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A B S T R A C T

Biomaterials is an interdisciplinary field of research to achieve desired biological responses from new materials, regardless of material type. There have been many
exciting innovations in this discipline, but commercialization suffers from a lengthy discovery to product pipeline, with many failures along the way. Success can be
greatly accelerated by harnessing machine learning techniques to comb through large amounts of data. There are many potential benefits of moving from an un-
structured empirical approach to a development strategy that is entrenched in data. Here, we discuss the recent work on the use of machine learning in the discovery
and design of biomaterials, including new polymeric, metallic, ceramics, and nanomaterials, and how machine learning can interface with emerging use cases of 3D
printing. We discuss the steps for closer integration of machine learning to make this exciting possibility a reality.
1. Introduction

Many of the recent clinical challenges involve the need for bio-
materials. One of the major stumbling blocks preventing the widespread
use of biomaterials as implants are the poor interaction between the
materials and the biological system. In addition, the complex interplay
between composition, structures, and properties renders the materials
discovery process tedious. For instance, for polyurethane alone, there are
already a vast number of different possible compositions [1]. There are
many aspects of input parameters that can be used to optimize the output
properties. For instance, there is a complex relationship between surface
properties and biological response, where much of the data-driven
research focuses on solving. To tackle these issues, high-throughput
platforms have been developed to generate an adequate number of in-
puts that consider physical and compositional cues [2–7].

Despite the advent of high-throughput platforms, biomaterials
research is still in its infancy in terms of multi-dimensional data gener-
ation and utilization. In molecular biology, a large amount of data helps
data scientists to draw a meaningful conclusion. For instance, hundreds
of thousands and even millions of gene expression profiles of calls are
either derived genetically or pharmacologically, helping to form a con-
nectivity map between inputs and outputs [8]. On the other hand, the
structure-property relationship has long been quantitatively studied in
materials science beyond composition properties. Likewise, the
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complexity of multi-dimensional data is the biggest challenge. Many
compound compositions can be formed out of the 94 naturally occurring
elements, with wide-ranging physical properties. For example, changing
the alloy composition can lead to changes in metal properties such as
hardness and corrosion resistance. Therefore, large volume screening and
machine learning (ML) are actively pursued, motivated by their potential
to shorten the time taken for scientific breakthroughs to commercial
products. Experimentally, there is a fundamental shift of paradigm from a
traditional empirical approach to a more systematic and guided approach
via machine learning augmentation. Materials databases can be lever-
aged to accelerate both experimental and theoretical studies [9–13]. This
is made easier by user-friendly data mining tools such as Matminer [14].
For instance, machine learning can drastically reduce the computational
cost and time compared to traditional DFT (Density functional theory).
Experimentally, owing to its ability to handle multi-dimensional data,
rapid advancements in functional materials such as photovoltaics [15],
piezoelectric [16], and thermoelectric [17–22] have been demonstrated.
However, most applications of machine learning in materials science to
date have mainly been focusing on a narrow class of materials. There is
still the lack of a comprehensive approach to accelerating materials
discovery, development, characterization, all the way to the prototyping
stage. A particular research area that will greatly benefit from the use of
machine learning is biomaterials. Traditionally, it takes years of research
and development for a material to be deemed good and safe enough for
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Table 1
Biomaterials input and output parameters.

Input Parameter Output Property Demonstrated
application

Ref

Microstructure Crack propagation Materials
improvement

[51]

Composition
design

Steel corrosion crack
resistance

[52]

Molecular
properties

Drug nanoparticle formation [53]

Chemical structure Printability of drug-loaded
formulations

[54]

Processing
parameters

Surface roughness [55]

Surface chemistry
Positive charges

Protein adsorption
Antimicrobial

In vitro [56]
[57]

Chemical structure Cell adhesion [58]
Mechanical
properties

cell morphology/
differentiation

[39]

Bulk shape spatial organization of cells [43]
Adsorbed protein Clearance pattern In vivo [59]
Chemical structure Anti-fibrosis [60]
Chemical structure organ targeting [61]
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biological applications.
The current Biomaterials market size is estimated at more than 100

billion USD in 2019, with a CAGR of 15.9% [23], indicating that
biomaterial development has significant therapeutic and commercial
potential. Biomaterials is a multidisciplinary discipline that studies how
biological systems interact with sophisticated materials. Biomaterials
research aims to create and manipulate material qualities to produce a
certain biological response [24]. We decided to concentrate our discus-
sion on biomaterials because the wealth of scientific knowledge that has
already been accumulated in this sector over many decades of research
provides a fruitful foundation for making excellent use of machine
learning. This field also has a multidisciplinary impact on how machine
learning may be implemented across various materials, such as metals
and polymers, with direct repercussions for improving people's quality of
existence. It is important and relevant to transform the paradigm of
thinking in advancing biomaterials, from conventional empirical
methods to data-driven machine learning.

The training data may be supplied into the algorithms in both cir-
cumstances (whether theoretical or experimental). Supervised learning
aims to develop a function that can predict output values from a collec-
tion of input data reliably. This may be done using training datasets that
have several inputs and output sets. Several input variables (e.g., material
composition) are included in training data (i.e., properties). The principal
purpose of both techniques is for data to be modeled to learn about the
underlying structure or distribution. In the next sections, we will look at
circumstances in which supervised and unsupervised learning is impor-
tant in the evolution of biomaterials.

In this paper, we outline the biomaterial realm of machine learning. A
discussion will be placed on the applicability and promise of the data-
driven approach in various biomaterials. The input and output qualities
of generic biomaterial design are discussed briefly in Section 2. Polymer-
based biomaterials will be explored in Section 3, Section 4 metals, Sec-
tion 5 ceramics, and Section 6 nanomaterials will be discussed. Section 7
discusses the part on additive manufacturing and 3D printed bio-
materials. Finally, section 8 outlines the prospects for expediting the
creation and processing through the application of machine learning of
these diverse kinds of biomaterials.

2. Biomaterials design - parameters and primer to machine
learning

Biomaterials such as drug delivery depots, tissue engineering scaf-
folds, imaging/diagnostic systems, and device coatings have been
employed extensively. There are various ways biomaterials can be used
in the body, including implantation, blood vessel injection, skin appli-
cation, or extracting bodily components for existing analysis [25]. In
terms of material types, metallic and ceramic materials have been
traditionally used as biomaterials, predominantly found in implants.
Because of the impressive mechanical strength and relative inertness,
metals have been employed [26]. Due to its capacity to encourage bone
development and regeneration, ceramics are intriguing and are widely
utilized as dental implants [27]. However, in recent times, polymeric
biomaterials have found rapid growth due to their shape moldability.
Furthermore, the advancement of additive manufacturing and
high-resolution spatial patterning has given an extra dimension to bio-
materials research in recent years [28,29].

Input factors for chemical and physical configurations exist to create a
biomaterial to fulfil its desired purpose (Table 1). The input parameters
for biomaterials may be modified to vary the output qualities. Inputs for
chemical components often involves the purposeful inclusion of chemical
moieties that impact material characteristics. This comprises pH
switchable groups to respond to the biologcal environment [30–35],
adding charges for polymer-gene interactions in gene delivery agents
[36–41], Adding targeting moieties like folic acid for cancer targetting
nanoparticles [30,31], bisphosphonate as a binding moiety to improve
bone binding [27], and the proliferation and directed differentiation of
2

stem cells induced by cell-matrix interacting ligands [42,43]. Physical
inputs can also impact cell interactions [44]. These include the obser-
vation of enhanced permeability and retention (EPR) effects through the
use of smaller nanoparticles [45,46], larger sized microparticles for the
reduced extent of fibrosis [47], surface topology, and patterning to
selectively enrich cells and extracellular vesicles, identified by micro-
fluidic devices [28,48]. Materials that simulate extracellular matrices can
potentially provide chemical and mechanical data on modifying cell
behavior [49,50].

It is worth noting that the design of biomaterials needs to take ac-
count of extra complications in the body environment. Nanoparticles are
traditionally tested with in-vitro cell tests for cell internalization. How-
ever, numerous additional physiological obstacles, such as renal filtra-
tion, need to be overcome. Therefore, tests that can replicate
physiological function are crucial. Normally, an implant in the body
forms a fibrotic layer over time causing implant failure. In biomaterial
design, precise design can ensure that this does not happen. It is feasible
to screen for compounds with anti-fouling and anti-fibrotic capabilities
by combining a library of various chemical moieties [60]. The bodily
environment may also change the material's functioning via degradation
processes, which might have detrimental effects on performance over
time. The different input parameters have also been tested to different
extents for demonstrated applications, from improving material proper-
ties, to in vitro cell-based assays and in vivo studies in animal models.

It takes years for novel biomaterials to be made and used. The crea-
tion of biomaterials typically takes several phases from the optimization
of material characteristics, biocompatibility studies, clinical tests, etc.,
due to the difficulties of the design parameter optimization process.
These methods are time-consuming and laborious. For example, it took
20 years to produce the first product based on the PLGA counterpart for
prostate cancer therapy from the initial PLA biocompatibility and
biodegradation report [62]. Machine learning might address or expedite
many of the challenges inherent in the creation of biomaterials in this
data-driven age. For example, by using convoluted neural networks, it is
possible to accelerate the process to obtain predictions for optimized
composite materials to just 10h, as opposed to 5 days when extensive
finite element method modelling is conducted for all the possible mate-
rial compositions [63]. Searching through incredibly large parameter
space to find the optimal biomaterial for in vivo usage can also become a
less daunting task by using a large dataset with suitable data analysis
[60]. It is necessary to understand the kind and amount of data available
and the associated types of algorithms to make optimal use of machine
training to speed biomaterial development.

In machine learning, supervised learning is commonly used, and the
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goal for supervised learning is to build a model that can map the input
parameters to the corresponding output properties and derive a rela-
tionship between the inputs and outputs. It is especially important that
this model is predictive and can accurately provide estimated output
properties when new input data is provided. The other major class is
unsupervised learning, where the goal is to assign the input parameters
into groups based on their properties. For both cases, the training dataset
is used to develop the ML model, while a separate test dataset is used to
assess the performance of the model.

ML algorithms vary in terms of their use case and complexity (see
Table 2). If the prediction can be accurately performed with few vari-
ables, then simpler models such as regression can be used. If accurate
prediction necessitates accounting for subtle changes in many variables,
then more complex models such as neural networks would be required.
While there are clear benefits to a model that can navigate complex
datasets and come up with accurate predictions, these models could be
more difficult to explain and interpret. Furthermore, the amount of data
required scales dramatically with the model complexity and can be a
limiting factor. While a regression could be modeled with a dozen data
points, a convolutional neural network can easily require more than
several thousand data points for the model to be trained. Therefore, in
addition to the complexity of the prediction task, the availability of data
can often hamper the capability of ML models to provide accurate
predictions.

Datasets often need to be processed to become amenable to ML al-
gorithms. For example, there could be class imbalance issues where there
is too much data for a certain input parameter and too little data for a
second input parameter, and therefore the model cannot satisfactorily
predict for the second input. Another consequence of class imbalance is
the underestimation of feature importance (how much certain input
contributes to outputs) of the undersampled input parameter.

To avoid class imbalance, it is crucial to adopt proper data sampling,
depending on the type of data. Data sampling methods including random
oversampling and Latin hypercube sampling are some of the commonly
used methods. The challenges with smaller datasets that biomaterials
research frequently face can be partly overcome by specialized tech-
niques such as transfer learning, and by techniques that incorporate prior
knowledge such as Bayesian inference.

For more detailed information on machine learning and its applica-
tion to other related fields, the readers are advised to consult extensive
reviews available [64–68].
Table 2
Common machine learning algorithms.

Type Methods When to use

Simpler models � Logistic regression � Simple prediction task
� Random Forest � Large dataset

� Gradient Boosting � To minimize bias errors and overfi
� Combining multiple weak predict

stronger predictor
� Support Vector Machine � Multidimensional parameters

Complex models � Convolutional neural
network (CNN)

� Additional filters to extract featur
feature importance

� Artificial neural network
(ANN)

� Multiple hidden layers for comple
relationships

� K-means clustering � Anonymous input data with no ou
Smaller dataset
models

� Bayesian inference � Incorporate priors and iteratively u
new information

� Transfer learning � Have a pre-trained model for the
problem

Data sampling � ADASYN (adaptive
synthetic)

� Interpolate minority data points to
imbalance

� Latin hypercube � Near-random sampling
� MCMC (Markov Chain

Monte Carlo)
� Sampling probability distribution

posterior values

3

3. Polymeric biomaterials applications

Polymers are very useful as biomaterials due to their adaptability
which is unparalleled by metals and ceramics [69,70]. The great range of
physical and chemical characteristics of polymers have made numerous
applications possible such as tissue engineering and delivery vehicles for
drugs/genes [71–75]. It is predicted that medicinal polymers alone are
around 1 billion dollars in market size. Polymers were originally
designed for non-biomaterial applications using plastics, elastomers, and
fibers. Nevertheless, enormous design, synthesis, and evaluation efforts
have been done on polymers as biomaterials for certain purposes and
various criteria have been used in the research of polymers as bio-
materials. Due to the complexity and multi-dimensional factors that
determine the characteristics of polymeric biomaterials the development
of polymers as qualified biomaterials always present a tremendous
challenge to clearly understand the relationships between performance
and underlying chemistry and structures of polymers. Machine learning
(ML) has been studied for the self-assembly of dipeptide hydrogels and
the adherence of cells and protein profiles on polymeric surfaces.
3.1. Polymeric biomaterials examples

3.1.1. Self-assembled dipeptide hydrogels
Hydrogels are 3D cross-linked networks [76–81]. Without dissolving

its backbone, it can hold a large amount of water. In combination with its
good biocompatibility, these unique features turn hydrogels into adapt-
able biomaterials for broad uses, such as tissue engineering, sensing, cell
encapsulation, and drug administration. However, within recent years
there has been a highly unclear link between the chemical structures of
peptides and hydrogel properties. In Li Fei and others' work, a structural
diverse hydrogel library was developed with a combinatorial strategy of
more than 2000 peptides. To predict the gel formation potential, ML was
employed to establish a relationship between the chemical structure of
peptides and the self-assembly behavior. Furthermore, the stiffness of
hydrogels has been discovered to berelated both to the crosslinking de-
gree and to the nanofiber diameter [82].

Fig. 1 shows the process of generating a library of the comprehensive
chemical library as the testing pool. 31 Monomers were used, which
includes 8 amines, 8 aldehydes/ketones, 12 Fmoc-amino acids, and 3
isocyanides to provide a combination of 2304 compounds through the
Ugi reaction, shown in Fig. 1a–e. The overall process flow is shown in
Fig. 1f. From these compounds, 7,163,136 structural parameters (3109
per molecule) were obtained based on the PaDEL-descriptor calculation.
Considerations

� Small data sizes, but can have overfitting
� Depending on the number of trees, can be quite slow
� Low interpretability

tting
ors into a

� Gradient boosting can be an alternative means to give more
importance to misclassified observations

� Maybe challenging handling a large dataset
es, good for � Slower training, cannot be interpreted easily

x � Robust against noisy data but bad interpretability

tput labels � Not tractable for large datasets
pdate it with � Smaller data sizes, fewer iterations needed

related � Speed up model training

address class � Precision may suffer due to the adaptability nature

� Spread the sample points more evenly across all possible values
from � Allows estimation such as means, variances, expected values



Fig. 1. A-D) 8 amines, 8 aldehydes/ketones, 12 Fmoc-amino acids, and 3 isocyanides used for generating the library of hydrogels. E) Screening results of hydrogels
(red, a gel formed; gray, solution state. F) Preparation of peptides library. Adapted from the literature [82].
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Due to class imbalance arising from the fact that less than 4% of
hydrogels were successfully formed, data resampling was performed,
such as random oversampling (RO), adaptive synthetic sampling (ADA-
SYN), and synthetic minority oversampling technique (SMOTE). RO is
the random addition of data points to the minority class. ADASYN and
SMOTE are both more sophisticated methods to add these data points by
the process of interpolation, with further changes in the number of data
points corresponding to the complexity and difficulty for ADASYN.

After resampling the data, multiple classificationmodels were applied
to the data. An extensive list of algorithms ranging from linear classifiers
such as logistic regression to non-linear ones such as neural networks was
used. Subsequently, after hyperparameter tuning for each of the algo-
rithms, three best performing ones were selected, namely gradient
boosting, random forest, and logistic regression. Gradient boosting was
found to perform slightly better than the other two. Due to the highly
imbalanced data, precision and recall were used to evaluate the quality of
the algorithm performance. Precision is defined as the ratio of correct
results to predicted results, while recall is the fraction of correct results in
predicted positive samples. The precision of 54%, 57%, and 62% was
achieved for the random forest, logistic regression, and gradient boost-
ing, respectively.

In addition, feature importance was calculated with the top 20 de-
scriptors obtained from each of the three machine learning algorithms. It
was found that the descriptors Fmoc-amino acids, largest absolute of
Burden modified eigenvalue, and smallest absolute of Burden modified
eigenvalue contributed significantly to the successful formation of mo-
lecular hydrogels.
4

3.1.2. Response of cell and adsorption of proteins on polymeric surfaces
Polymers can be used as tissue engineering scaffolds and to develop

substitutes for tissues and organs [40,71,83]. To develop scaffold poly-
mer, understanding the cellular response and the relationship with
polymeric properties is of utmost importance [84–86]. Factors such as
surface wettability, surface chemistry, topography, and mechanical
properties need to be accounted for when developing these polymers for
scaffolds. De Boer and colleagues showed that surface topography can be
screened to modulate cytokine secretion from stromal cells and support
the phenotype of tendon tenocytes [87,88]. Machine learning may be
done using a partial least squares regression approach to understand the
association between adherence to human embryonic stem cells (hESC)
and the different polyacrylate polymers [58]. An array with nearly 500
polyacrylates with a wide range of cross-linking density and hydro-
phobicity/hydrophilicity was synthesized from 22 acrylate monomers
via combinatorial approaches [89]. A long-wavelength UV source was
used to polymerize different combinations of monomers. Human em-
bryonic stem cells were seeded onto arrays of polyacrylate after coating
with fetal bovine serum. Cellular responses were quantified by laser
scanning cytometry. Colony formation frequency was used to quantify
the results, the ratio of polymer which hES cell colonies formed to the
total number of replicate spots of the same kind of polymers on each
array. The frequency of colony formation of hES was not correlated to the
roughness of the surface, elastic modulus, or wettability. Instead, good
agreement was found between the colony formation frequency and the
predicted values from ToF SIMS of the polyacrylate surface for both the
training and validation model. A regression coefficient may be produced



K. Xue et al. Materials Today Bio 12 (2021) 100165
for each ToF-SIMS ion for the quantitative understanding of the relative
contribution to the frequency of colony formation. For cyclic ions, ions
comprising oxygen and hydrocarbon ions, a positive regression coeffi-
cient was observed. Tertiary amine moiety and the tertiary butyl move-
ment, however, exhibit a coefficient of negative regression. The use of
computer descriptors for investigating hEB adherence to pre-treated
polyacrylate micro arrays was designed exclusively using computer
models [90,91]. The Bayesian Nonlinear Model (BRANNLP) was built
utilizing the sparse Laplacian neural network fed with 23 molecular de-
scriptors and 2 hidden layer nodes. For the hEB adhesive prediction, the
r2 value of 0.80 and 0.82 was derived from the training set and the test
set, whjich is higher than the predictive power of PLS models utilizing
experimental parameters [90].

In other studies, Rudolf, et al. leveraged a data-driven approach to
predict protein adsorption on self-assembled monolayers (SAMs) [92].
The study aimed at predicting the contact angle of the water (WCA) on
SAMs and protein adsorption. Chemical structures of the constituent
molecules of the SAMs were fed into machine learning with an artificial
neural network (ANN) model. In addition, the importance of parameters
describing chemical structure was also investigated. Protein surface
adsorption has a direct impact on biological surface reactions that
involve various biological activities, such as a cell adhesion profile [90,
91]. As can be observed from Fig. 2A, the adsorption behavior of proteins
was analyzed and predicted on the surfaces of the monolayers with a
three-stage artificial neural network (ANN) [92]. Fig. 2B shows the
relationship between predicted and actual fibrinogen and water contact
angle, respectively. The high R-value of 0.98 indicates high accuracy and
consistency between predicted and actual values. Fig. 2C shows the
feature importance of structural descriptors. Each descriptor has either
positive or negative importance. Positive importance contributes to the
increase in the WCA while negative ones lower the WCA. Structural de-
scriptors such as O–H bond and %N play important roles in lowering
WCA. This is consistent with the general understanding that surfaces
with high polarity show small WCAs. In contrast, %H and %C, which
represent the nonpolar methyl terminal group and alkyl chain show
Fig. 2. (A) ANN model was used to evaluate and calculate the water contact angle an
red and blue arrows illustrate positive and negative weights after the training, respect
ANN plotted from single-lab data against corresponding experimental values. (C1-2)
Standard deviation (N ¼ 2000) is the standard error bar. (d) Hypothetical SAMs ads
alkyl chain has been changed, preserving the same terminal groups, in (c) OH-, (d) C
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positive importance. The lower part of Fig. 2c shows the quantitative
importance of Whiteside's rules, which represents an empirical rule of
protein resistance. In essence, by training ANN with 145 SAMs data, the
algorithm can predict both WCA and protein adsorption accurately. In
addition, the analysis provided by the trained ANN can reveal the
quantitative importance of each structural parameter, providing an
important guide for material design. The degree of importance also
agrees well with a general perception of the physicochemical properties
of SAMs.

4. Metallic biomaterials applications

4.1. Metallic biomaterials

Metallic biomaterials show typical features such as better thermal,
electrical, and mechanical capabilities, inertness in the body and ability
to perform structural functions. Stainless steel is generally the most
frequently used implant as it is easy to handle and sterilize by conven-
tional sterilization processes for an excellent finish [93]. Cobalt chro-
mium alloy is used as a wear resilient implant, for example in prosthesis
and implantable [26]. Metallic biodegradables have also demonstrated
the possibility of orthopaedic implantables and cardiovascular stents
[94]. One of the main issues is to develop metals with comparable me-
chanical properties to hard tissue [95]. Alloy doping is often used to
change the characteristics of metals, but the wide range of potential alloy
compositions make designing metals with desired attributes a chal-
lenging problem.
4.2. Metallic biomaterials

One of the essential variables in understanding the service lives of
implants in the human organism is their fatigue qualities for metallic
biomaterials. For the prediction of the fatigue properties of nickel and
aluminum alloys, Fujii et al. [96] and Kang et al. [97] reported the use of
an artificial neural network (ANN). Iacoviello et al. described ANN
d fibrinogen adsorption on the surfaces of self-assembled monolayers (SAM). The
ively. (B1-2) Amounts of adsorbed fibrinogen onto SAMs predicted by the trained
Results of analytical importance following the one-laboratory data set training.
orbed predicted quantity of fibrinogen. The amount of methylene units in their
H3-, (e) NH2- and (f) COOH-terminated SAMs. Adapted from the literature [92].
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application in the prediction of fatigue propagation in sintered duplex
steel [98]. Mohanty et al. developed a mixed Gaussian method for
enhanced prediction of fracture trends and development [99]. The ML
approach for detecting fatigue cracks and forecasting fatigue creep rates
has been developed by Wang et al. [100], Dinda et al. [101], and Rovi-
nelli et al. [51] The approach for prediction of fatigue strength using the
ANN method has also been published by Agrawal et al. [102–104] and
Canyurt et al. [105] These studies offer an effective strategy to predict
crack initation and growth rates of long-term metallic implants so that
implant conditions in the human body are monitored in a timely manner.

In several metal biomaterials, stress corrosion crack (SCC) has been a
problem that has reduced the long-term lifetime of metal implants. Cao
et al. have reported an optimal SCC resistant alloy composition optimi-
zation technique with ML [52]. The authors employ the interactive
feedback circuit as a representative of SCC resistance with electric con-
ductivity. The properties of the new Al alloy
(Al-6.05Zn-1.46Mg1⋅32Cu-0.13Zr-0.02Ti-0.50Y-0.23Ce) predicted using
the efficient global (EGO) method showed better SCC resistance than the
standard 7N01 alloy. The interactive feedback training loop indicates
possible applicability for finding metallic biomaterials with enhanced
resistance.

It is vital to have lowmodulus materials similar to human bone for the
usage of metallic materials as bone implants to minimize stiffness
mismatch and stress shielding. Wu et al. employed ANNs to search for
novel low modulus titanium alloys. For Young's modulus and Martensitic
temperature, the authors have employed two distinct data sets containing
164 and 112 compositions respectively. By training ANNs on these very
small data sets. a new alloy Ti–12Nb–12Zn–12Sn (in wt. Percent) was
discovered and validated with a lowmodulus of 41GPa and with low cost
metals [106]. This work reveals that ML approaches can be used to
design low-modulus metal biomaterials and to search successfully new
compositions of titanium alloys.

High hardness alloys often have a strong wear resistance to extended
service life that is crucial for hip, joint and knee implants. High entropy
alloys (HEA) are composed of several elements combined at close to
equimolar ratios without any primary element, therefore a larger number
of possible compositions exist. Cheng et al. [107] used an ML surrogate
6

model to map between composition and hardness and used the design of
the experiment and the EGO method to iteratively search for alloys with
higher hardness. The authors were able to predict and validate a new
HEA of Al–Co–Cr–Cu–Fe–Ni system with 10% higher hardness than the
original training dataset (see Fig. 3). Chang et al. have demonstrated that
ANNs are also used to study highly challenging HEA formulas, where the
stimulated anneal algorithm is added [108]. Taken together, it shows
that ML algorithms might improve the screening with the improved wear
resistance of hard metallic biomaterials.

5. Ceramics biomaterials applications

5.1. Ceramic biomaterials

For so many years, ceramic materials were used to relieve pain and
restore function of calcified tissue (bones and teeth) via the use of
ceramic materials based on natural calcium phosphate [109]. Ceramic
materials (HA and TCP) are frequently employed for artificial joints or
tooth implants because of stable physicochemical features, good
biocompatibility and being osteoconductive. Significant progress has
been made in dental and medical applications of ceramics such as bio-
glass to rebuild the bone [110], using alumina for hip-endoprostheses
femoral balls [111], and some pioneering efforts in the effective use of
synthetic HA and β-TCP for dentistry and medical uses as bone substitute
material [112–116]. Bioceramics, such as alumina and zirconia, can be
bioinert, retaining their physical and mechanical qualities for long du-
rations. The bone formation can also be supported actively by bio-
ceramics such as bioglasses, orthophosphate calcium, and
hydroxyapatite. Several synthetic bioceramic materials have been
created in a variety of shapes and forms as alternate options to autoge-
nous bone for restoration, replacement, and augmentation.

5.2. Ceramic biomaterials examples

Ceramics with high strength and hardness can reduce wear during its
use. High entropy ceramics are composed of several metal cation species
combined at close to equimolar ratios, and can potentially form high
Fig. 3. (A) Model evaluation and selection
by estimating the test error for different
models. A bootstrapping method was used,
indicating that svr. r (radial basis function
kernel) ML model has low test error and
outperforms the others. (B) The results of the
design of the experiment and EGO mediated
iterative loops. The predicted hardness values
were plotted versus the measured values for
the alloys in the training data and experi-
mental data. (C) The hardness of the newly
synthesized alloys as a function of loop iter-
ation number. The inset of (b) plots the pre-
dicted values as a function of iteration
number, showing a similar tendency to the
measured values. Adapted from the literature
[107].
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hardness materials and corrosion-resistant coatings [117]. However, the
main hindrance of their discovery lies in predicting their formation. In
work by Kauffman et al. machine learning methods leveraging on ther-
modynamics and compositional attributes are used to predict the syn-
thesizability of disordered metal carbides. The feature importance of
thermodynamics and compositional parameters are then explored and
explained. As a result, up to 70 new compositions are predicted and
validated by density functional theory calculations and experimental
synthesis [118].

Random fittings were conducted for 56 previously known EFA (en-
tropy forming capability) values to seek new high entropy ceramics. The
datasets contain nine previously synthesized compositions, six of which
are one phase. Only 8 carbide metal elements (Hf, Nb, Ta, Ti, Mo, V, W,
and Zr) were used in earlier research [119]. The ML model performance
was evaluated with five-fold cross-validation that may advise the optimal
model hyperparameters. The performance of the ML model is compared
Fig. 4. The ML models are assessed to match the data supplied. a) The ML-predicted
108 chemical characteristics and eight CALPHAD-evaluated features against the kn
μm [119].
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in Fig. 4a with CALPHAD information and chemical characteristics only.
While the MAEs are equal in all models (3.8 eV/atom), the determination
coefficient (R2) predicts better results when using CALPHAD data. Fig. 4c
provides a microstructural examination utilizing EDS to assess the ho-
mogeneity of the sintered pellets. The findings of both procedures
revealed that the samples as treated were either single-phase, as well as
chemically homogenous or chemically separated. This discovery dem-
onstrates that the compositions are one phase. In contrast, because of the
competing phases prohibiting further grain expansion during sintering,
multi-phase samples have much lower grain sizes.

The complexity of fracture mechanics predictions in traditional mo-
lecular dynamics simulations with the high computational effort needed
makes it difficult to provide results for materials design at the nanoscale.
A team led by Buehler developed a quick screening system to measure
fracture resistance of potential materials by examining the propagation of
cracks through the molecular structure of the material to assess the
EFA, using random forest fit b) ML forest random fit projected EFA values with
own DFT EFA. c) Synthesized material microstructural analysis. Bar scale 100
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processes in which various material systems fail, including composite,
coated layers from crystalline structures (see Fig. 5) [118]. These huge
quantities of data have now been included in the AI system, the funda-
mental physical principles of failure have been established and this can
assist in the prediction of the performance of a new material/structure
that is not in the training set.

6. Nanoengineered biomaterials applications

6.1. Biomaterials from nanoparticles

Most bulk biomaterials allow for a high mechanical strength when
used in cardiovascular and orthopaedic applications. Nanoparticles have
been used in diverse biomedical applications including drug release,
regenerative medicine, and tissue engineering. Nanoparticles possess
their own unique characteristics, and nanoparticle-bulk material com-
posites can resolve issues of insufficient mechanical strength for biolog-
ical applications with high mechanical loading.

6.2. Nano-biomaterials

Nanomaterials have a high degree of complexity, which in addition to
bulk properties such as composition and defects, can include other input
parameters such as nanoparticle shape, size and surface properties which
will have a more significant impact at the nanoscale. This large range of
nanomaterial properties can be generated by varying the reaction con-
ditions such as reaction temperature and time, and experimental pa-
rameters such as type of ligands and ratio of organic: aqueous solvents.
Highly efficient flow chemistry has been combined with machine
learning for combinatorial synthesis of quantum dots, and allowed the
development of precise sizes and dispersity of quantum dots with suitable
composition and bandgap for optoelectronic applications [121]. With a
diverse selection of nanoparticles created, it is then possible to probe for
biological functionalities with the assistance of machine learning. Metal
nanoparticles were investigated to determine and predict the antibacte-
rial properties, with nanoparticle core size being the key physicochem-
ical feature [122]. Gold nanoparticles were also monitored for their fate
in vivo by the combination of the tools of mass spectroscopy and su-
pervised machine learning [59].

Machine learning can identify key features for improving perfor-
mance, and subsequently allow for highly predictive synthesis of nano-
particles. In comparison to regular nanoparticle drug delivery systems
which typically show low drug loading, self-assembling drug
8

nanoparticles can have up to 95% high drug loading. Reker et al. rapidly
screened through 1440 pairings of drugs and excipients for co-
aggregation into nanoparticles by using a combination of liquid
handling and high throughput dynamic light scattering characterization
(Fig. 6) [53]. A random forest machine learning model was used to gain
insight into the molecular features for co-aggregation, and subsequently
used to predict additional co-aggregators (1.8%) from 2.1 million
possible pairings of FDA approved drugs and excipients.

The pharmacokinetics and eventual fate in the body are greatly
affected by the biological components that interact with the nano-
particles. For anti-fouling PEGylated systems, the impetus is to prevent
non-specific protein binding. Nanoparticle surfaces have been function-
alized with a large library of ligands such as zwitterionic, hydroxyl
acrylate and peptides to study the influence on preventing protein
adsorption. Yarovsky et al. addressed this knowledge gap by using ma-
chine learning approaches to extract the quantitative relationship be-
tween material surface chemistry and the protein adsorption
characteristics [56].

Using gold-labelled antibody nanoparticles, Hu et al. examined the
surface mapping of protein bindings on particulate corona [23]. Func-
tional composition, cellular recognition (e.g., cellular absorption by
macrophages, releases of cytokines and immunological response), and
nanotoxicity through the integration of machine learning and
meta-analysis were forecast. Groups of cell membrane-coated nano-
particles have been employed as a platform for protein detection at the
nanomaterial interface [123]. Gonz�alez-Díaz and colleagues looked to
predictive design of nanoparticle drug delivery system by exploring
changes in the nanoparticle, coating agent and drug [124]. They utilized
a perturbation theory andmachine learningmodel to develop a model for
predicting the best components. The authors used pre-clinical drug test
data sets and coated metal oxide nanoparticles from ChEMBL and public
sources. Both data sets were fused to gain a final dataset of about 500,000
nanoparticles, which would be extremely valuable for further design of
coated nanoparticles.

7. 3D printed biomaterials applications

7.1. 3D printed biomaterials

Additive manufacturing is an exciting emerging field due to the ease
of creating complicated 3D geometric structures using computer aided
design (CAD).

Different materials and techniques possess their own unique
Fig. 5. De novo approach to study the frac-
ture problem with the crack patterns and
crack length, based on a training set derived
from molecular dynamics (MD) simulations.
It can be used to replace the stochastic
problem of fracture propagation in MD sim-
ulations through a machine-learning model
that can predict the overall crack propaga-
tion pathways [120]. This obviates the need
for time-consuming MD simulation, opening
novel avenues for materials design solutions
with atomistic-level degrees of freedom.



Fig. 6. (a) Schematic of high throughput screening to create self-assembling drug nanoparticles. (b) High-throughput testing of all 1440 combinations of 16 drugs and
90 excipients (inactive ingredients, generally recognized-as-safe food and drug additives and other FDA-approved compounds). (c) Molecular properties of drug-
excipient pairs are encoded, and molecular simulations (molecular dynamics) determines interaction potentials. These are fed into a random forest machine
learning model to indicate important features and predict potential to co-aggregate and form nanoparticles. (d) Out-of-bag performance analysis on different training
dataset sizes with Matthews correlation coefficient showing convergence. (e) The machine learning model was used to model 2.1 million pairs of drugs and excipients
for ability to co-aggregate and form nanoparticles, and the six named pairs were validated experimentally. The novel component that was not part of the initial high
throughput screen in part A are underscored [53].
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challenges to overcome (see Table 3). For example, laser powder bed
fusion is commonly used for metals, but this will typically generate 3D
prints with surface roughness, and metal leaching can also be a cause of
inflammatory response and cell toxicity. Using extrusion or ink jet
printing techniques will require additional post-sintering [125,126]. For
ceramics, the process of 3D printing has an added challenge of intrinsic
shrinkage issues during the sintering process, and the need to accurately
generate complex hierarchical structures with porosity to allow for
osteointegration [127]. High quality printing of polymers is mainly
limited by material choice. Fused filament deposition can only be used
for polymers that can melt without degrading, while stereolithography
requires photopolymers [29]. Machine learning can affect 3D printing by
facilitating design and materials selection and by driving and monitoring
9

for process optimization.

7.2. Machine learning in 3D printed biomaterials

7.2.1. Materials and design screening
3D convoluted neural networks (CNN) has been performed which can

effectively model the elasticity tensor and its gradients to predictions of
microscale structure, and hence the resultant material properties [128].
The relationship between 3D fibrous substrates with cell confinement
states have also been used with machine learning methods to classify cell
shapes and map to the original substrate architectures [129].

Gu et al. explored 3D printing of composite materials with micro-
structures composed of stiff and soft building blocks [63]. The authors



Table 3
Common additive manufacturing techniques for various materials.

Type of
material

Typical 3D printing
techniques

Advantages Challenges

Metal � Laser powder bed
fusion

� Extrusion-based
3D printing

� High resolution
� Simple process,

low cost

� High surface
roughness

� Post-sintering
required

Ceramic � Powder bed
fusion

� Direct inkjet
writing

� Larger part size
� Simpler process,

low cost

� High process cost and
post-sintering
required

� Manual support and
post- sintering
required

Polymer � Extrusion-based
3D printing

� Vat photo-
polymerisation

� No chemical
post-processing,
low cost

� High resolution

� Lower resolution
� Photopolymers and

manual support
required
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defined 3 basic unit cells using patterns of stiff and soft building blocks,
and generated 100,000 microstructures by combinations of unit cells
which could be encoded into a data matrix (Fig. 7). By using CNNs where
mechanical properties were calculated using a finite element method
(FEM) to form the base truth, the machine learning model could
impressively generate much stronger and tougher materials as compared
to initial training set. The predicted composite materials were 3D printed
and underwent stress-strain testing and were shown to be roughly 25
times tougher than the original stiff building block. While directly using
Fig. 7. (A) Stiff and soft building blocks are combined in patterns to form unit cell
building blocks. (B) The ratio between the modulus of stiff and soft blocks affects unit
cells U1 (blue), U2 (red) and U3 (yellow), which can be further converted into a data
ratio is the strength of machine learning generated samples after 1000 loops (green),
Toughness ratio is the toughness as compared to the highest training set toughness.
optimal and ML-minimum) [63].
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FEM simulations for all the microstructures would take 5 days, the CNN
required only 10 hours for training and under 1 min to output the ma-
chine learning optimized composite. This provides a promising new
paradigm of smart additive manufacturing of better materials, driven by
ML optimization of hierarchical building blocks.

Khadilkar et al. used machine learning for optimization as compared
to FEM simulations [130]. 16,700 stereolithography 3D printed models
underwent FEM simulations to estimate stress distributions, and this
acted as the training set for the machine learningmodel. It was found that
the two-stream CNNML model performed better than single-stream CNN
and artificial neural networks (ANN). ANN was trained on a lattice cell
mechanical model, and was used to model the elastoplastic properties
and predict the maximumVonMises and stresses on the lattice cell [131].
While FEM simulations were conducted over 5–10 hours, the ANN
approach took under a minute.

Marrone and colleagues investigated the Tg of polyhydroxyalkanoate
homopolymers and copolymers [132]. The authors converted key poly-
mer properties such as charge/polarity into a numerical matrix, and used
a statistical machine learning model trained on experimentally deter-
mined polymer Tg, molecular weights and polydispersity. Their model
identifies chemical features affecting Tg, and accurately predicts Tg of
new polymers. The pharmaceutical software M3DISEEN was used to
design 3D printable drug loaded formulations from a comprehensive list
of 145 excipients [54]. The software could predict the printability of the
drug-excipient formulation with an accuracy of 76% and the filament
properties with an accuracy of 67%, and furthermore could suggest
approximate processing temperatures for hot melt extrusion and the
s U1, U2 and U3. Pink refers to stiff building blocks, while black refers to soft
cell isotropy. (C) The microstructure of stiff and soft blocks is converted into unit
matrix with inputs of 1, 2, 3 corresponding to the type of unit cell. (D) Strength
and after 1,000,000 loops (red), as compared to the highest training set strength.
(E) Stress-strain curves of machine learning generated 3D printed sample (ML-
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printing process. This can greatly facilitate the customizable 3D printing
of pharmaceutical drugs.

The 3D printing design process using CAD is iterative and time-
consuming, driving the need for data-driven design. Maiden et al.
showed that by employing machine learning, designers could be rec-
ommended to use existing CAD models most similar to what they are
intending to design, thus speeding up the design process [133]. There is
also errors in translating from CAD to 3D printed materials due to ma-
terials shrinkage or warping. The PrintFixer systemwas developed which
uses data from previous 3D printing jobs to train its convolution based
machine learning model to predict shape distortions, thus improving 3D
printing accuracy by up to over 50% [134]. PrintFixer can work with a
variety of materials and applications – from metals to thermal plastics
and aerospace engineering. Machine learning can also assist in predicting
the functional properties of 3D printed implants. CNN could be used to
predict whether 3D printed CAD/CAM crowns would debond from
stereolithographymodels [135]. CAD/CAM composite resin crowns were
split into 2 categories: trouble-free and debonding (n ¼ 12) for training
the CNN model for predicting probability of debonding. The predicted
result was impressively 98.5% accurate and 97.0% precise, showing that
CNN could be used in practical dental applications.

7.2.2. 3D printing process optimization
Using machine learning, optimization of AM processes can be per-

formed in a short time with best performance. Machine learning algo-
rithms have been used to determine the process-structure-properties
(PSP) relationship for many 3D printing processes, and ANN is the most
commonly used technique for process optimization [136,137]. Various
studies have compared machine learning algorithms with conventional
optimization methods such as Taguchi method [138], polynomial
regression model [139], ANOVA [140]. ANN was found to achieve a
lower mean of errors registering 1.922% and 2.104% as compared to a
second-order regression model with a mean of errors of 2.633% and
2.308% for bead width and bead height predictions. Machine learning
has a high potential to successfully discover complex PSP relationships,
overcoming many of the limitations associated with the techniques such
as finite element modelling (FEM) methods. It focuses on understanding
either process response or performance response, by either using
data-driven approach, or combining both physics-based and data-driven
approaches [141].

To optimize the process for 3D printing, there are several process
parameters which will affect the printing quality. Zhang et al. used a
Latin hypercube sampling method to fully explore the process parameter
design space for aerosol jet printing [142]. The 2 most important pa-
rameters of sheath gas flow rate and carrier gas flow rate were studied in
more detail by K-means clustering approach and a support vector ma-
chine. To allow determining of the operating window under different
print speeds, transfer learning was adopted to speed up the process. The
full 3D operating window is then created using incremental classifica-
tion. By using a hybrid machine learning approach, it is possible to sys-
tematically improve the printing process as opposed to traditional
experimental approaches. Rankouhi et al. studied how to predict part
density and surface roughness when process parameters for selective
laser melting were varied [55]. The authors used a multivariate Gaussian
approach to transfer knowledge from copper and the 316L alloy indi-
vidually to predicting properties of the composite material. High
throughput measurement of part density and surface roughness were
used to train the dataset, and process parameter maps were generated.
These process maps allow for prediction of process-property in a
compositional gradient zone of a multi-material printed part. As a model
for 3D bioprinting, Bone et al. studied the process parameters for 3D
printing of soft alginate hydrogels [143]. The authors experimentally
established an initial dataset of 48 high and low fidelity alginate prints by
varying print parameters, which were scored for similarity of the prints to
the CAD designs. Hierarchical machine learning was used to identify
dominant variables and predict process parameters that would generate
11
high fidelity prints.
While additive manufacturing has many advantages, there is the issue

of print quality of 3D printed objects. Wu and colleagues used an
ensemble learning algorithm to predict surface roughness [144]. They
incorporated 5 sensors to monitoring the printing conditions and used a
profilometer to measure surface roughness. A random forest approach
was used to determine feature importance and fed into the machine
learning model. It was found that the build plate frequency amplitude,
extruder vibration and build plate temperatures were the top 3 most
important features, and the ensemble learning algorithm was found to
outperform the individual learning algorithms with a high accuracy of
prediction. The 3D printed product quality could also be monitored by
laser-based process control system. A CNNmachine learning model could
classify the in-plane anomalies accurately, and can both reduce the
height variation error and correct anomalies as they happen [145]. This
is important for improving the additive manufacturing process, espe-
cially as it is upscaled for reproducible manufacturing in the future.

8. Conclusion and perspectives

Machine learning has advanced in the field of biomaterials, with more
accessible high-throughput experimental equipment that generate
training data, better data-mining from literature throughout the years
and increasing understanding of how to apply suitable algorithms. Ma-
chine learning is used in several facets of biomaterial development: 1) as
part of the initial screen to find new hydrogel forming materials if certain
features are present in the material; 2) as part of optimizing the material's
inner properties, such as enhancing the mechanical properties; (3) the
determination and optimization of significant process parameters; and
(4) the specialized investigation of material interactions with biological
systems, such as anti-fouling and biologicalfate. Biomaterials covers a
range of materials with starkly different properties, but there has been
application of machine learning techniques to the field. An extensive
training dataset with a large sample size is very useful to employ machine
learning techniques with higher predictive power, and this is currently
often obtained by the authors performing a set of high throughput
experimentation. In cases of lower sample size, the parameter space can
be explored by using techniques such as Latin hypercube samples, and by
using Bayesian inference models which incorporate prior knowledge.
Machine learning can greatly accelerate the innovation or optimization
process by allowing the extrapolation of insights gained from thousands
of data points to predict hits in much larger databases. There is the
reduction in the number of experiments required to achieve optimal
formulations, and a reduction in computational cost when simulations
such as finite element analysis do not need to be extensively performed.
In polymeric biomaterials, machine learning can screen for newmaterials
for hydrogel formation and polymer moieties to mitigate the foreign
body response. In metallic materials, high-entropy alloys (HEA) have
benefited from machine learning applications for multi-parametric
optimization. For ceramics materials, beyond prediction of material
failure, there is also screening for antimicrobial properties in bioactive
glass. In the space of nanomaterials development, modelling results from
screening for co-aggregation can allow for extrapolation to a huge FDA
approved drug and excipient database. Machine learning can also be used
not only to improve 3D printing processes, but also in concert with 3D
printing for prediction and validation of composite materials.

In various examples shown, machine learning was proven to facilitate
and speed up the creation of biomaterials. Machine learning was none-
theless only carried out using a tiny subset of research on biomaterials
and used as a technique to handle certain biomaterial issues. Biomaterials
experiments and data collecting in different laboratories and nations are
not standardised. In many situations the metadata or annotations for the
data collection are not given by the original researchers, in addition to
experimental details, making it nearly impossible to manipulate data for
machine learning. As an appropriate training data set with proper an-
notations is often not available, experimental researchers either need to
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perform a set of high throughput experiments for the specific biomaterial
problem or they are faced with a small sample size. Machine learning
models are also encountering challenges as they are trained on an initial
data set and expect to predict for improved performance in other settings.
Recently, there has been the realization that under specification in ma-
chine learning models can lead to poor model performance when used for
real life applications and needs to be accounted for [146]. While authors
oftenmention the potential of their advances, it is often not clear whether
the machine learning models presented is useful beyond the specific
setting or can be extrapolated to a larger database.

We must make a couple of adjustments in terms of thinking and
technological improvements to include machine learning into biomate-
rial research. First and foremost, data sharing is needed for larger data-
sets and for easier analysis by machine learning [147]. A uniform
common standard must be developed for input characterization data,
output testing assays, and metadata to guarantee that the obtained data
are similar and generalizable across each institution. A more viable so-
lution is to initiate multi-group collaborations that standardizes protocols
and annotations to create generalisable data. The human genome project,
where multiple groups worldwide have been able to efficiently combine
capacities and exchange knowledge to fulfil the taxing task, is a viable
previous reference point [148]. Next, the community should provide an
open access repository for data, and reward authors if others use their
submitted data. Computational groups can perform secondary analysis
by bringing together multiple datasets, and credit the original authors
accordingly. Finally, the collaboration between computer scientists and
experimental biomaterials scientists needs to start early and a close
working relationship fostered to generate datasets accessible to machine
learning. In the case of an incomplete and poorly annotated dataset, there
is not much useful insight that can be gained. With all these efforts, we
believe that machine learning can be firmly integrated into the bio-
materials development process for an incredibly fruitful era of bio-
materials innovation.
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