-coupled
receptors mediates the anti-cancer effects of non-tetrahydrocannabinol (non-THC) cannabinoids.
Cannabidiol (CBD) antagonises the de-orphaned G-protein-coupled receptor GPR55, and agonise
transient receptor potential vanilloids (TRPVs), TRPV1 and TRPV2. CBD may out-compete the natural
ligands of orphaned G-protein-coupled receptors (GPCRs), GPR3, GPR6 and GPR12, and this in turn
suggests a mechanism for the inhibition of tumour growth and the induction of cell cycle arrest, and/or
may even promote selection of cancer stem cells (CSCs).

3.2.2. De-Orphaned G-Protein-Coupled Receptor 55

GPR55 is widely expressed in the mammalian brain with its abundance concentrated in large
dorsal root ganglions (DRGs) [78], and is also expressed in peripheral tissues such as the endocrine
pancreas [79]. GPR55 is a direct target of the pCBs, CBD and ∆9-THC, the eCBs, AEA and 2-AG, and the
sCB, JWH-015 [63,80]. The downstream effects of GPR55 agonism depend on the cannabinoid present.
For example, ∆9-THC, AEA, JWH-015, bind GPR55 to drive intracellular release of Ca2+ in HEK293
cells, transiently transfected to express human GPR55 (GPR55-HEK293), with this process regulated by
G protein, Gq/11-phospholipase C (PLC) [77]. This effect can be abolished via the transient transfection
of HEK293 cells with a dominant-negative mutant of Gq/11, or via use of the CB1R/GPR55 antagonist,
SR141716A [78]. On the other hand, CBD, WIN-55,212–2 or 2-AG, all failed to increase the intracellular
release of Ca2+, with the CB2R antagonist, SR144528, also failing to reduce the degree of induction of
JWH-015-mediated Ca2+ flux in large DRG neurons. Additional GPR55-HEK293 transgenic studies
showed that the inverse agonist of CB1R, AM251, and l-α-lysophosphatidylinositol (LPI; a ligand of
GPR55), evoked GPR55-mediated Ca2+ oscillation [81]. The endogenous lysophospholipid, LPI, is a
well-established mitogenic mediator of oncogenic signalling [82,83]. LPI binding to GPR55 drives the
proliferation of cancer cells, often in an autocrine fashion (reviewed in [84]), via the activation of the G
protein-RhoA/Rho kinase (Rho/ROCK)-PLC signalling axis, resulting in intracellular Ca2+ release from
the endoplasmic reticulum (ER). This leads to the activation and subsequent nuclear translocation of the
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transcription factor NFAT (nuclear factor of activated T-cells), which in turn regulates the transcriptional
activity of a number of genes [81]. LPI-mediated Ca2+ release was abolished using the Rho/ROCK inhibitor,
Y-27632, or by transiently transfecting GPR55-HEK293 cells with a dominant-negative mutant of RhoA [81].

These ground-breaking studies have laid the foundations for future research characterising the
role GPR55 plays in cancer cell proliferation and anchorage-independent growth [85], angiogenesis [86],
migration [87] and metastasis [88,89], with evidence that LPI-induced GPR55 activation plays a role in
prostate, ovarian, GBM, breast, skin and pancreatic cancers (reviewed in [84]). Indeed, LPI (10 µM)
induced activation of GPR55 in prostate and ovarian cancer cell lines drives the rapid intracellular
release of Ca2+ to increase phosphorylation of the extracellular signal-regulated kinases, ERK and
Akt [85]. Topically, LPI-induced ERK signalling was reduced by pre-treating human ovarian and
prostate cancer cell lines with CBD (3.0 µM/0.94 mg/L), or SR141716A (2.0µM), the Rho/ROCK inhibitor
Y-27632 (20µM), or via the molecular inhibition of GPR55 [84]. Interestingly, unlike CBD and SR141716A
treatments, the inhibition of Rho/ROCK did not reduce LPI induced Ca2+ oscillation [84]. This finding
recognises an important role for CBD in cancer cell types characterised by high GPR55 activity.

Elevated GPR55 gene expression in breast cancer is associated with reduced disease-free survival,
overall survival, and metastasis-free survival, with the highest levels of expression observed in
aggressive basal/triple-negative breast tumours [89]. Pro-metastatic properties in this context were
exacerbated through an LPI-induced GPR55-Gq/11 coupling, and activation of RhoA, leading to actin
cytoskeleton remodelling, changes in cell dynamics, and increased metastasis. Further, ERK activation
in turn stimulates the expression of the transcription factor, ETV4/PEA3 [89] (Figure 1); a gene
expression pattern associated with a higher risk of distant metastasis in basal/triple-negative breast
cancers [90]. Importantly, previous studies have shown that CBD (5 mg/kg) inhibits the growth of
MDA-MB-231 breast cancer cells in vivo using xenograft mouse models [13], once again highlighting a
potential role for CBD in the treatment of GPR55 overexpression and aggressive cancer types.

Recently, using the KPC mouse model of pancreatic ductal adenocarcinoma (PDAC), Ferro et al.
demonstrated that GPR55 signalling could enhance pancreatic cancer cell growth and proliferation
in vivo, via the activation of the mitogen-activated protein kinase (MAPK) signalling pathway
(Figure 1) [91]. The knockdown of GPR55, or its pharmacological inhibition using CBD, reduced ERK
and ribosomal protein S6 phosphorylation, to decrease anchorage-dependent and -independent growth.
In addition, inhibition of GPR55 using CBD decreased cyclin D1 and D2 expression and activated the
tumour suppressor retinoblastoma (RB) to block cell cycle progression (Figure 1) [91]. The standard of
care chemotherapy for pancreatic cancer centres on the use of the nucleoside analogue gemcitabine
(GEM), which has previously been shown to increase ERK activation, a suggested mechanism of
acquired resistance [92]. GEM can act via inhibition of the enzyme ribonucleotide reductase 1 (RRM1),
and resistance to GEM can also be associated with increased RRM1 and RRM2 expression (Figure 1).
The expression of both reductases however, was shown to reduce following CBD treatment in vitro [91].
Importantly, treatment using CBD (100 mg/kg), to inhibit GPR55, in combination with GEM (100 mg/kg),
improved the survival rate of a PDAC mouse model by a factor of three (mean 52.7 vs. 18.6 days,
median 56 vs. 20 days), compared to the vehicle control, and also longer than mice given GEM alone
(mean 52.7 vs. 27.8 days, median 56 vs. 23.5). Furthermore, this combined treatment approach, when
applied in vitro and in vivo, was also demonstrated to counteract the development of resistance to
GEM [91], offering an exciting clinical prospect for the application of CBD in this setting.

3.2.3. Orphan G-Protein-Coupled Receptors GPR3, GPR6 and GPR12

Recently, it was shown that the constitutively active orphan GPCRs; GPR3, GPR6 and GPR12
(GPCRs phylogenetically related to the CBRs, CB1R and CB2R), are novel and specific targets of
CBD [93]. These receptors are predominantly expressed in the brain and reproductive tissues, with
the binding of CBD to GPR3, GPR6 and GPR12 thought to act as an inverse agonist of the unknown
natural ligand of these orphan receptors [93,94]. GPR3 is overexpressed in breast cancer stem cells
(CSCs). The inhibition of GPR3 activity in CSCs has been demonstrated to result in the enhanced
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expression of the transcription factor encoding loci, NANOG, and OCT3/4 [95]. Both NANOG and
OCT3/4 play central roles in promoting the self-renewal and long-term proliferative potential of
stem-like cancer cells. It is therefore possible that CBD out-competes the endogenous ligand of these
orphan GPCRs, thereby blocking β-arrestin2 recruitment to GPR3 and GPR6 [93,94]; an obstruction
that would significantly decrease cAMP accumulation and reduce PKA signalling to inhibit the motility,
growth and metabolism of the cell [96] (Figure 1). Conversely, CBD may block natural orphaned GPCR
signalling, potentially leading to the enrichment of chemotherapy-resistant breast CSCs. Therefore,
future research is required to adequately functionally characterise whether the interactions between
CBD and these novel receptors, does in actual fact, portend an effective anti-cancer prospect.

3.3. Crosstalk between GPCRs and Non-GPCR Signalling Pathways

There is clear evidence that cannabinoids, particularly ∆9-THC, modulate the activity of GPCRs,
including the well characterised CB1R and CB2R. However, conjecture remains about which downstream
pathway(s) elicit the anti-cancer activity of CBD. While most studies have demonstrated that CBD has
low affinity for CB1R and CB2R, research by McKallip et al. and Massi et al. revealed that in lymphoma
and acute lymphoblastic leukaemia (ALL) cell lines and human glioma cell lines, respectively, CBD
(2.5 µM/0.8 mg/L) induced apoptosis through a CB2R-specific mechanism, and not via binding to either
CB1R or TRPV1 [51,97] (Figure 2). Furthermore, the treatment of primary T-ALL lymphoblasts with
the CB2R selective agonist, JWH-133, and of Jurkat cells with the TRPV1 agonist, RTX, also induced
apoptosis [98]. Whether the CBD effects in this context are a result of the level of CBR activity in these
cells is yet to be unequivocally determined. However, additional in vitro research has shown that CBD
inhibits human breast cancer cell growth and induces apoptosis via the activation of both CB2R and
TRPV1 [13]. Taken together, these findings put forth the hypothesis that crosstalk between the GPCRs
and non-GPCR signalling pathways may direct the selective anti-cancer activity of cannabinoids.
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Figure 2. Cannabinoid induced anti-cancer crosstalk between G-protein-coupled receptor (GPCR) and
non-GPCR signalling pathways is significant and complex. Cannabinoids interact with CB1R and CB2R
and with non-cannabinoid receptors (CBRs) GPCRs (discussed in Section 3.3) to induce cancer cell
death via promotion of cellular stress response pathways, increased ceramide synthesis, and reduced
oncogenic growth and proliferation signalling.
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Further evidence of crosstalk between oncogenic signalling pathways and either CB1R or CB2R is
highlighted by the observation that ∆9-THC, WIN-55,212-2 or JWH-133, can downregulate the vascular
endothelial growth factor receptors (VEGFRs), to reduce the angiogenesis and metastasis of skin cancer
cells in vivo [99], and of glioma cells in vitro and in vivo [100] (Figure 2). The eCBs, AEA and 2-AG,
and the sCB, HU-210, inhibit the proliferation of human breast and prostate cancer cells via crosstalk
between the CB1R, the high-affinity nerve growth factor receptor (NTRK1) and the prolactin receptor
(PRLR) signalling pathways [53] (Figure 2). In oestrogen receptor-α negative (ERα-) and positive
(ERα+) breast cancers, the activation of CB2R by JWH-015 reduced breast cancer cell survival via
blocking of the EGFR and insulin-like growth factor-1 receptor (IGF1R) pathways. Blockage of the
EGFR and IGF1R pathways in turn leads to the reduced activation of the downstream signal transducer
and activator of transcription 3 (STAT3), RAC-α,β,γ, Akt and ERK signalling pathways [101] (Figure 2).
Interestingly, positive correlation between elevated CB2R expression and relapse-free survival has
been established [53]. This positive correlation is particularly evident in ERα+ and ERα- breast cancer
patient samples, cancer cell types known to have elevated EGFR and IGF1R expression [53]. Such
observations may support the potential use of CB2R agonists as an adjuvant therapy option for ERα+

and ERα- breast cancer patients [101].
CBD has been shown to be effective alone, and in combination with the approved proteasome

inhibitor, bortezomib, for the treatment of multiple myeloma (MM) [60]. In this context, TRPV2 was
shown to regulate the cytotoxic effects of CBD, in a TPRV2 expression dependent manner [60]. TRPV2
activation by CBD decreased the levels of phosphorylation of ERK and Akt, and synergised the effects
of bortezomib treatment, to decrease cyclin D1 (CCND1) expression. More recent studies highlighted
the crosstalk between CBR-dependent and independent anti-cancer effects induced by cannabinoids
in MM. For example, Nabissi et al. further revealed that CBD was able to arrest the growth and
survival of MM cell lines by halting the cell cycle at the G1 phase, but also showed that ∆9-THC was
an additional effective cell cycle inhibitor, a finding that further highlights a role for ∆9-THC in TPRV2
activation [61]. These studies showed that a 1:1 combination of CBD and ∆9-THC was statistically
more effective at increasing the G1 cell population, compared with either CBD or ∆9-THC treatment
alone [61], effects not antagonised via the use of the CB2R antagonist, AM630. Interestingly, rather than
activating apoptotic cascades, autophagic cell death was induced following combination treatment
with ∆9-THC and CBD. These studies went on to show reduced migration and down-regulation of
the chemokine receptor, CXCR4, and of the CD147 plasma membrane glycoprotein, using CBD or
∆9-THC alone (CBD 12.5 µM/3.9 mg/L, ∆9-THC 12.5 µM/3.9 mg/L), ∆9-THC:CBD in combination, the
immuno-proteasome inhibitor carfilzomib (100 nM) alone, and the combined treatment with all three
compounds. The results of these preclinical studies have recently prompted investigators to commence
a randomised, double-blind, placebo-controlled clinical trial to investigate whether combination of CBD
with bortezomib will have greater anti-tumour and anti-proliferative activity compared to standard of
care (bortezomib alone) in MM, GBM and gastrointestinal (GI) malignancies (Table 2).

The crosstalk between non-THC cannabinoids and the modulation of the GPCR-dependent, and
GPCR-independent signalling pathways, is becoming more evident. However, there remains an urgent
need for the application of a more focused research approach that are based on the use of purified
non-THC cannabinoids and the ‘simulated’ assessment of downstream effects using whole proteome
data [102], with the elegant supplementation of phosphoproteome data [103]. The heterogeneity of cancer
is such that, until the field acquires a more detailed understanding of the downstream effects of both
∆9-THC and non-THC cannabinoids, unlocking the definitive and selective anti-cancer mechanisms of
action of these compounds will remain ambiguous, and continue to limit their clinical utility.

3.4. Cannabinoid Receptor-Dependent Cancer Effects

There is growing evidence that cannabinoids inhibit tumour growth and metastasis and induce
tumour-specific apoptosis in cancer cells following the activation of CB1R or CB2R (Figure 3) [39,47,104].
Although counterintuitively, it is generally recognised that high grade gliomas, such as GBMs, express
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high levels of CB2R, with the degree of CB2R expression correlating with tumour grade (reviewed
in [105]). However, the data remains unclear for CB1R. In GBM tissue, compared to low-grade gliomas,
or non-tumour control tissue, De Jesús et al. revealed reduced expression of CB1R [106], Schley et al.
determined that CBR1 expression remained unchanged [107], and Wu et al. [108] and Ciaglia et al. [109]
found CBR1 expression to be elevated (reviewed in [110]). In the most aggressive and lethal of all
children’s cancers, diffuse intrinsic pontine glioma (DIPG), also known as diffuse midline glioma
(DMG), the picture is even more unclear [111]. The abundance and/or activity of these two receptors
is more clearly reported in astrocytoma, meningioma, non-small-cell lung carcinoma (NSCLC) and
lymphoma, as well as skin, prostate, breast and colon cancers (reviewed in [14]). Taken together,
these findings potentially highlight the use of ∆9-THC and CBD to elicit cancer selective cell death via
CBR-dependent and -independent mechanisms, respectively. However, there is a distinct difference
between the stimulatory and inhibitory activities of these receptors, a difference that predominantly
depends on the agonist, and on the cancer cell line used [112]. The binding of ∆9-THC to CB1R or
CB2R reduces cancer cell survival by inducing a stress response driving ceramide production, which in
turn modulates growth and proliferation signal transduction cascades, to activate both extrinsic and
intrinsic caspases (Figure 3) [47,112]. The CB1R and CB2R agonist, ∆9-THC, inhibits cell growth by
sustained ceramide accumulation, and via the activation of ERK, c-Jun N-terminal kinase (JNK) and p38
MAPK [69,113]. Treatment with CBR agonists, WIN-55,212-2, JWH-015 and JWH-133, also inhibits the
growth and metastasis of NSCLC in vitro and in vivo by inhibiting Akt phosphorylation and reducing
matrix metalloproteinase-9 (MMP9) expression and activity. This in turn inhibits the reorganisation of
the extracellular matrix, as well as to also inhibit the migratory potential of malignant cells [114].
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Figure 3. Anti-cancer effects and cell death pathways regulated by cannabinoids and the classical
cannabinoid receptors. The activation of cannabinoid receptors (CBRs) drives sustained extracellular
signal-regulated kinases (ERK) activity driving reactive oxygen species (ROS) production and leads
to activation of cyclin kinase inhibitors resulting in G1 cell cycle arrest [45,115]. Agonism of
cannabinoids receptors increases ceramide synthesis to induce endoplasmic reticulum (ER) stress driving
phosphorylation and activity of the transcription factor eukaryotic translation initiation factor 2A (eIF2α),
leading to upregulation of p8 and its downstream targets cyclic AMP-dependent transcription factor ATF-4
(ATF4), C/EBP homologous protein (CHOP), and tribbles homolog 3 (TRIB3). Activation of p8 inhibits the
Akt/mTORC1 axis, driving autophagy-mediated cell death pathway upstream of apoptosis [116].
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As alluded to in Section 1, ‘not every cloud has a silver lining’, with ∆9-THC exposure demonstrated
to promote mouse mammary tumour growth and metastasis, due to its role in reducing the specific
anti-tumour immune responses of immune cells known to express high levels of CB2R [8]. Importantly,
the agonism of CBRs using nanomolar concentrations of ∆9-THC increased the proliferation of
cancer cells through activation of MAPK via transactivation of EGFR [117]. These pro-survival
(cancer propagating) effects are also seen for AEA and the sCBs, HU-210 and WIN-55,212-2 [117].
The concentration of ∆9-THC in this context is likely to reflect serum levels detected after ∆9-THC
administration and hence are therapeutically relevant. At the current time, the prosurvival effects seen
for ∆9-THC have not been reported for CBD. Whether this is a result of lack of CBD affinity for CBRs,
particularly in immune cells, or whether pro-survival signalling requires CBR-induced transactivation
of receptor tyrosine kinases, activation that is not possible following the administration of CBD due to
CBD lacking affinity for CBRs, remains to be tested.

3.4.1. Cannabinoids Induce Apoptosis via Sustained Ceramide Accumulation

Numerous reports have shown that the modulation of CBR activity by cannabinoids inhibits the
in vitro and in vivo growth and survival of cancer cells via the production of ceramide, a pro-apoptotic
sphingolipid [49,69,118–120]. CBR activation by either ∆9-THC or WIN-55,212-2 drives the intracellular
accumulation of ceramide to activate Raf1/ERK signalling, which in turn leads to the production of
damaging cellular reactive oxygen species (ROS) (Figures 2 and 3). This drives genotoxic stress and
apoptosis in glioma cells, both in vitro and in vivo [69]. Ceramide accumulation leads to ER stress,
which in turn enhances the expression of the stress-regulated protein, p8, with enhanced p8 abundance
leading to the inhibition of the Akt/mammalian target of rapamycin (mTOR) cell signalling axis and
the activation of caspase cascades to drive apoptosis and autophagy [2,121]. Likewise, the increased
expression of cellular tumour antigen, p53 (TP53), and of the apoptosis regulator, BAX (BAX), plus
the reduced expression of anti-apoptotic protein Bcl-2, (BAD), have all been demonstrated in cervical
cancer cells treated with cannabis extracts or purified CBD (Figure 2) [46]. Additional reports show
that in human colon cancer cell lines, activation of the individual and specific activities of certain
CBRs induces apoptosis through a tumour necrosis factor-α (TNF-α) mediated de novo synthesis of
ceramide [49].

3.4.2. Downstream Targets of Ceramide

The ceramide-dependent upregulation of stress-regulated protein, p8, is a hallmark of treatment
of glioma, astrocytoma, and pancreatic cancer cells with cannabinoids [119]. ER stress drives
phosphorylation and activity of the transcription factor, eIF2α, leading to upregulation of p8 and of the
downstream proteins, including cAMP-dependent transcription factor, ATF-4, C/EBP homologous
protein, CHOP, and pseudokinase tribbles-homologue 3, TRIB3, which sensitises tumour cells to
∆9-THC treatment and leads to cell death via autophagy and apoptosis (Figures 2 and 3) [116,121].
It is important to note here that Akt dysfunction is one of the most common molecular events in
cancer. Increased TRIB3 activity inhibits the Akt/mTOR signalling axis to trigger autophagy (upstream
of intrinsic mitochondrial apoptosis), and further, decreased Akt activity together with increased
BAD activity, directs the activation of cyclin-dependent kinase inhibitor 1A (CDKN1A) and CDKN1B
(reviewed in [2]).

CBD and ∆9-THC induced apoptosis in vitro and in vivo using human breast [122] and leukaemic
cells [51,120] has been shown to be regulated by ceramide biosynthesis. Ceramide reduces mitochondrial
membrane potential by the translocation of BH3-interacting domain death agonist protein, BID, to
the mitochondria to release the small hemeprotein, cytochrome C (CYC1) to the cytosol, ultimately
activating intrinsic apoptotic pathways via the caspase cascade (CASP8, CASP9, and CASP3) [120,123]
(Figure 2). The overlap between apoptosis and autophagy is potentially regulated by Beclin-1 (BECN1);
CBD enhanced the interaction between BECN1 and phosphatidylinositol 3-kinase catalytic subunit
type 3 (PIK3C3), as this protein-protein interaction cross-regulates the instigation of autophagosomes,
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and the activation of apoptosis, through direct interactions with anti-apoptosis family members Bcl-2
and/or Bcl-xL (reviewed in [124]). In short, CBR-induced cancer cell death relies on ceramide-induced
ER stress and the upregulation of p8 driving caspase cascade activation (Figure 3).

3.4.3. Cannabinoid Induced Anti-Cancer Effects

A trademark effect of the treatment of cancer cells with both the pCBs, CBD and ∆9-THC, and the
eCBs, AEA and 2-AG, is the production of ROS, resulting in increased cellular oxidative stress [125–127].
Indeed, CBD drives ROS production to deplete the intracellular stores of glutathione (GSH), and
triggers the activity of GSH-associated enzymes such as glutathione peroxidases and glutathione
reductases, to activate the pro-apoptotic proteins, caspase-8 (CASP8) and CASP9 (CASP9) (Figure 3).
Elevated CASP8 and CASP9 abundance within a cancer cell promotes the cleavage of CASP3 (CASP3),
and this in turn, leads to cell death [97,122,127]. However, supplementation with the antioxidant,
α-tocopherol, rescues the cytotoxic effects of AEA and 2-AG [125]. Indeed, treatment of human
ALL cells with CBD promotes the expression and activity of the phagocyte nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase (NOX) subunit, NOX4 (NOX4), and its regulatory protein,
p22phox (CYBA) [51]. Activated NOX4 is responsible for directing the ‘respiratory burst’ (the rapid
release of ROS) required for the destruction of invading microbes (reviewed in [128]). CBD-induced
ROS production, and hence increased oxidative stress, decreases the phosphorylation status of p38
MAPK to direct apoptosis (Figure 2). In line with these observations, treatment of ALL cells with the
CB2R-selective antagonist, SR144528, NADPH oxidase inhibitors, or ROS scavengers, significantly
attenuated apoptosis induced by CBD [51]. In direct contrast, ∆9-THC used in animal models to study
the human immunodeficiency virus (HIV), decreased NOX4 expression, which in turn reduced the
levels of cellular oxidative stress in intestinal cells, via upregulation of the abundance of the NOX4
targeting microRNA, miR-99b, thereby decreasing the rate of translation of the NOX4 protein [129].
In addition, Olivas et al. showed that in T-ALL cells sensitive to CBD, cell death was not influenced
by CBRs [130]. Autophagy was activated by sub-lethal CBD concentrations by Ca2+ overload in the
mitochondria, releasing cytochrome-C, and potentially highlighting a role for GPR55 in this context.
It is well documented that the anti-inflammatory effects of ∆9-THC in the gastrointestinal tract are
predominantly mediated by modulating CB2R activity, and therefore, the pro-oxidative effects of CBD
may not strictly be the result of the antagonism of CB2R, but of crosstalk, or independent activation of
non-CBRs GPCRs or ion channels.

Apoptosis induced by CBD in lung cancer cells has also been shown to be independent of CB1R
or CB2R activity [52]. CBD treatment-induced expression at both the mRNA and protein level of
the nuclear receptor, and transcription factor, peroxisome proliferator-activated receptor gamma
(PPAR-γ (PPARG)) and of the cyclooxygenase-2 (COX-2 (prostaglandin G/H synthase 2–PTGS2))
transcript/protein [130]. Apoptosis was abrogated by the use of COX-2 inhibitors and PPAR-γ
antagonists in lung cancer cell lines, primary lung cancer patient samples, and in vivo, using athymic
nude mice xenografted with the lung cancer cell line A549 (Figure 2). CBD has been shown to directly
bind PPAR-γ to increase its transcriptional activity [131]. These findings suggest that COX-2 and
PPAR-γ are critical for the anti-cancer effects of CBD in lung cancer and provide strong evidence that
the molecular targets of CBD may at least be, in part, dependent on the cancer cell type being treated.

4. Clinical Evidence: Cannabis for Use by Patients with Cancer

Pre-clinical studies investigating the potential anti-cancer properties of cannabis (and of
cannabinoids) have rekindled clinical interest in their use for the treatment of various cancer types
(Table 2) [110,132]. Whilst significant in vitro and in vivo research is currently underway, there are
only a limited number of clinical trials investigating the potential of low-THC cannabis or non-THC
cannabinoids for the treatment of cancer. That being said, the long-term risk-benefit ratio for the use of
CBD is yet to be determined, especially in the adolescent population. Research on cannabinoid:drug
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interactions are also urgently needed and will provide the necessary pharmacokinetic and toxicological
parameters for future treatment strategies.

In an uncontrolled retrospective case-series of 119 breast cancer and/or glioma patients who
received synthetic, pharmaceutical-grade CBD alone, or in combination with other treatments, synthetic
CBD was well tolerated and not limited by a maximal tolerated dose. Measures of anti-cancer efficacy
included a reduction in circulating tumour cells or a radiological response, and while most claims
of benefit could be related to interpatient variation or cancer heterogeneity, occasional extraordinary
responders were noted, including two patients with ependymoma [132]. The average dose of CBD
was 10 mg twice daily, administered via a three day on/three day off rotation. Such an administrative
approach was achieved in the complete absence of any notable side effects. An extended median
overall survival rate of 36% was observed for patients on this regimen, with 24% of these patients
administered CBD only. A separate group of nine GBM patients received a daily dose of 400 mg
CBD (approximately 6.5 mg/kg), alongside standard of care including maximal resection followed by
radiochemotherapy [133]. Of the nine GBM patients in this treatment group, eight patients were alive
with a mean survival of 22.3 months, almost two-fold the median overall survival for GBM patients.

Additionally, an unpublished and underpowered phase II trial study in recurrent GBM patients
treated with a 1:1 ratio of ∆9-THC:CBD (27 mg/mL and 25 mg/mL) in combination with temozolomide,
reported an increased 1-year overall survival rate of 83%, compared to 44% for patients treated
with temozolomide alone (p = 0.042) (reviewed [110]). Such a promising result was accompanied
by treatment emergent adverse events, including vomiting (75%), dizziness (67%) nausea (58%),
headache (33%), and constipation (33%), compared to limited, or no, adverse events in emerging
clinical investigations using CBD alone [132].

5. Role of Non-THC Cannabinoids in Cancer-Associated Inflammation

The relationship between inflammation and the evolution of certain cancer types is thoroughly
established. Up to 20% of cancer associated deaths worldwide are related to cancer-induced
inflammation [67]. There is emerging evidence to suggest that cannabinoids induce apoptosis
of inflammatory, or of other immune cell types, via CBR activation. Ligation of cannabinoids with
CB2R has been demonstrated to function as a potent regulator of immune responses due to its
abundance in all immune cell subtypes, including B cells, T cells and NK (natural killer) cells [67].
Agonist binding to CB2R drives immunosuppression through the inhibition of adenylate cyclase
(AC), which in turn, downregulates the cAMP signal transduction pathways and the activity of
cAMP-dependent kinases (PKA) [134,135]. Likewise, in human monocytes and macrophages, CB2R
activation directs the decreased production of the pro-inflammatory cytokines, interleukin-6 (IL-6),
IL-8, IL-12 and TNFα [134]. Elbaz et al. reported that breast cancer cells treated with CBD have reduced
levels of inflammatory cytokines, such as C-C motif chemokine 3 (CCL3), granulocyte-macrophage
colony-stimulating factor GM-CSF (CSF2), and macrophage inflammatory protein 2 (MIP-2), as well as
decreased recruitment of macrophages to the tumour microenvironment [136]. Similarly, CBD has
exhibited protective effects in intestinal inflammation and has been demonstrated to inhibit the release
of cytokines and to promote wound healing [137].

It is important to consider the immunomodulatory effects of cannabinoids when considering their
combined use with anti-cancer immunotherapies, including the checkpoint inhibitors (anti-CTLA-4
and anti-PD-1/PD-L1), or with cellular therapies such as chimeric antigen receptor T-cells (CAR-T),
particularly for regimens including ∆9-THC. A recent retrospective, observational study of patients
with either advanced melanoma (NSCLC), or renal cell carcinoma, showed that study participants
who received nivolumab (an anti-PD-1 therapy), in combination with an unspecified cannabis product,
had lower response rates (RR) to nivolumab, compared to those receiving nivolumab alone (i.e.,
15.9% compared to 37.5%; odds ratio [OR] 3.13, p = 0.016) [9]. Interestingly, patients who included
cannabis as part of their immunotherapy treatment regimen showed no significant differences in
either progression-free survival (p = 0.27) or overall survival (p = 0.45) [9], even though this patient
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cohort did not respond to nivolumab. This finding presents a curious question, that being; why did
cannabis patients that failed to respond to immunotherapy, survive just as long as those patients
who responded to immunotherapy? Deciphering the clinical benefit from the use of cannabinoids
through the inclusion of a ‘cannabis/cannabinoid treatment’ alone, or ‘cannabis in combination with
standard-of-care chemotherapies’ may greatly aid in the clinical utilisation of cannabis when targeting
the immune system as a frontline treatment strategy.

6. Conclusions

There is a clear imperative to improve the treatment of cancer, particularly for cancers lacking
effective treatment options. New immunotherapeutic approaches are dramatically increasing the
survival of patients with advanced disease states, such as those patients with metastatic melanoma;
where previously survival was measured in months. However, sophisticated immunological or
cell-based treatment approaches are yet to be developed (or are not always viable) for high-risk or
advanced cancers, including relapsed acute myeloid leukaemia (AML) [138], or high-risk T-ALL [103].
Similarly, paediatric patients with highly aggressive brainstem cancers, such as DIPG or DMG, progress
soon after upfront radiotherapy. This standard of care regimen is accompanied by peritumoural
inflammation and hydrocephalus [111], and represents a patient cohort with greatly unmet therapeutic
needs: the opportunity to employ complementary therapeutics (that specifically lack psychotropic
side effects) to enhance or complement standard of care management of high risk, aggressive cancers
warrants intensive investigation.

Several pre-clinical and clinical investigations have focused on the anti-cancer potential of cannabis
and its constituents, namely CBD and ∆9-THC, and are beginning to reveal novel therapeutic potentials.
Nevertheless, in addition to social and legal complexities, the serious side effects associated with the use
of ∆9-THC (particularly in children and elderly patients) are a major roadblock in the use of cannabis
in the medical setting. Consequently, research and consumer interest in low-THC cannabis can deliver
an alternative to traditional cannabis, including an alternate treatment route (oral dosing), and has
gained considerable momentum recently. Unfortunately, research focused on the anti-cancer properties
of low-THC cannabis, and of its major pharmacologically active components, such as CBD, are slow
to reach clinical studies. Most of the available literature remains limited to reports of the pre-clinical
efficacy of low-THC cannabis. As a result, a comprehensive and clear picture of the mechanisms
driving the anti-cancer properties of low-THC cannabis, and of non-THC cannabinoids, remains a
work in progress.

Consistent lines of evidence show that cannabinoids play a role in modulating neural and
immune functions, both centrally and peripherally, via the classical CB1R and CB2R mediated receptor
routes, particularly for ∆9-THC, while CBD is more commonly reported to function as a ligand
for other GPCRs (including GPR55, GPR3, GPR6, GPR12, TRPVs and PPAR-γ). While the exact
mechanistic basis remains unclear, there appears to be significant crosstalk between the molecular
targets of cannabinoid responsive pathways, targets which could ultimately determine downstream
proliferation or anti-tumour responses. If this was not complicated enough; the use of cannabis
plant extracts, which are generally highly complex mixtures of cannabinoids, terpenoids and other
bioactive natural products, makes identification of the anti-cancer benefits even more challenging.
That being said, studies generally show that pure CBD is superior to CBD-rich extracts and other
plant cannabinoids (CBG, CBC) for inhibition of tumour cell growth and survival, and without any
cytotoxic effect on healthy cells, at the doses reported (IC50: 6–10 µM/1.9–3.1 mg/L) [139]. While the
application of low-THC cannabis extracts may prove beneficial as an alternate cancer treatment in
the future, owing to the potential cooperative nature of its diverse chemical components (entourage
effect), conversely, it could also undermine efficacy and foster the development of drug resistance
to established chemotherapeutic protocols. More data is still urgently needed to establish the ‘pros’
and ‘cons’ of using whole cannabis extracts, or isolated cannabinoids, before its application in clinical
trial settings.
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There is a strong and compelling case for further mechanistic studies into the potential anti-tumour
and related health benefits of low-THC cannabis. Proteogenomic studies [140], and studies focused
on cellular responses to cannabinoids [141], will ultimately provide mechanistic data to determine
whether CBD and other non-THC cannabinoids can be included as safe, alternative treatment strategies
to those currently investigating ∆9-THC-based strategies in the clinic. Given that a number of the
chemical components of low-THC cannabis interact with several critical molecular targets, and that
these targets repeatedly demonstrate an altered expression and/or accumulation profile in cancerous
cells, further research into the anti-cancer properties of medicinal cannabis, could lead to the discovery
of effective treatments and deliver further invaluable insight into cancer cell biology for researchers,
clinicians and patients alike.
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