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Abstract: Stroke is a cerebral artery disease that negatively affects activities of daily living (ADLs)
and quality of life (QoL). Smartphones have demonstrated strong potential in assessing balance
performance. However, such smartphone-based tools have thus far not been applied to stroke
survivors. The purpose of this study was to develop a smartphone-based balance assessment system
for subjects who have experienced strokes and evaluate the system feasibility. The smartphone-based
balance assessment application was developed with Android Studio, and reliability and validity
tests were conducted. The smartphone was used to record data using a built-in accelerometer and
gyroscope, and increased changes represented greater instability. Six postures were tested for 30 s
each. Ten healthy adults were recruited in the reliability test, and the intraclass correlation coefficient
(ICC) was used to analyze the within-day and between-day reliabilities. Eight subjects with chronic
stroke and eight healthy adults were recruited for the validity test, in which balance performance was
compared to represent the application validity. The ICC values of the reliability tests were at least 0.76
(p = 0.00). The acceleration data exhibited no difference between individuals who have experienced
stroke and healthy subjects; however, all six postures were found to differ significantly between the
two groups in the gyroscope data. The study demonstrates that the smartphone application provides
a convenient, reliable, and valid tool for the balance assessments of subjects who have experienced
chronic stroke.
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1. Introduction

Balance is a dominant factor impacting activities of daily living (ADLs). Insufficient balance
ability may cause difficulties in sitting, standing, walking, and other functional activities; furthermore,
loss of balance may decrease the QoL [1,2].

Individuals who have experienced stroke usually suffer from loss of ADLs and QoL performances,
and importantly, they can also suffer loss of balance and injury. Stroke is a cerebrovascular disease
that causes hemiplegia, muscle weakness, and sensory and motor deficits, which will result in stroke
survivors facing a decrease in balance ability [3].

Balance ability has been defined as the ability to maintain the center of gravity (COG) within
the base of support (BOS) with minimal postural sway. Static and dynamic balance are the two
classifications for balance ability: the former represents the ability to maintain balance under static
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conditions, such as sitting and standing, and the latter represents the ability to maintain balance under
dynamic conditions, such as walking and running [4–7].

Balance assessment is required to evaluate a person’s balance ability. Subjective and objective
assessment are classified as follows: subjective assessments measure balance via standardized tests
such as the Berg balance scale, the Romberg test, and the forward reach test; objective assessments
evaluate balance by analyzing the data obtained from instruments, such as force plate balance, motion
capture, and inertial measurement unit (IMU) balance assessments [8–10].

In clinical assessments, subjective data are usually collected. The Berg balance scale (BBS) is a
56-score-test including 14 static and dynamic functional tasks, and is regarded as one of the golden
standards in assessing balance. The Romberg test observes the different standing performances
between E/O and E/C conditions, and was first used for detecting vestibular issues; however, the
Romberg test was also extended to assess balance ability, owing to the fact that a decrease in visual
input may affect balance performance. The forward reach test is a dynamic balance test that evaluates
how far a person can reach without losing balance: when a person is able to reach farther, their balance
ability is considered to be superior [11–13].

Laboratory assessments often observe balance performance objectively, by using force plates,
motion capture systems, and IMUs. Body-fixed IMUs, which include accelerometers and gyroscopes,
approximate the COG when attached at the height of the center of mass (COM) [14]. Accelerometers
collect acceleration data and can be used to compute various measures, such as the root mean square
(RMS) from changes in acceleration, the total path length of the COG, and the total area of the COG
pathway. Larger values of RMS, COG path length, and COG area indicate reduced balance performance.
Gyroscopes collect angular velocity data, and can be used to compute changes in COG angular velocity
and angular position. Larger values of COG angular velocity and position indicate reduced balance
performance [12–19].

However, the existing balance assessments still exhibit certain limitations: subjective balance
assessments are not precise, while objective balance assessments are not convenient. The precision of
subjective tests relies on evaluator experience, and the balance assessment results also vary according
to different testers. The majority of the objective assessment systems are neither portable nor easy to
move; moreover, the evaluation procedure is complex, and a high time cost is involved.

Smartphones can be regarded as a solution for overcoming the limitations of existing balance
assessments. Of course, mobility is one of the main features provided by smartphones. Furthermore,
built-in sensors in every smartphone, including accelerometers and gyroscopes, are key to making
smartphones capable of detecting balance. Therefore, by combining mobility and built-in IMUs,
smartphones offer the potential to provide an objective and convenient balance assessment
method [20,21].

Smartphones are already used to detect body movements, having been applied to investigate
falls, measure postural sway, quantify gait performance, and assess balance ability [19]. However,
balance-detection-related smartphone research mostly focus on healthy adults. Stroke survivors are
facing balance issues due to the disease. Some balance evaluation postures (such as tandem stance) are
not suitable for them, so a suitable application designed for stroke survivors is needed. Furthermore,
smartphones have been applied to individuals who have experienced stroke and have been proven
feasible in assessing balance. However, an application designed for assessing the balance ability of
individuals who have experienced stroke does not yet exist. Therefore, the purpose of this study was
to develop a smartphone application for assessing the balance performance of subjects who have
experienced strokes and to evaluate the developed system’s feasibility.
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2. Materials and Methods

2.1. System Development

Two major smartphone systems are currently available on the market: Android and iOS. We
selected the Android system for our development environment owing to its 87.7% market share [22].
Android Studio 2.0 was the platform on which we programed the application, and the ASUS Zenfone
3 was the device selected for carrying out the smartphone-based balance assessment, owing to its low
price and stable built-in sensors.

Three types of built-in smartphone sensors exist: motion sensors (accelerometers, gyroscopes,
gravity sensors, and rotation vector sensors), position sensors (orientation sensors and magnetometers),
and environmental sensors (barometers, thermometers, and photometers). We selected the
accelerometer and the gyroscope to represent balance performance. The accelerometer collects
linear acceleration, while the gyroscope gathers angular velocity. The sampling rate of the built-in
accelerometer and gyroscope was set to 50 Hz [23].

2.2. Smartphone-Based Balance Assessment

Reductions in visual input and BOS have been proven to affect balance performance [24]. According
to the above, we designed six standing postures with different difficulties for our balance assessment:
shoulder-width-stance with eyes opened (SWS with E/O), shoulder-width-stance with eyes closed
(SWS with E/C), feet-together-stance with eyes opened (FTS with E/O), feet-together stance with eyes
closed (FTS with E/C), semi-tandem-stance with eyes opened (STS with E/O), and semi-tandem-stance
with eyes closed (STS with E/C). For the semi-tandem-stance, participants who have experienced
stroke were instructed to stand on their affected leg and take a full step forward with their unaffected
leg, while healthy participants were instructed to take a full step forward with their dominant leg.
Each posture was tested for 30 s following a 60 s break. The test was carried out by a physical therapist,
with the instruction “please stand still with minimal body sway.”

The smartphone was fixed to the back of the trunk at the second sacrum spine level with a belt,
representing the human body COG [19]. During the designed balance assessment, the smartphone
collected accelerometer and gyroscope data, and then saved the data in the smartphone internal storage
memory. Later, we used a computer to analyze the postural control ability with the data from the
10th to 20th second, to avoid the potential influence of the evaluator operating the smartphone at the
beginning and the end of the assessment.

We calculated the combined changes in the acceleration vector from the anterior-poster and
medial-lateral axes to represent the postural control ability: a greater acceleration change indicated
more postural instability [25]. The calculation is completed as the following algorithm. x and y
represents the acceleration of the x-axis and y-axis in m/s2; n is the total number of data samples of
accelerometer:[√

(x2 − x1)
2 + (y2 − y1)

2]+[

√
(x3 − x2)

2 + (y3 − y2)
2] + · · ·+ [

√
(xn − xn−1)

2 + (yn − yn−1)
2]

n− 1
(1)

We monitored the changes in angular velocity from the pitch, roll, and yaw axes to determine the
angle by which the body tilted during the test: a greater body tilting angle indicated lower postural
control [26]. We used the following numerical integration approach that provides an approximation
for angular position. The calculation is completed as the following algorithm, a, b, and c represent the
angle tilted from the x-axis, y-axis, and z-axis; α, β, and γ represent the instantaneous angular velocity
of the x-axis, y-axis, and z-axis in rad/s; f represents the sampling rate; 180 ÷ π changes the unit to
degrees; n is the total number of data samples from the gyroscope:

(a1 + a2 + · · ·+ an−1 + an) + (b1 + b2 + · · ·+ bn−1 + bn) + (c1 + c2 + · · ·+ cn−1 + cn) (2)
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ai = |αi| ÷ f × 180÷π

bi =
∣∣∣βi

∣∣∣÷ f × 180÷π

ci =
∣∣∣γi

∣∣∣÷ f × 180÷π

i = 1, 2, 3, . . . , n

2.3. Reliability Test

The reliability was tested following the system development. Healthy adults were recruited for
the reliability test, with the following inclusion criteria: aged between 20 and 65 years and free of any
disease that may affect balance performance. An institutional review board of the Tri-Service hospital
(Taipei, Taiwan) approved the clinical trial, and informed consent was obtained from each subject prior
to beginning the experiment.

The within-day and between-day reliabilities were tested in our study. Following the first
smartphone-based balance assessment, participants had a 30 min rest before undergoing the second
assessment. The third assessment took place 48 h after the second assessment. The correlation of the first
and second tests represented the within-day reliability; that of the first and third assessments indicated
the between-day reliability. The ICC values were analyzed for the within-day and between-day
reliability, and the statistical significance was set to p < 0.05.

2.4. Validity Test

Age-paired healthy adults and individuals who have experienced stroke participated in the
validity test. Healthy adults were recruited with the following inclusion criteria: aged between 20 and
65 years and free of any disease that may affect balance performance. Subjects who have experienced
strokes were recruited if they satisfied the following inclusion criteria: (1) aged between 20 and 65 years,
(2) in at least stage 4 of the Brunnstrom states, (3) able to walk independently for more than 15 min
indoors, (4) able to follow the instructions of testers, and (5) free of any disease or condition other than
prior incidences of strokes that may affect balance performance.

Comparative and criterion validities were tested in this study. We first collected the age, height, and
weight of the participants, and then assessed the balance ability with the BBS and smartphone-based
balance test. In order to present the comparative validity test, we used an independent t-test to compare
the balance performance of healthy adults and individuals who have experienced stroke measured by
the smartphone. For the criterion validity test, we analyzed the Pearson’s correlation coefficient of the
smartphone assessment and BBS results. The study design was approved by the institutional review
board of the Tri-Service hospital, Taipei, Taiwan (No. 2-106-05-022). Patient consent was obtained.

The SPSS 20.0 software was used to analyze the reliability and validity test data, and the statistical
significance was set to p < 0.05.

3. Results

3.1. Reliability Test

A total of 11 healthy adults participated in the reliability test, including five males and six females.
The average participant age was 27.4 ± 3.2 years.

Table 1 displays the within-day and between-day ICC results of the accelerometer and gyroscope,
obtained by means of the smartphone-based balance assessment application. The within-day and
between-day ICC of the accelerometer were both over 0.75 (within-day: 0.904, p = 0.000; between-day:
0.764, p = 0.000), indicating excellent reliability. The within-day and between-day ICCs of the gyroscope
were at least 0.857 (within-day: 0.897, p = 0.000; between-day: 0.857, p = 0.000), again indicating
excellent reliability.
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Table 1. Within-day and between-day reliability.

Sensors
Within-Day Between-Day

ICC 95%CI p Value ICC 95%CI p Value

ACC 0.904 0.844–0.941 0.00 ** 0.764 0.615–0.856 0.00 **
GYR 0.897 0.797–0.948 0.00 ** 0.857 0.732–0.924 0.00 **

** p < 0.01. ICC = intraclass correlation coefficient. CI = confidence interval. ACC = accelerometer data.
GYR = gyroscope data.

3.2. Validity Test

A total of 16 age-paired subjects recruited at the Tri-Service hospital (Taipei, Taiwan) participated
in the validity test, including eight healthy adults and eight individuals who have experienced stroke.
Every participant had completed all of the full 30 s trials for all conditions in our study. Table 2 provides
the basic data of the participants. The table indicates that there were no significant differences in age
(healthy group: 51.5 ± 9.0; stroke group: 52.3 ± 9.7, p = 0.770), height (healthy group: 165.3 ± 5.9;
stroke group: 168.5 ± 9.1, p = 0.405), or weight (healthy group: 67.5 ± 10.2; stroke group: 72.6 ± 16.9,
p = 0.364) between the groups; however, the healthy group significantly outperformed the stroke group
in terms of the BBS score (healthy group: 56.0 ± 0.0; stroke group: 43.5 ± 4.1, p = 0.000).

Table 2. Basic data of the participants.

Healthy Group (n = 8) Chronic Stroke Group (n = 8) p Value

Age, y/o, mean (SD) 51.5 (9.0) 52.3 (9.7) 0.77
Height, cm, mean (SD) 165.3 (5.9) 168.5 (9.1) 0.41
Weight, kg, mean (SD) 67.5 (10.2) 72.6 (16.9) 0.36

BBS, mean (SD) 56.0 (0.0) 43.5 (4.1) 0.00 **

** p < 0.01. SD = standard deviation. BBS = Berg balance scale.

Tables 3 and 4 display the comparative validity results. Table 3 presents the comparison of the
accelerometer data between the healthy adults and individuals who have experienced stroke, where a
lower value represents superior balance performance. Although the healthy group performed slightly
better than the stroke group in most of the smartphone balance tests (except for SWS with E/O),
no significant statistical differences were observed in all six testing postures between the groups.

Table 4 provides a comparison of the gyroscope data between the healthy and stroke groups,
where a lower value indicates superior balance performance. According to the table, the healthy adults
performed significantly better than the subjects who have experienced stroke in all six testing postures.

Table 5 displays the criterion validity, illustrating the correlation between the smartphone-based
balance assessment and BBS results. According to the table, none of the acceleration data were
significantly correlated with the BBS. However, all of the gyroscope data were significantly correlated
with the BBS, all with a high negative correlation.

Table 3. Comparison of the acceleration data of the six testing postures between the healthy group and
the stroke group.

Healthy Group (n = 8) Chronic Stroke Group (n = 8) p Value

SWS with E/O, mean (SD) 0.003 (0.001) 0.003 (0.001) 0.49
SWS with E/C, mean (SD) 0.003 (0.001) 0.005 (0.002) 0.07
FTS with E/O, mean (SD) 0.003 (0.001) 0.004 (0.002) 0.12
FTS with E/C, mean (SD) 0.004 (0.001) 0.005 (0.003) 0.13
STS with E/O, mean (SD) 0.005 (0.002) 0.005 (0.003) 0.65
STS with E/C, mean (SD) 0.005 (0.002) 0.010 (0.010) 0.10

SD = standard deviation. Unit: m/s2. SWS = shoulder-width stance. FTS = feet-together stance. STS = semi-tandem
stance. E/O = eyes opened. E/C = eyes closed.
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Table 4. Comparison of the gyroscope data of the six testing postures between the healthy group and
the stroke group.

Healthy Group (n = 8) Chronic Stroke Group (n = 8) p value

SWS with E/O, mean (SD) 1.679 (0.913) 4.801 (4.356) 0.02 *
SWS with E/C, mean (SD) 2.115 (0.899) 8.405 (6.226) 0.00 **
FTS with E/O, mean (SD) 3.420 (1.279) 8.386 (6.365) 0.01 **
FTS with E/C, mean (SD) 5.468 (2.196) 11.726 (7.132) 0.03 *
STS with E/O, mean (SD) 6.837 (3.718) 14.251 (6.911) 0.03 *
STS with E/C, mean (SD) 11.424 (4.700) 26.663 (15.080) 0.01 **

* p < 0.05. ** p < 0.01. SD = standard deviation. Unit: degree. SWS = shoulder-width stance. FTS = feet-together
stance. STS = semi-tandem stance. E/O = eyes opened. E/C = eyes closed.

Table 5. Relationship between the smartphone balance test result and the BBS score.

ACC GYR

PCC p Value PCC P Value

SWS with E/O −0.191 0.478 −0.705 0.002 **
SWS with E/C −0.492 0.053 −0.805 0.000 **
FTS with E/O −0.427 0.099 −0.700 0.003 **
FTS with E/C −0.395 0.130 −0.752 0.001 **
STS with E/O −0.096 0.723 −0.725 0.001 **
STS with E/C −0.470 0.067 −0.694 0.003 **

** p < 0.01 PCC = Pearson’s correlation coefficient ACC = accelerometer GYR = gyroscope SWS = shoulder-width
stance FTS = feet-together stance STS = semi-tandem stance E/O = eyes opened E/C = eyes closed.

4. Discussion

According to the reliability test, the developed application was proved to have excellent reliability.
In the validity test, the accelerometer did not show the significant difference between the healthy
group and the stroke group in all six testing postures; on the other hand, the gyroscope revealed
different balance performances between the groups in all testing postures. Furthermore, none of the
acceleration data were significantly correlated with the BBS score; instead, all of the gyroscope data
were significantly correlated with the BBS score.

4.1. Difference between Existing Smartphone Applications

Two balance-assessment-related applications are available in the Google Play Store: YMED and
Concussion Assessment & Response. The former uses built-in smartphone sensors to detect balance,
while the latter evaluates balance ability by the user’s recording of the single-leg-stance test result [27,28].
The YMED and application we developed are both objective balance assessments, but the results
displayed differ. YMED uses built-in sensors to draw the body movement in Cartesian coordinates,
where increased movements drawn in the coordinates represent inferior balance ability. As there are no
instructions in the YMED application, we do not know how to use it correctly, and it is not known for
which type of balance ability or target group the application was designed. Concussion Assessment &
Response is a subjective balance assessment application designed for healthy individuals and athletes.
The users must record their balance performance themselves after taking the single-leg-stance test by
following step-by-step instructions. According to the YMED and Concussion Assessment & Response
features, these are not suitable for individuals who have experienced stroke. Therefore, we developed
an application for patients who have experienced strokes; this application can assess balance ability
objectively, display results with numbers, and evaluate balance with instructions.

4.2. Accelerometer and Gyroscope

The accelerometer and gyroscope play different roles in representing balance performance.
The accelerometer collects the movement direction and acceleration, expressing the intensity of the
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body movement. The gyroscope gathers the rotational motion and velocity, indicating the degree to
which the body sways following integration. In the comparative validity test, the accelerometer data
of the healthy adults and individuals who have experienced stroke were not significantly different.
The information gathered implied that the body movement intensity was similar for the healthy and
stroke groups during the balance tests. Moreover, in the comparative validity test, the gyroscope
data demonstrated that the healthy adults significantly outperformed the stroke participants. As we
combined the results of both smartphone built-in sensors, we observed that the subjects who have
experienced stroke swayed much more than the healthy adults during the balance tests, but the
sway intensity was similar. In previous smartphone-related balance assessment studies, Mellone,
Lee, and Patterson used only an accelerometer to obtain the balance parameters [29–31]. Although
the abovementioned studies proved that the smartphone was feasible for detecting balance, certain
results recorded by the accelerometers did not exhibit significant differences between the compared
data. Based on the different characteristics of the accelerometer and gyroscope, we expected that the
addition of the gyroscope data would provide a more complete balance assessment.

4.3. Feasibility of the Developed Application

In this study, reliability and validity tests were conducted to prove the feasibility of the
developed smartphone-based balance assessment application. According to Table 1, the reliability test
demonstrated that the application is stable. For the comparative validity test, Table 4 indicates that the
healthy adults outperformed the individuals who have experienced stroke in all six balance testing
postures. The results demonstrate that the quantified balance ability is valid. In the criterion validity
test, we compared the developed application with the BBS, which is one of the golden standards in
balance assessment. The gyroscope data were strongly related to the BBS score, which is a promising
result. In summary, the application we developed can be regarded as feasible for assessing balance
ability of individuals who have experienced stroke.

4.4. Limitation

A primary limitation of this study is the small sample size. The evaluator and smartphone were
the same in the reliability test; our study would be more convincing if we included an equivalence
reliability test to prove that the application is still reliable even when the users or smartphones differ.

The one specific smartphone used in the study is also a limitation. Not all of the smartphones on
the market may not present the exact same reliability and validity as the results of our study. To deal
with this probable problem, we chose a mid-price-range and mid-specification-range smartphone as
the main device used in the study, and set the sampling rate at 50 Hz. Because the testing setting is not
very critical, most smartphones on the market should have enough performance to execute the same
setting and obtain a similar result. We will try another smartphone to verify the results in the future.

5. Further Investigation and Conclusions

In our system, the user can only compare the balance performance with their own records from
the past. It is suggested that an age-related norm be built into the application, in order to provide better
feedback to the users, as this would allow them to compare information with other users. Moreover,
a dynamic balance assessment system is expected to be developed. Smartphones should be fixed on the
back of the body when conducting balance assessments. In the future, hand-held evaluation will offer a
more convenient means of using the application. Furthermore, the smartphone exhibits the potential to
train balance ability; by utilizing the assessment results, we can create individualized balance training
plans. In conclusion, we created a smartphone-based balance assessment system for subjects who have
experienced stroke, and this system was proven to be feasible. In conclusion, the developed system
is a reliable, valid, objective, and convenient balance assessment tool for assessing the static balance
performances of patients who have experienced strokes.
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