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Examples of associations between human disease and
defects in pre-messenger RNA splicing/alternative splic-
ing are accumulating. Although many alterations are
caused by mutations in splicing signals or regulatory se-
quence elements, recent studies have noted the disruptive
impact of mutated generic spliceosome components and
splicing regulatory proteins. This review highlights recent
progress in our understanding of how the altered splicing
function of RNA-binding proteins contributes to myelodys-
plastic syndromes, cancer, and neuropathologies.

Introduction

Nearly all protein-encoding human genes have multiple exons
that are combined in alternative ways to produce distinct
mRNAs, often in an organ-specific, tissue-specific, or cell type—
specific manner. Although documenting the function of this
vast collection of splice variants is a challenging endeavor, the
regulated production of splice variants is required for import-
ant functions encompassing virtually all biological processes.
The growing recognition of splicing and alternative splicing as
critical contributors to gene expression was accompanied by
many new examples of how splicing defects are associated with
human disease. As several excellent reviews have reported on
this expanding, and sometimes causal, relationship (Poulos et
al., 2011; Singh and Cooper, 2012; Zhang and Manley, 2013;
Cieply and Carstens, 2015; Nussbacher et al., 2015), the goal
of this review is to highlight recent efforts in understanding
how disease-associated mutations disrupt regulation of splic-
ing. After an overview of basic concepts in splicing and splic-
ing control, we discuss recently described defects in the control
of splicing that suggest contributions to myelodysplastic syn-
dromes (MDS), cancer, and neuropathologies.

Splicing and splicing control

Intron removal is performed by the spliceosome (Fig. 1 A),
whose assembly starts with the recognition of the 5’ splice
site (5'ss), the 3’ splice site (3’ss), and the branch site by Ul
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small nuclear RNP (snRNP), U2AF, and U2 snRNP, respec-
tively. Along with the U4/U6.U5 tri-snRNP, >100 proteins
are recruited to reconfigure the interactions between small nu-
clear RNAs, between small nuclear RNAs and the pre-mRNA,
and to position nucleotides for two successive nucleophilic
attacks that produce the ligated exons and the excised intron
(Wahl et al., 2009; Matera and Wang, 2014). Fewer than 1,000
introns (i.e., ~0.3%) are removed by the minor spliceosome,
which uses distinct snRNPs (U11, U12, Udatac, and U6atac)
but shares U5 and most proteins with the major spliceosome
(Turunen et al., 2013).

Definition of intron borders often requires the collabora-
tion of RNA-binding proteins (RBPs), such as serine arginine
(SR) and heterogeneous nuclear RNPs (hnRNPs), which inter-
act with specific exonic or intronic sequence elements usually
located in the vicinity of splice sites. As the combinatorial ar-
rangement of these interactions helps or antagonizes the early
steps of spliceosome assembly (Fu and Ares, 2014), one ambi-
tious goal is to determine how cell-, tissue-, and disease-spe-
cific variations in the expression of these splicing regulators
and their association near splice sites induce specific changes
in alternative splicing (Barash et al., 2010; Zhang et al., 2010).
This challenge is compounded by the fact that only a fraction
of the >1,000 RBPs has been studied (Gerstberger et al., 2014)
and that all RBPs have splice variants, usually of undetermined
function. Moreover, the function of RBPs is often modulated by
posttranslational modifications that occur in response to envi-
ronmental insults and metabolic cues (Fu and Ares, 2014).

An extra layer of complexity to our view of splicing con-
trol is added when we consider that experimentally induced
decreases in the levels of core spliceosomal components also
affect splice site selection (Saltzman et al., 2011). Indeed, re-
ducing the level of dozens of spliceosomal components, in-
cluding SF3B1, U2AF, and tri-snRNP components, affects the
production of splice variants involved in apoptosis and cell pro-
liferation (Papasaikas et al., 2015). Although it remains unclear
whether variation in the levels and activity of generic factors
is used to control splicing decisions under normal conditions,
deficiencies in tri-snRNP proteins or in proteins involved in
snRNP biogenesis are now frequently associated with aberrant
splicing in disease (e.g., PRPF proteins in retinitis pigmentosa
[Tanackovic et al., 2011], the SMN protein in spinal muscular
atrophy [SMA; Zhang et al., 2008], and SF3B1, SRSF2, and
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U2AF1 in MDS [see Spliceosomal proteins in MDS section]).
How mutations in generic splicing factors confer gene- and cell
type—specific effects is an intriguing question. The suboptimal
features of some introns that dictate this sensitivity may nor-
mally be mitigated by the high concentration or activity of ge-
neric factors. Consistent with this view, repression of PRPF8
alters the splicing of introns with weak 5’ss (Wickramasinghe
et al., 2015). Thus, deficiencies in the activity of generic spli-
ceosome components may compromise the splicing of a subset
of introns, contributing to the onset of disease.

As splicing decisions are usually made while the pre-
mRNA is still being transcribed (Fig. 1 B), regulatory links with
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Figure 1. Spliceosome assembly and transcription-coupled
splicing. (A) Schematic representation of spliceosome assem-
bly indicating the position of 5'ss, 3'ss, the branch point, and
the polypyrimidine tract. Exons and introns are represented
as solid cylinders and lines, respectively. Only a portion of
spliceosome components are depicted, with some subunits
of U2AF, U2 snRNP, and the tri-snRNP complex indicated.
(B) Schematic representation of the chromatin-associated
cotranscriptional assembly of splicing complexes on a nascent
pre-mRNA. CTD, C+erminal domain of RNA polymerase |I.

transcription and chromatin structure take place at several lev-
els. First, spliceosome components and regulators are recruited
to the transcription machinery (e.g., the C-terminal domain of
RNA polymerase II) to facilitate their transfer onto the emerg-
ing nascent pre-mRNA (Bentley, 2014). Second, the speed of
the elongating polymerase provides a kinetic window for the
assembly of enhancer or repressor complexes that influence
commitment between competing pairs of splice sites (Bentley,
2014; Naftelberg et al., 2015). Third, posttranslational modifi-
cations of histones and chromatin remodeling factors impact the
speed of transcription as well as the recruitment of adapters that
interact with splicing regulators (Luco et al., 2011; Lee and Rio,



2015; Naftelberg et al., 2015). Notably, histone modifications
in specific chromatin regions can be triggered by Argonaute
proteins bound to endogenous or exogenously provided small
RNAs (AlI6 et al., 2009; Ameyar-Zazoua et al., 2012). Long
noncoding RNAs (IncRNAs), whose expressions vary in human
diseases (e.g., MALAT-1 in cancer), may also contribute to
splicing control by interacting with splicing factors to regulate
their availability, or by orchestrating local epigenetic modifica-
tions that impact the speed of transcription or the recruitment of
adapters (Zhou et al., 2014a; Gonzalez et al., 2015).

Shooting the pre-messenger by disrupting
splicing control elements

More than 200 human diseases, including progeria and some
forms of breast cancer and cystic fibrosis, are caused by point
mutations that affect pre-mRNA splicing by destroying or weak-
ening splice sites, or activating cryptic ones (Wang et al., 2012),
thereby producing mRNAs that encode defective proteins or
that are targets for nonsense-mediated mRNA decay (NMD).
Splicing defects can also lead to the cotranscriptional degrada-
tion of nascent pre-mRNAs (Davidson et al., 2012; Vaz-Drago
et al., 2015). A splice site mutation in BRAF is associated with
resistance to the anticancer agent vemurafenib, but inhibitors
of the generic splicing factor SF3B1 decrease the production of
the mutation-induced BRAF variant and inhibit drug-resistant
cell proliferation (Poulikakos et al., 2011; Salton et al., 2015).
Splice site variations can also have health-positive effects, as
shown recently for a variant of LDLR that lowers non-high
density lipoprotein cholesterol and protects against coronary
artery disease (Gretarsdottir et al., 2015). In addition to mu-
tations at splicing signals themselves, mutations that destroy
silencer or enhancer elements form another important group
of disease-causing alterations that impact alternative splicing
(Sterne-Weiler and Sanford, 2014). Because more than half of
the nucleotides in an exon may be part of splicing regulatory
motifs (Chasin, 2007), synonymous exon mutations, as well as
an undetermined number of intron mutations, may further con-
tribute to splicing misregulation that leads to disease. A recent
computational analysis relying on RNA sequencing data from
normal and disease samples and using >650,000 single-nucle-
otide variations (SNVs) identified >10,000 intronic and 70,000
missense and synonymous exonic SNVs occurring in splicing
regulatory motifs that linked potential splicing defects with
disease (Xiong et al., 2015). Notably, the computational tool
developed for this analysis predicted, with tantalizing accuracy,
the impact of mutation on the direction and amplitude of splic-
ing shifts associated with SMA and hereditary colorectal cancer
and identified several intronic autism-associated SNVs with a
high potential of splicing impact (Xiong et al., 2015).

Incapacitating the regulators

Disease-causing mutations in intronic or exonic control ele-
ments generally affect splicing by perturbing the binding of reg-
ulatory proteins that normally recognize them. The activity of
the splicing regulators themselves can also be altered in disease.
Changes in the nuclear level of regulators, including RBFOX2,
hnRNP, and SR proteins, often occur in cancer (Venables et al.,
2009; Zhang and Manley, 2013). Although these changes fre-
quently produce splice variants that affect cell cycle control,
apoptosis, cell motility, and invasion, the molecular mechanisms
that lead to these alterations and to specific downstream events
that promote cancer remain largely unclear (Zhang and Manley,

2013; Shilo et al., 2015). Another way to alter the activity of
splicing regulators is through sequestration. This is the case in
DM1 and DM2 myotonic dystrophies, where muscleblind-like
(MBNL) proteins are recruited to mRNAs carrying expansions
of CUG and CCUG repeats, respectively. This sequestration
compromises MBNL binding to normal RNA targets, deregu-
lates the expression of CUGBP1, and alters alternative splic-
ing of hundreds of transcripts not only in muscle tissues but
also in the brain (Poulos et al., 2011; Charizanis et al., 2012;
Echeverria and Cooper, 2012; Batra et al., 2014; Goodwin et
al., 2015). The formation of cytoplasmic aggregates, possibly
also triggered by mRNAs carrying nucleotide expansions, is
frequently associated with neuropathological diseases such as
amyotrophic lateral sclerosis (ALS) and frontotemporal demen-
tia (FTD; see Splicing control defects in neuropathological and
muscle-related disease section). In other instances, particularly
in cancer, the localization and/or activity of splicing factors are
misregulated by posttranslational modifications, e.g., phosphor-
ylation (Naro and Sette, 2013). Mutation of generic spliceoso-
mal components is also becoming a recurrent theme in disease,
and recent advances in this area are mentioned throughout our
review. Likewise, with the increasing awareness that splicing
decisions are coordinated with transcription, and thus with pro-
cesses that modify chromatin, splicing alterations provoked
by disease-associated IncRNAs and chromatin-modifying en-
zymes are likely to become an emerging focus of inquiry.

Impairing splicing factors to

promote cancer

Here, we highlight recent work that has focused on the role
of spliceosomal components in MDS, a heterogeneous group
of disorders that affect hematopoietic progenitor cells and the
production of different types of blood cells. MDS often prog-
ress to fully malignant acute myeloid leukemia (AML) with the
abnormal accumulation of hematopoietic precursors arrested
at an early stage of differentiation. We then provide examples
of network restructuring of alternative splicing regulators that
have been more solidly associated with carcinogenesis or that
may constitute new concepts that link splicing factors with the
emergence and maintenance of cancer.

Spliceosomal proteins in MDS

Somatic heterozygous mutations in any of the spliceosomal
proteins SF3B1, SRSF2, U2AF1, and the U2AF-related gene
ZRSR2 occur in >50% of all MDS patients (Papaemmanuil et
al., 2011; Quesada et al., 2011; Yoshida et al., 2011). No homo-
zygous mutations have been described, and almost all mutations
are missense, usually occurring at conserved positions. Bone
marrow and cancer cells harboring these mutations display splic-
ing abnormalities (Makishima et al., 2012; Przychodzen et al.,
2013; Gentien et al., 2014). This may be a direct consequence of
the specific mutations because the RNAi-mediated depletion of
wild-type SF3B1, SRSF2, and U2AF]1 in a variety of cell types
or the expression of mutated proteins in nonhematopoietic and
cancer cell lines also disrupts alternative splicing (Massiello et
al., 2006; Pacheco et al., 2006; Graubert et al., 2011; Yoshida et
al., 2011; Venables et al., 2013; Brooks et al., 2014; Shao et al.,
2014; Dolatshad et al., 2015; Kfir et al., 2015; Komeno et al.,
2015; Papasaikas et al., 2015). Here, we will summarize a set of
studies that provide tantalizing insight into how mutated SRSF2,
SF3B1, U2AF1, and ZRSF2 affect splicing programs and alter
hematopoiesis in mice and MDS patients (Fig. 2).
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srsF2. Notably, telomerase-negative mice with short
telomeres that induce a persistent DNA damage response (DDR)
present hematopoietic defects that recapitulate the clinical features
of human MDS (Colla et al., 2015). Moreover, this telomere defi-
ciency is associated with a decrease in the level of splicing factors
that are frequently mutated in MDS (e.g., SRSF2, U2AF2, SF3B2,
and SF3A3). Progenitor cells with deficient telomeres produce de-
fective transcripts encoding components involved in DNA repair
and chromatin structure. One splicing change reduces the level of
the DNA methyl transferase DNMT3a, whose frequent mutation in
MDS patients contributes to rapid progression to AML (Walter et
al., 2011; Colla et al., 2015). SRSF2 is a splicing regulator that
contributes to both generic and alternative splicing (Long and Ca-
ceres, 2009). The impact of short telomeres on the expression of
SRSF2 inspired Colla et al. (2015) to create SRSF2-haploinsuffi-
cient mice. Remarkably, these mice display impaired erythroid dif-
ferentiation and express several of the defective alternative splicing
events caused by telomere dysfunction. Further, they aberrantly
splice transcripts encoding components involved in telomere main-
tenance, potentially providing a feedback loop that may elicit more
splicing defects (Colla et al., 2015).

Importantly, the MDS-associated P95SH mutation in
SRSF2 shifts the affinity of SRSF2 to a subset of binding sites
(Kim et al., 2015; Komeno et al., 2015; Zhang et al., 2015a),
thus providing an explanation for the fact that the recapitulation
of splicing defects observed in SRSF2-haploinsufficient mice is
only partial (Colla et al., 2015). CD34* hematopoietic stem cells
from MDS patients with the PO5SH mutation have defects in the
production of splice variants involved in telomere maintenance,
DNA repair, and chromatin remodeling (Colla et al., 2015). Fi-
nally, murine bone marrow cells expressing the SRSF2-P95SH
mutant display features that are characteristic of MDS, including
increased proliferation of progenitor cells and impaired differ-
entiation (Kim et al., 2015). One of the P95H-mediated splic-
ing alterations in mice reduces the expression of the histone
methyl transferase EZH2, an outcome also occurring in human
cells expressing mutant SRSF2. Strikingly, restoring expression
of EZH2 in SRSF2 mutant mice partially rescues the hemato-
poietic defect (Kim et al., 2015). Overall, these studies provide
strong evidence that MDS-associated mutations in SRSF2 affect
the production of splice variants involved in chromatin structure
that in turn elicit hematopoietic defects.

JCB » VOLUME 212 « NUMBER 1 » 2016

sFa2B1. SF3BI1 is a U2 snRNP-associated protein in-
volved in branch point selection (Corrionero et al., 2011). The
depletion of SF3B1 impairs the growth and the differentiation
of myeloid cell lines (Dolatshad et al., 2015). SF3B1 haploin-
sufficiency in mice compromises the repopulating ability of he-
matopoietic stem cells, but is not sufficient to induce MDS
(Visconte et al., 2012; Matsunawa et al., 2014; Wang et al.,
2014a; Dolatshad et al., 2015). Decreasing the levels of SF3B1
in myeloid cell lines alters the alternative splicing of transcripts
encoding components involved in apoptosis and cell cycle con-
trol. Interestingly, in bone marrow cells and progenitor bone
marrow stem cells from SF3B1-mutated MDS patients, the ex-
pression and splicing of genes/transcripts associated with mito-
chondrial and heme-related functions are altered, providing a
link with the abnormal iron homeostasis observed in MDS pa-
tients (Visconte et al., 2012; Dolatshad et al., 2015). Notably,
iron homeostasis influences alternative splicing by modulating
the activity of SRSF7 (Tejedor et al., 2015). Interestingly, it has
been observed that SRSF7 is itself abnormally spliced in MDS
patients carrying the SF3B1 mutation (Dolatshad et al., 2015).
We speculate that this defective splicing may be responsible, at
least in part, for the noted heme deficiency in MDS patients.

SF3B1 is also part of a complex with BCLAF1, U2AF,
and PRPFS that is recruited to chromatin-bound BRCA1 to
stimulate the splicing of transcripts encoding factors involved
in DNA repair and the DDR (Savage et al., 2014). In line with
this finding, several DNA repair and DDR genes (e.g., ABLI,
BIRC2, and NUMAI) produce aberrantly spliced transcripts in
cells of patients with SF3B1 mutations (Dolatshad et al., 2015).
Interestingly, one splicing alteration in these patient cells oc-
curs in EZHI, a functional homologue of the histone methyl
transferase EZH2, which is also defectively spliced in SRSF2-
mutated cells and contributes to the MDS phenotype (Visconte
et al., 2012; Dolatshad et al., 2015; Kim et al., 2015). Notably,
the expression and alternative splicing of transcripts encoding
RNA-processing factors, including PRPF8 and U2AF2, are
also affected in SF3B1-mutated cells (Dolatshad et al., 2015).
This observation is important because mutations in PRPF8 and
U2AF?2 are found in MDS patients (Boultwood et al., 2014).
However, although PRPF8 mutations are associated with alter-
native splicing defects (Kurtovic-Kozaric et al., 2015), U2AF2
mutations appear neutral (Shao et al., 2014). Overall, these



results suggest that SF3B1 mutations alter the splicing of tran-
scripts involved in chromatin structure, DNA repair, and the
DDR, thereby possibly providing an explanation for the ac-
cumulation of DNA damage in hematopoietic progenitor cells
of MDS patients (Zhou et al., 2013). A function for SF3B1 in
splice site selection has recently been associated with a spe-
cific interaction with histone marks that are enriched in exons
(Kfir et al., 2015). Although SF3B1 mutations often occur in
the C-terminal HEAT repeats involved in protein—protein inter-
actions, it remains to be shown whether these mutations affect
the recruitment of SF3B1 to chromatin. If they do, combining a
mutated SF3B1 with chromatin modification defects may am-
plify splicing alterations, gradually leading to more detrimental
hematopoietic deficiencies.

u=2AF1. U2AF]I is the smaller of two proteins that make
up the U2AF heterodimer implicated in generic 3’ss recogni-
tion. Although the U2AF1-S34F mutation elicits hematopoietic
abnormalities in mice that compromise the repopulating ability
of stem cells, it does not elicit MDS (Shirai et al., 2015). Many
splicing defects in MDS patients with U2AF1 mutations occur
in transcripts that encode components involved in cell cycle and
splicing control (Przychodzen et al., 2013). Expression of mu-
tated U2AF1 proteins in a human erythroleukemic cell line
causes thousands of splicing alterations, including some in tran-
scripts encoding components involved in DNA methylation
(e.g., DNMT3B, also affected by mutations in SF3B1), DDR,
and apoptosis (Ilagan et al., 2015). Different U2AF1 mutations
alter its binding to 3’ss in different ways and lead to distinct yet
overlapping splicing defects (Brooks et al., 2014; Shao et al.,
2014; Ilagan et al., 2015). A meta-transcriptome analysis using
samples from U2AF1-S34F mutant mice, AML patients with
U2AF1 mutations, and primary bone marrow cells overexpress-
ing U2AF1-S34F uncovered common splicing alterations in
transcripts encoding splicing proteins and components that are
mutated in MDS and AML, or that are involved in hematopoi-
etic stem cell function. These observations provide strong sup-
port to the view that mutated U2AFI elicits abnormal
hematopoiesis (Shirai et al., 2015).

zrskr2. ZRSR2 has been implicated in the splicing of
introns that use the U12-dependent minor spliceosome in tran-
scripts encoding cancer-relevant proteins such as PTEN,
MAPKI1, MAPK3, BRAF, and E2F2 (Madan et al., 2015).
MDS-associated mutations in ZRSR2 are often inactivating,
and depleting ZRSR2 reduces the growth and clonogenic poten-
tial of leukemia cell lines and alters the differentiation potential
of human CD34* bone marrow cells (Madan et al., 2015).

Overall, the studies mentioned above suggest that alterna-
tive splicing likely makes a crucial contribution to the clinical
evolution of MDS (Fig. 2). Mutations in SRSF2, U2AF1, and
SF3B1 may elicit a shared set of splicing alterations that trig-
ger common hematopoietic defects and predispose stem cells to
cancer development. The insight gained by studying the contri-
bution of mutated splicing factors to MDS is likely to benefit our
understanding of how mutations in splicing factors lead to can-
cer in general because mutations in SF3B1, U2AF1, and SRSF2
are also found in a variety of solid tumors (Kandoth et al., 2013;
Scott and Rebel, 2013; Maguire et al., 2015). Although a recent
compilation indicates that splicing factor genes are frequently
mutated in different types of cancer (Sveen et al., 2015), a more
extensive characterization of the functional impact of these mu-
tations will be required to determine whether these alterations
preferentially contribute to specific types of cancer.

An integrating hypothesis: Altered

RBPs cause R loops and persistent DDR
signaling that alter splicing

Although mutated SF3B1 and U2AF1 are expected to impact
branch site/3’ss selection directly, we speculate that decreases
in the level, and changes in the RNA binding specificity of splic-
ing factors may also cause a second wave of alternative splicing
changes through activation of the DDR (Fig. 3). This model is
based on the observation that when core spliceosomal compo-
nents are delocalized or when RNA-processing factors such as
SRSF1 and RNPS1 are depleted, R loop formation occurs and
triggers the DDR to impact alternative splicing (Li and Manley,
2005; Li etal., 2007; Dominguez-Sanchez et al., 2011; Tresini et
al., 2015). If we are correct, drops in the level or changes in the
activity of SRSF2, SF3B1, and U2AF1 may perturb alternative
splicing through persistent R loop—mediated activation of the
DDR (Fig. 3), a consequence that would be consistent with the
noted accumulation of DNA damage in MDS progenitor cells
(Zhou et al., 2013). DNA damage affects the expression, modi-
fication, and localization of several splicing regulatory proteins
(Shkreta and Chabot, 2015). Likewise, DNA damage caused
by deficient telomeres in mice alters the expression of splicing
regulators (Colla et al., 2015). Importantly, alternative splicing
defects in MDS patients and MDS mouse models affect variants
involved in apoptosis, cell cycle control, DNA repair, splicing
control, and chromatin structure (Fig. 3), precisely matching the
functional categories of transcripts whose alternative splicing is
affected by DNA-damaging agents (Shkreta and Chabot, 2015).
As drops in the activity of splicing factors are frequently asso-
ciated with human pathologies, this model may be applicable
to a variety of diseases in addition to MDS, including myotonic
dystrophies, retinitis pigmentosa, ALS, and FTD.

The epithelial-mesenchymal/mesenchymal-
epithelial transition connection

Cancer metastasis involves cell migration and tissue invasion
through reversible transitions from mesenchymal to epithelial
cell types (mesenchymal—epithelial and epithelial-mesenchy-
mal transition [MET and EMT, respectively]; Fig. 4; Yang and
Weinberg, 2008). ESRPs and RBFOX2 control the alternative
splicing of several transcripts encoding cell adhesion proteins
involved in the epithelial or mesenchymal phenotypes (Shap-
iro et al., 2011; Venables et al., 2013; Braeutigam et al., 2014).
A splice variant of the tyrosine kinase receptor RON that pro-
motes cell migration and activates EMT is controlled by antag-
onistic interactions involving SRSF1 and hnRNP A1, A2, and H
proteins (LeFave et al., 2011; Biamonti et al., 2014). Likewise,
hnRNP M antagonizes ESRP in the splicing of the cell adhesion
molecule CD44 and plays a key role in the metastatic behav-
ior of breast cancer cells in mouse models (Xu et al., 2014).
In contrast, RBM47 behaves as a suppressor of breast cancer
progression and metastasis (Vanharanta et al., 2014). Consistent
with their role in metastasis, the expression of hnRNP M and
RBM47 is respectively high and low in aggressive human breast
cancer (Vanharanta et al., 2014; Xu et al., 2014). LIN28A, the
expression of which increases in the HER2 breast cancer sub-
type, interacts with hnRNP A1 to modulate the production of
splice variants of ENAH that is associated with breast cancer
metastasis (Di Modugno et al., 2007; Yang et al., 2015). In addi-
tion to the IncRNA MALAT1, which is implicated in metastasis,
possibly by controlling alternative splicing (Tripathi et al., 2010;
Gutschner et al., 2013), another IncRNA modifies chromatin
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Figure 3. Model proposing that changes in alternative splicing triggered
by mutations in SF3B1, SRSF2, and U2AF1 also occur through activation
of the DDR. Drops in the activity or changes in the binding specificities of
splicing factors alter splice site selection directly but are also proposed to
promote the formation of R loops when segments of nascent pre-mRNAs are
not adequately bound by splicing factors. R loop formation in turn triggers
the DDR to elicit splicing changes in transcripts encoding DNA repair, chro-
matin structure, cell cycle and splicing control, and apoptotic components.

to prevent the recruitment of a repressive chromatin-splicing
adapter complex that normally enforces the mesenchymal-spe-
cific splicing of FGFR2 (Gonzalez et al., 2015). IncRNAs may
act on opposite functional sides of the oncogenic pathway. On
the one hand, the IncRNA INXS, which interacts with Sam68 to
favor the production of the proapoptotic Bcl-xS splice variant,
is down-regulated in tumors and its overexpression in mouse
xenograft models elicits tumor regression (DeOcesano-Pereira
et al., 2014). On the other hand, the IncRNA FAS-AS] interacts
with RBMS5 to reduce expression of the prosurvival soluble FAS
variant (Sehgal et al., 2014). Other IncRNAs that have been im-
plicated in cancer include linc-p21, PANDA, TUGI, and Pint,
but their impact on splicing and their contribution to cancer and
metastasis are speculative and need to be investigated in more
detail (Wang et al., 2014b; Zhang and Peng, 2015).

The MYC splicing connection

The overexpression of MYC contributes to malignant transfor-
mation and is associated with many cancers. Several studies
have established a role for MYC in splicing control (Fig. 5).
MYC contributes to cancer metabolism and tumor growth by
increasing the levels of splicing regulators PTBP1, hnRNP A1,
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and hnRNP A2 that shift the production of pyruvate kinase from
splice variant PKM1, which drives oxidative phosphorylation,
to PKM2, which elicits aerobic glycolysis (Christofk et al.,
2008; David et al., 2010). In glioblastoma, the up-regulation of
hnRNP A1 promotes the splicing of a transcript encoding the
MYC-interacting partner Max to generate AMax, producing
a feed-forward loop that enhances MYC function and hnRNP
A1l expression (Fig. 5; Babic et al., 2013). MYC also stimu-
lates the expression of the SR protein SRSF1, which drives
oncogenesis through alternative splicing of a network of tran-
scripts encoding signaling molecules (e.g., RON and MKNK?2)
and transcription factors (e.g., BIN1; Das and Krainer, 2014).
SRSF1 also elicits the production of variants, such as CASC4
with antiapoptotic function, as well as MDM?2 and cyclin D1
variants with prooncogenic properties (Olshavsky et al., 2010;
Anczukow et al., 2012, 2015; Comiskey et al., 2015). Positive
feedback likely occurs because the SRSF1-mediated splice
variant BIN1-12a no longer binds to MYC and lacks tumor
suppressor activity (Ge et al., 1999; Karni et al., 2007). KRAS
mutations that are frequently found in colorectal cancer acti-
vate the MAPK-extracellular signal-regulated kinase pathway
to increase the level of the transcription factor ELK1 that in
turn increases MYC with the expected impact on the produc-
tion of PKM2 (Hollander, D., and Ast, G., personal commu-
nication). The activated MAPK—extracellular signal-regulated
kinase pathway also stimulates the expression of Sam6S§,
which increases the level of SRSF1 through alternative splic-
ing (Matter et al., 2002; Valacca et al., 2010). Interestingly, the
expression of SRSF1 is also stimulated by the anticancer drug
gemcitabine, producing a splice variant of MKNK?2 that phos-
phorylates eIFAE to promote cell growth and drug resistance
(Adesso et al., 2013). Gemcitabine resistance is also provided
by the expression of PKM2 through the increased production
of PTBP1 (Calabretta et al., 2015).

Splicing factor addiction

The term “oncogene addiction” has been used in the cancer field
to describe the increased dependence of cancers on oncogenes
for growth and survival (Luo et al., 2009). Recent results sug-
gest that there is an analogous hypersensitivity of cancer cells
on splicing factors. This relationship was established when it
was noted that MYC-regulated genes and pathways provoke a
general increase in pre-mRNA synthesis that imposes a strain
on generic splicing (Hsu et al., 2015; Koh et al., 2015). The fact
that MYC up-regulates enzymes that modify snRNP proteins in
cancer cells is consistent with the high demand for spliceosome
components (Koh et al., 2015). Nevertheless, MYC-driven can-
cer cells are more sensitive to depletions of spliceosome com-
ponents such as U2AF1 and SF3B1 (Hsu et al., 2015). This
splicing stress may also affect the production of functionally
important splice variants because decreases in the level or ac-
tivity of generic spliceosome components also affect alternative
splicing. Other cancers may be similarly addicted to splicing
factors. For example, PRPF6, a component of the tri-snRNP
complex, is overexpressed in a subset of primary and metastatic
colon cancers, and its depletion by RNAIi in cell lines reduces
cell growth and decreases the production of the oncogenic ZAK
kinase splice variant (Adler et al., 2014). Likewise, expression
of splicing regulator SRSF10 is increased in aggressive colon
cancers. The siRNA-mediated depletion of SRSF10 decreases
tumor formation in mice, an effect that is mediated, at least in
part, by a drop in the production of the oncogenic splice variant
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of the splicing factor BCLAF1 (Zhou et al., 2014b). Thus, the
overall stimulation in gene expression in cancer cells may in-
crease their reliance on splicing factors, hence providing ave-
nues to explore novel anticancer strategies.

Splicing control defects in
neuropathological and muscle-

related diseases

As in cancer, pathogenic mechanisms in neurological and mus-
cle-associated diseases can be caused by mutations in genes that
affect splicing of their pre-mRNAs, or by mutations that affect
the expression and the activity of splicing factors that control
splice site utilization. Excellent reviews have recently presented
the prevalence of alternative splicing, the role of RBPs, and the
functional diversity of splice variants in neuronal systems (Dar-
nell, 2013; Raj and Blencowe, 2015). Here, we present recent
advances that solidify the links between splicing control and

neuronal and muscular pathologies (Fig. 6). Identifying func-
tionally relevant variants and changes in the expression/activity
of regulators remains challenging, particularly in neuropathol-
ogies. This is mainly a result of tissue availability and hetero-
geneity, as well as difficulties in developing adequate animal
models that recapitulate human phenotypes.

ALS and FTD

Although mutations in the splicing regulatory RBP TDP-43 are
found in only a fraction of all cases of ALS and FTD, cytoplas-
mic inclusions and the nuclear depletion of TDP-43 are hall-
marks of these diseases (Janssens and Van Broeckhoven, 2013;
Scotter et al., 2015). Decreasing the expression of TDP-43 leads
to neuronal defects in mice and affects the alternative splicing
of transcripts encoding components important in neuronal de-
velopment or implicated in neurological diseases (Polymenidou
et al., 2011; Tollervey et al., 2011; Yang et al., 2014a). Splicing
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defects in ALS tissues occur in target TDP-43 transcripts
(Arnold et al., 2013; Yang et al., 2014a). A recent study in mice
indicates that a decrease in TDP-43 impairs splicing fidelity
and leads to the aberrant inclusion of cryptic exons, an effect
also seen in brain tissues from ALS-FTD patients (Ling et al.,
2015). Similar to TDP-43, mutations and loss of nuclear func-
tion of FUS have been linked to alternative splicing changes in
ALS, with a few pre-mRNA targets also regulated by TDP-43
(Lagier-Tourenne et al., 2012; Coady and Manley, 2015). Cyto-
plasmic aggregates of mutated FUS or TDP-43 often sequester
other splicing proteins, and this may also contribute to alter-
ations in splicing profiles. For example, the ability of FUS to
interact with U1 snRNP is likely responsible for the Ul snRNP
cytoplasmic mislocalization in FUS-mutated ALS patient fi-
broblasts (Yu and Reed, 2015; Yu et al., 2015). ALS-associated
mutations in hnRNP A1/A2 proteins also cause cytoplasmic
aggregation (Kim et al., 2013). In several ALS-FTD patients,
GGGGCC repeat expansion that promotes G-quadruplex for-
mation in the C9ORF72 gene sequester splicing factors such
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as SRSF2 and hnRNP H, which in turn may promote extensive
alternative splicing defects and neurodegeneration (Lee et al.,
2013; Prudencio et al., 2015; Zhang et al., 2015b). Further stud-
ies should clarify whether the pathogenic impact of aggregates
is strictly caused by loss of function or whether toxicity asso-
ciated with aggregate formation also contributes to the clinical
manifestation of ALS and FTD.

Alzheimer’s disease (AD) and Huntington’s
disease (HD)

The deposition of oligomeric f-amyloid peptides and the for-
mation of neurofibrillary tangles associated with the hyperphos-
phorylation of the microtubule-associated TAU protein have
been implicated in AD (Ittner and Gotz, 2011). ApoE4 status is
one of the strongest genetic risk factors, and it possibly affects
both B-amyloid and neurofibrillary tangle pathologies. Many
genes involved in these pathways, including ApoE4, sustain
splicing mutations that have been linked to AD or present pro-
files of alternative splicing that are altered in AD tissues (Love
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et al., 2015). RNA sequencing data suggest considerable alter-
native splicing abnormalities in AD tissues, including in tran-
scripts encoding presenilin-1 and clusterin (Bai et al., 2013).
Several splicing factors whose expression are misregulated in
AD have been identified, including RBFOX, SR, and hnRNP
Al proteins, whereas splicing components, such as the Ul
snRNP, appear to be depleted from the nucleus to form cyto-
plasmic aggregates (Bai et al., 2013; Hales et al., 2014). In-
terestingly, a depletion of Ul snRNP components in HEK293
cells disrupts the expression of splice variants encoding the am-
yloid precursor protein and increases the level of a B-amyloid
peptide (Bai et al., 2013). HD is caused by expanded CAG re-
peats in the HTT gene that promote missplicing of its transcripts
(Sathasivam et al., 2013). The CAG repeats may also sequester
splicing factors eliciting alternative splicing defects in other
transcripts (Mykowska et al., 2011). Like individuals suffering
from FTD, HD subjects display an imbalance in the produc-
tion of TAU variants that promote deposits. Human HD tissues
and a mouse model of HD show alterations in the expression
of SRSF6, which may modulate TAU splicing, leading to TAU
variants with a greater propensity to form deposits (Yin et al.,
2012; Ferndndez-Nogales et al., 2014).

Schizophrenia (SZ)

SZ is a complex neuronal disease promoting brain dysfunc-
tion. A variety of alternative splicing anomalies have been
described in the brain or neuronal subtypes of SZ patients, in-
cluding transcripts encoding a glutamate transporter (EAAT;
O’Donovan et al., 2015) and microcephalin (MCPH1; Old-
meadow et al., 2014). A polymorphism associated with an in-
creased risk of SZ occurs in the dopamine receptor gene DRD?2
and affects the ability of the splicing regulator ZRANB?2 to
control alternative splicing of DRD?2 transcripts (Cohen et al.,
2015). The IncRNA gomafu, which is down-regulated in the
gray matter from the superior temporal gyrus of SZ patients,
is bound by the splicing regulators QKI and SRSF1 to control
the alternative splicing of transcripts implicated in SZ (Barry
et al., 2014). Other IncRNAs have been associated with neu-
ronal stem cell differentiation and the control of alternative
splicing through interaction with the neuronal splicing factor
PTBP1 (Ramos et al., 2015). However, although changes in
the expression of IncRNAs involved in epigenetic modifica-
tions have been linked to neuronal diseases, their contribu-
tion to alternative splicing control remains to be examined
(Roberts et al., 2014).

Defective splicing control and disease * Chabot and Shkreta



22

Autism spectrum disorder (ASD)

Mutations in, or altered expression of, >100 genes have been
linked to ASD (Devlin and Scherer, 2012; Corominas et al., 2014).
The majority of these genes produce splice variants, and recurrent
splicing defects in some of them have been noted in autistic indi-
viduals (Voineagu et al., 2011; Corominas et al., 2014). RBFOX
proteins play a critical role in brain development and function
(Gehman et al., 2011, 2012), and RBFOX1 haploinsufficiency
has been implicated in a variety of neuropsychiatric disorders
including ASD (Voineagu et al., 2011). In the mouse brain, the
depletion of RBFOX proteins alters the alternative splicing of
transcripts implicated in ASD (Weyn-Vanhentenryck et al., 2014).
Identification of a clinically relevant set of splicing events remains
challenging because RBFOX proteins affect other pathways in
RNA processing and in transcription. Moreover, three highly re-
lated RBFOX proteins with partially overlapping functions are
expressed in the brain. A recent study has identified a highly dy-
namic set of microexons (3—15 nucleotides in size) in transcripts
of different neurofunctional categories that are misregulated in
the brain of autistic individuals. Several neural microexons affect
protein—protein interactions that are crucial for neural function,
and many are controlled by the splicing regulator nSR100, whose
expression is important for normal nervous system development
(Quesnel-Vallieres et al., 2015) and is reported to be reduced in
autistic brain tissues (Irimia et al., 2014). Neural microexon splic-
ing is also regulated by the PTBP1 and RBFOX proteins (Li et al.,
2015) that are critical for normal neuronal function (Gehman et al.,
2012; Licatalosi et al., 2012; Liet al., 2014). Because microexons
have also been linked to SZ and epilepsy, it will be most revealing
to characterize the molecular pathways that regulate their inclusion
in these neurological disorders.

SMA

Mutations that reduce the level of SMN proteins, which are in-
volved in snRNP biogenesis, cause SMA. Although multiple
alternative splicing defects have been noted, it remains unclear
which splicing abnormalities cause the human phenotypes (Ule
et al., 2005; Zhang et al., 2008, 2013; Fogel et al., 2012; Highley
et al., 2014). As the SMN protein deficiency can be rescued by
stimulating exon 7 inclusion in the SMN2 pre-mRNA, efforts
deployed to achieve this goal in mouse models have produced en-
couraging results using oligonucleotides that block the activity of
an intron splicing silencer (Hua et al., 2015; Staropoli et al., 2015)
or small molecules that stimulate exon 7 inclusion with apparent
high specificity (Naryshkin et al., 2014; Palacino et al., 2015).

Heart disease

Mutations that truncate the sarcomeric protein titin cause dilated
cardiomyopathy (Herman et al., 2012). A loss-of-function mu-
tation in RBM20 affects the alternative splicing of titin, causing
dilated cardiomyopathy (Guo et al., 2012). Hypoxic conditions
associated with cardiac hypertrophy activate the expression of
SF3B1, which in turn induces the production of a splice vari-
ant of ketohexokinase associated with contractile dysfunction
(Mirtschink et al., 2015).

Advances and challenges in monitoring
disease-associated changes in

alternative splicing

Today, it is very clear that cells derived from patients with a variety
of diseases display splicing defects, with studies relating to can-
cer and neuropathologies being the most prevalent. These splicing
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alterations may generate recognizable signatures that can guide
diagnostics and may lead to the identification of new therapeutic
targets. This important cataloguing effort is now increasing through
genome-wide studies that exploit affordable RNA sequencing
technologies and access to sequence repositories. Bioinformatic
resources designed to interrogate these data are also expanding and
are becoming widely available (Tang et al., 2013; Sebestyén et al.,
2015; Hollander, D., and Ast, G., personal communication).

The reliable identification of targets that support action-
able therapeutic approaches is challenged by the fact that cor-
relations are often derived from heterogeneous clinical samples.
Moreover, although documentation of the functional impact of
splice variants is accumulating (Kelemen et al., 2013; Pagliarini
etal., 2015), the causal contribution of disease-associated splice
variants to the disease remains unknown in most cases. The
functional assessment of a continuously expanding list of splice
variants is an experimentally daunting task, possibly explaining
why recent studies have restricted their analysis to mRNA vari-
ants encoding proteins with known distinct activities or with
premature stop codons that decrease protein production.

To understand the molecular mechanisms that lead to
splicing alterations, it will be important to (a) assess the ex-
pression, posttranslational modifications, or mutations of
splicing regulators and chromatin-modifying components; (b)
profile the binding sites of the putative regulatory RBP on target
pre-mRNAs in relevant tissue cells as was originally done for
NOVA, whose inactivation causes paraneoplastic neurological
disorders (Zhang et al., 2010); and (c) sequence the genome
of diseased and normal tissues for each patient to identity so-
matic mutations that may contribute to splicing alterations. This
comparison is especially relevant to cancer in which genomes
are often intrinsically unstable. Moreover, in light of the model
proposed earlier, defects in the activity or levels of splicing fac-
tors may lead to R loop—mediated mutations that may have a
permanent impact on alternative splicing.

To accommodate the analyses of this vast quantity of
data, robust computational methods are being developed to
link the production of recurrent variants with changes in RBPs
(Sebestyén et al., 2015). Alternatively, combining large-scale
collections of molecular interaction datasets (protein—-DNA,
protein—RNA, and protein—protein) with cancer transcriptome
datasets may reveal regulatory pathways relevant to cancer
(Hollander, D., and Ast, G., personal communication). Puta-
tive connections can then be validated experimentally or con-
firmed, for example by using The Cancer Genome Atlas. These
emerging procedures justify the usefulness of network-based
approaches (Yang et al., 2014b) to capture molecular relation-
ships across different regulatory layers that become compro-
mised or that emerge during diseases.
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