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Abstract

Tamoxifen is one of the most commonly employed endocrine therapies for patients with

estrogen receptor α (ERα)-positive breast cancer. Unfortunately the clinical benefit is limited

due to intrinsic and acquired drug resistance. We previously reported a genome-wide asso-

ciation study that identified common SNPs near the CTSO gene and in ZNF423 associated

with development of breast cancer during tamoxifen therapy in the NSABP P-1 and P-2

breast cancer prevention trials. Here, we have investigated their roles in ERα-positive breast

cancer growth and tamoxifen response, focusing on the mechanism of CTSO. We per-

formed in vitro studies including luciferase assays, cell proliferation, and mass spectrome-

try-based assays using ERα-positive breast cancer cells and a panel of genomic data-rich

lymphoblastoid cell lines. We report that CTSO reduces the protein levels of BRCA1 and

ZNF423 through cysteine proteinase-mediated degradation. We also have identified a

series of transcription factors of BRCA1 that are regulated by CTSO at the protein level.

Importantly, the variant CTSO SNP genotypes are associated with increased CTSO and

decreased BRCA1 protein levels that confer resistance to tamoxifen. Characterization of

the effect of both CTSO SNPs and ZNF423 SNPs on tamoxifen response revealed that cells

with different combinations of CTSO and ZNF423 genotypes respond differently to Tamoxi-

fen, PARP inhibitors or the combination of the two drugs due to SNP dependent differential

regulation of BRCA1 levels. Therefore, these genotypes might be biomarkers for selection

of individual drug to achieve the best efficacy.
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Author summary

Many studies have demonstrated that germline genetic variation can contribute to both

breast cancer disease risk and treatment response. However, the underlying mechanisms

associated with these biomarkers often remains understudied. As part of functional geno-

mic studies following up a case-control genome-wide association study (GWAS) per-

formed with the large and influential National Surgical Adjuvant Breast and Bowel

Project P-1 and P-2 SERM breast cancer prevention trials, we investigated the top GWAS

SNPs in CTSO gene on chromosome 4 and mechanisms of CTSO involvement in the reg-

ulation of BRCA1 and response to therapy. We showed that, based on individual’s geno-

type, CTSO contributes differentially to tamoxifen response in ERα-positive (ER+) breast

cancer cells by regulating ZNF423 and BRCA1levels and that PARP inhibitors can effec-

tively restore tamoxifen sensitivity in subjects with unfavorable genotypes of CTSO and

ZNF423 associated with tamoxifen resistance. Our work highlights the potential value of a

new biomarker signature involving CTSO and ZNF423-related SNPs for selection of

tamoxifen or PARP inhibitors.

Introduction

Approximately 80% of breast tumors express estrogen receptor α (ER) [1–3], a receptor that

binds and mediates many of the effects of estrogens. Estrogen signaling is known to modulate

several processes relevant to breast cancer cell proliferation, predominately as a result of the

activity of ER as a transcription factor [4]. Therefore, selective estrogen receptor modulators

(SERMs) such as tamoxifen have been widely used clinically in endocrine therapies for patients

with ERα-positive (ERα+) breast cancer [5–7]. Tamoxifen is not only effective in the treatment

of ERα+ breast cancer, but it is also effective in the chemoprevention of breast cancer [8, 9].

However, resistance to tamoxifen therapy also occurs in that 22.7% of patients treated in the

adjuvant setting had recurrence of breast cancer by 10 years in a meta-analysis, and in the pre-

vention setting [10] tamoxifen reduces risk by 49%, but the number needed to treat to prevent

one case of breast cancer is in excess of 50 [8]. Several mechanisms have been associated with

resistance to tamoxifen [11, 12]. Of particular importance are the effects of estrogen/ER on

BRCA1. The BRCA1 protein directly interacts with ERα and inhibits ERα transactivation and

downstream signaling [13]. Decreased BRCA1 expression has been shown to be present in 30–

40% of sporadic breast cancers [14]. BRCA1 deficiency is known to play a role in breast cancer

development. Furthermore, decreased BRCA1 expression results in tamoxifen resistance by

altering ERα co-regulator association in breast cancer cells [15]. These findings suggest that

BRCA1 may regulate the response of ERα to its canonical ligand E2 and to tamoxifen, a com-

pound known to exert either agonistic or antagonistic activity toward ERα in different cellular

and tissue contexts [16]. In addition, BRCA1 is also known to play a major role in the DNA

double-strand break (DSB) repair during the S and G2 phases by mediating homologous

recombination (HR) to maintain replication fidelity and genome integrity [17]. Studies have

demonstrated that BRCA1 dysfunction results in the lack of HR and markedly sensitizes cells

to the inhibition of PARP enzymatic activity, which seemed to be attributable to the persis-

tence of DNA lesions that are normally repaired by homologous recombination [18, 19].

Therefore, genetic factors that might contribute to BRCA1 regulation could significantly affect

response to drugs like SERMs and PARP inhibitors.

Our previous case-control genome-wide association study (GWAS) performed with sam-

ples from the NSABP P-1 and P-2 breast cancer SERM chemoprevention trials identified two

CTSO SNPs and tamoxifen response in breast cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007031 October 2, 2017 2 / 24

Research Program UG1CA18967 (LDW),

Eisenberg Foundation (LW), and the Nan Sawyer

Breast Cancer Fund (LW & JNI). The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pgen.1007031


SNP signals that were associated with breast cancer risk, including one in which the variant

SNP genotype near the CTSO gene was associated with increased risk for the development of

breast cancer and a second signal for which the variant SNP genotype in the ZNF423 gene was

associated with decreased risk for the development of breast cancer in women treated with

tamoxifen or raloxifene [20]. ZNF423 appeared to be a transcription factor that regulated

BRCA1 expression in an estrogen-dependent fashion, while CTSO also showed weak estro-

gen-dependent induction of BRCA1 mRNA expression in a CTSO SNP-dependent fashion

[20]. In a separate study, it was also shown that the variant GG genotype for the CTSO
rs10030044 SNP was an independent factor indicating a poor prognosis in ER+ breast cancer

patients receiving adjuvant tamoxifen therapy [21], which suggested the involvement of this

genetic locus in tamoxifen response. CTSO, cathepsin O, is a member of the cysteine protease

family that is involved in cellular protein degradation and turnover. Another member, cathep-

sin D, has been associated with poor prognosis for breast cancer as a result of stimulation of

breast cancer cell proliferation, fibroblast outgrowth, angiogenesis, breast tumor growth and

metastasis formation [22]. Even though in our previous study, we have observed a correlation

between CTSO and BRCA1 in an estrogen and SNP dependent fashion, how CTSO regulates

BRCA1 remains unclear. In the current study, based on our prior findings [20], we investi-

gated the possible role of CTSO in drug response and breast cancer risk as a result of the regu-

lation of ZNF423 and BRCA1. Finally, we also explored the role of both ZNF423 and CTSO
SNP genotypes to help selection of tamoxifen and PARP inhibitors.

Results

CTSO SNPs associated with breast cancer risk

Our previous GWAS involved 592 cases and 1171 matched controls selected from the 33,000

participants enrolled in the NSABP P-1 and P-2 breast cancer prevention trials identified two

SNPs on chromosome 4 (rs10030044 and rs4256192) that were associated with breast cancer

risk, with odds ratios of 1.42 and 1.44 respectively [20]. To gain a comprehensive understand-

ing of the contribution of genetic variants in that region, together with the two top genotyped

SNPs, based on our previous imputation results [20], we chose additional six imputed SNPs

associated with increased risk for the development of breast cancer (OR 1.42–1.45) with

adjusted p-values < 5.00E-6 (rs6835859, rs4550865, rs10030044, rs62328155, rs11737651,

rs6810983, rs4256192, rs11724342). All eight SNPs were located at 50 of the CTSO gene. These

variant SNP genotypes are common with MAFs ranging from 0.39 to 0.45. We then performed

linkage disequilibrium (LD) analysis and the analysis showed that all 8 SNPs were in signifi-

cant linkage with each other. The top two genotyped SNPs, rs10030044 and rs4256192 were in

strong LD (r2 = 0.78). The SNP rs10030044 was also in strong LD with the three imputed

SNPs: rs6835859 (r2 = 1), rs4550865 (r2 = 1), and rs6810983 (r2 = 1), while the rs4256192 SNP

was in strong LD with the other three imputed SNPs: rs11724342 (r2 = 1), rs62328155 (r2 = 1)

and rs11737651 (r2 = 1). Because of the importance of understanding breast cancer risk and

because P-1 and P-2 are the largest breast cancer chemoprevention trials ever performed, we

pursued the possible functional implications of these SNP signals.

Expression Quantitative Trait Loci (eQTL) analysis

We began by analyzing the top 8 SNPs for their associations with expression levels of all genes

including CTSO within 1 Mb up- and downstream of the SNPs of interest using the Genotype-

Tissue Expression (GTEx) database. Although, we did not find eQTL relationships between

these SNPs and CTSO in normal breast tissue in GTEx, significant eQTL associations between

the SNPs and CTSO were present in stomach, skin, pancreas, and testis. The variate SNP was

CTSO SNPs and tamoxifen response in breast cancer
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associated with higher CTSO expression (p = 0.0077–4.3E-7). We did not observe eQTL rela-

tionships between these SNPs and CTSO at baseline in our panel of LCLs for which we had

genome-wide genotype data and mRNA expression data [23]. Because 94.2% of the partici-

pants on P-1 and P-2 were Caucasian, our GWAS was restricted to only Caucasian subjects

[20]. Therefore, we randomly selected LCLs from Caucasians that were either homozygous

wild type (WT) or variant for the SNPs 5’ of CTSO to validate the eQTL relationships in a set-

ting mimicking the estrogenic environment in patients. These LCLs were grown in medium

containing charcoal-treated serum to deplete the levels of endogenous steroids and supple-

mented with physiological concentrations of E2. CTSO mRNA and protein were higher in

LCLs homozygous for the variant genotype as compared with LCLs homozygous for the WT

genotype (p<0.05; Fig 1A). However, the induction of CTSO mRNA was more significant in

the WT than variant cells, consistent with our previous finding [20], even though the variant

cells had higher baseline level of CTSO (S1 Fig).

CTSO SNPs and CTSO transcription

We next determined which of the SNPs 5’ of CTSO might influence expression. Our previous

study suggested that the expression of CTSO was estrogen-dependent, and only the rs6810983

SNP disrupted an estrogen response element (ERE) for the variant SNP genotype [20]. We

decided to directly determine the possible role of these eight SNPs in transcription regulation

using luciferase reporter gene assays performed in ZR75-1 breast cancer cells. Specifically, we

cloned a 200 bp DNA sequence that included either WT or variant sequence for each of the

eight SNPs, together with the CTSO promoter, into the pGL3 basic reporter plasmid. We then

transfected these constructs into the ER+ cell line, ZR75-1 cells in a normal medium with 10%

FBS. Cells transfected with constructs with variant genotypes for rs10030044 and rs6810983

SNPs displayed 2–3 fold greater luciferase activity than did those transfected with constructs

with WT SNP sequences, indicating increased transcriptional activity (Fig 1B)—compatible

with the results in LCLs.

CTSO mediates BRCA1 degradation via a proteolytic mechanism

We then determined the possible functional effect of CTSO on BRCA1 based on our previous

finding [20]. We genotyped the ZNF423 SNP and CTSO SNP in a panel of breast cancer cell

lines and chose T47D, CAMA-1, and ZR75-1 cell lines carrying homozygous genotypes for

ZNF423 and CTSO SNPs (S1 Table) for further functional study. When CTSO was overex-

pressed significantly in T47D, CAMA-1, and ZR75-1 cells, there was a striking decrease of

BRCA1 protein levels as well as protein levels for the BRCA1 transcription factor, ZNF423, in

all the cell lines tested (Fig 2A, left panel). To determine how generalizable this phenomenon

might be, we also measured the level of BRCA1 protein in triple negative MDA-MB-231 breast

cancer cells. In agreement with ER+ breast cancer cell line data, BRCA1 protein was signifi-

cantly decreased after overexpressing CTSO in triple negative breast cancer cells (Fig 2A, left

panel). Quantitative RT-PCR revealed excellent transfection efficiency of CTSO in all of the

cell lines, with modest but statistically significant decreases in BRCA1 transcript levels (Fig 2A,

right panel), while ZNF423 mRNA remained unchanged after CTSO overexpression (Fig 2A,

right panel). Next, we asked whether CTSO might influence BRCA1 and ZNF423 protein sta-

bility through its cysteine proteases activity. Overexpression of CTSO decreased ZNF423 and

BRCA1 protein levels in CAMA-1 and ZR75-1 cells, while treatment with the cathepsin inhibi-

tor E-64 resulted in increased levels of BRCA1 and ZNF423 protein (Fig 2B). Previous work

has largely focused on CTSO SNP-dependent estrogen induction of CTSO and BRCA1 mRNA

in LCLs. Consistent with our previous finding [20], both CTSO and BRCA1 mRNA was

CTSO SNPs and tamoxifen response in breast cancer
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Fig 1. CTSO SNPs function. (A) CTSO expression is increased for cells of tissues homozygous for variant (V/V) or with

heterozygous (WT/V) SNP genotypes as compared to homozygous wild type (WT/WT) in LCLs. (B) Luciferase assay

results comparing the top 8 WT and variant SNP genotypes effects on transcriptional activities indicate increased

transcription for the variant rs10030044 and rs6810983 SNPs in ZR75-1 cells. * = p < 0.05; ** = p < 0.01.

https://doi.org/10.1371/journal.pgen.1007031.g001
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moderately induced by E2 in LCLs with WT CTSO SNP genotype (S1 Fig). However, in this

study, we further demonstrated that, more importantly, CTSO can also directly regulate

BRCA1 protein turnover in breast cancer cells.

Since CTSO is able to stimulate BRCA1 and ZNF423 protein degradation, we determined

the possible interaction between CTSO and BRCA1or ZNF423. Immunoprecipitation using

CTSO antibody showed endogenous interaction of CTSO with BRCA1 and ZNF423 (Fig 2C).

These results indicated that CTSO regulates BRCA1 and ZNF423 protein stability through a

cysteine protease- mediated degradation pathway—at least in part.

CTSO affects BRCA1 expression through the degradation of BRCA1

transcription regulators

We next examined possible mechanisms by which CTSO might influence BRCA1 transcription.

We first confirmed that knockdown of CTSO resulted in increased BRCA1 expression, both at

the mRNA and protein levels in both CAMA-1 and ZR75-1 cells (Fig 3A). Our previous GWAS

Fig 2. CTSO is responsible for the degradation of BRCA1 and ZNF423. (A) Over-expression of CTSO down-regulated BRCA1 and ZNF423

proteins in multiple human breast cancer cell lines. Over-expression of CTSO decreased BRCA1, but not ZNF423 mRNA expression levels. Error bars

represent SEM. * = p < 0.05. (B) CTSO regulated BRCA1 and ZNF423 stability in a cysteine protease-dependent manner. (C) Direct endogenous

interaction between CTSO and BRCA1 as well as ZNF423 by immunoprecipitation.

https://doi.org/10.1371/journal.pgen.1007031.g002
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Fig 3. CTSO is responsible for the degradation of BRCA1 transcription regulators. (A) Knock down of CTSO up-regulated

BRCA1 mRNA and protein level in CAMA1 and ZR75-1 cell lines. (B) Knock down of MTDH, PABPC4L, LMNA, and EEF1A1 down-

regulated BRCA1 mRNA level. The knock down efficiency was determined by qRT-PCR. * = p < 0.05; ** = p < 0.01. (C) Over-

expression of CTSO down-regulated MTDH, PABPC4L, LMNA, and EEF1A1 protein levels in CAMA1 and ZR75-1 cells.

https://doi.org/10.1371/journal.pgen.1007031.g003
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study had reported that ZNF423 binds to the 50-flanking region of BRCA1 and regulates BRCA1

transcription [20]. We also showed in the present study that CTSO interacts with ZNF423, lead-

ing to ZNF423 degradation (Fig 2), suggesting that CTSO may regulate BRCA1 transcription

partially through its effect on ZNF423. In order to identify additional factors involved in the

CTSO-dependent regulation of BRCA1 transcription, we performed mass spectrometry screen-

ing of a pool of proteins that co-precipitated with CTSO. During this process, we identified 130

proteins that interacted with CTSO (S2 Table). We then interrogated the Cancer Genome Atlas

(TCGA) breast cancer data [24] for possible relationships between the expression of BRCA1 and

these 130 genes, and identified 20 genes that were associated with BRCA1 with p< 1E-05 (S3

Table). We then knocked down these 20 genes to determine the effect on BRCA1 levels (S2 Fig),

and found that knockdown of 4 out of the 20 genes, MTDH, PABPC4L, LMNA, and EEF1A1,

resulted in striking decreases of BRCA1 mRNA expression level (Fig 3B), consistent with the

TCGA data that showed positive correlations between these 4 genes and BRCA1. Furthermore,

in CAMA-1 and ZR75-1 cells, overexpression of CTSO decreased expression of all four genes

(Fig 3C), which could explain the down-regulation of BRCA1 mRNA level when overexpressing

CTSO (Fig 2A). In summary, these results indicate that the up-regulation of CTSO could reduce

BRCA1 levels by promoting the cysteine protease—mediated degradation of MTDH, PABPC4L,

LMNA, and EEF1A1 protein levels in addition to the effect on ZNF423 that we had already

identified, all of which regulate BRCA1 transcription. Thus, it appears that tumor expression of

CTSO may play a role in the regulation of BRCA1 transcription in addition to having an effect

on BRCA1 protein degradation.

Effect of CTSO-mediated degradation of BRCA1 on growth arrest and

tamoxifen response

We hypothesized that, because CTSO regulates BRCA1 stability, it may play a role in endocrine

resistance. Previous studies demonstrated that BRCA1over-expression can inhibit cell prolifer-

ation by activating p21WAF1/CIP1 [25, 26]. We had demonstrated that CTSO regulates the stabil-

ity of BRCA1 (Fig 2). Therefore, we next determined whether the down-regulation of CTSO

inhibited cell proliferation in breast cancer cells due to the up-regulation of BRCA1. BRCA1

protein increased after CTSO knockdown in CAMA-1 and ZR75-1 cells (Fig 4A, lower panel).

Depletion of CTSO inhibited cell growth compared with negative siRNA transfected control

cells (Fig 4A, upper panel). To further confirm that the CTSO effect on cell proliferation was

mediated through the regulation of BRCA1, we knocked down BRCA1 in cells with down-reg-

ulation of CTSO. Knockdown of BRCA1 in CTSO-depleted cells resulted in the abrogation of

decreased proliferation due to CTSO depletion in both cell lines (Fig 4A, upper panel). We

next tested the effect of CTSO on tamoxifen treatment based on the observations from our pre-

vious study [20] and others. In the presence of 100 nM 4OH-tamoxifen (4OH-TAM), CTSO-

deficient cells exhibited increased sensitivity to 4OH-TAM compared with negative siRNA-

transfected control cells (Fig 4B), and BRCA1 might be responsible for the increased sensitivity

since BRCA1 depletion in siCTSO cells significantly decreased 4OH-TAM sensitivity (Fig 4B).

These results demonstrated that depletion or inhibition of CTSO can increase BRCA1 levels

with potential therapeutic effects, resulting in growth arrest.

ZNF423 and CTSO SNP genotypes and tamoxifen response

Since our previous study had identified ZNF423 and CTSO SNPs that were associated with

breast cancer risk [20], both of which appeared to regulate BRCA1, we examined their joint

effect on cell proliferation in the presence of tamoxifen or E2 treatment. We utilized a model

system consisting of 300 individual human LCLs (100 European-American, 100 African-

CTSO SNPs and tamoxifen response in breast cancer
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American and 100 Han Chinese-American subjects). The “Human Variation Panel” that had

been SNP genotyped previously and has repeatedly demonstrated its value as a platform to

study genetic variants [20, 27, 28]. Specifically, we selected 4 groups of LCLs to perform

4OH-TAM treatment:

Fig 4. CTSO regulates ER+ breast cancer cell proliferation and tamoxifen response. (A) Knock down of CTSO decreased proliferation in

CAMA1 and ZR75-1 cell lines through BRCA1. Error bars represent SEM; ** P< 0.01 compared to baseline (negative control). The knock down

efficiency was determined by qRT-PCR and western blot. (B) Knock down of CTSO conferred sensitivity to tamoxifen through BRCA1. Knock

down of BRCA1 abrogated CTSO effects on proliferation in CAMA1 and ZR75-1 cells in the presence of 4-OH TAM. Error bars represent SEM.

* = p < 0.05; ** = p < 0.01.

https://doi.org/10.1371/journal.pgen.1007031.g004
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Group1: 4 LCLs with homozygous wild type (WT) genotypes for both CTSO and ZNF423
SNPs—CTSO W/ZNF423 W;

Group2: 4 LCLs with homozygous variant genotypes for both CTSO and ZNF423 SNPs—

CTSO V/ZNF423 V;

Group3: 4 LCLs with homozygous variant genotypes for CTSO SNPs and homozygous WT for

ZNF423 SNPs—CTSO V/ZNF423 W;

Group4: 4 LCLs with homozygous WT genotypes for CTSO SNPs and homozygous variant for

ZNF423 SNPs—CTSO W/ZNF423 V.

Notably, in the presence of 4OH-TAM, the growth of CTSO WT/ZNF423 WT and CTSO
V/ZNF423 V cells decreased significantly (Fig 5A and 5B, and Table 1) suggesting that the

therapeutic effects of tamoxifen are seen mainly in the CTSO WT/ZNF423 WT and CTSO
V/ZNF423 V groups, not the CTSO WT/ZNF423 V and CTSO V/ZNF423 WT groups (Fig 5C

and 5D, and Table 1). We also measured BRCA1, CTSO and ZNF423 protein levels in cells

with different ZNF423 SNP and CTSO SNP combinations (Fig 6). The estradiol-, 4OH-TAM

-dependent and SNP-dependent regulation of BRCA1 protein level was more pronounced

against the background of homozygous variant for the CTSO SNP. BRCA1 protein level in the

Fig 5. ZNF423 and CTSO SNPs joint effects on tamoxifen response. LCLs carrying CTSO W/ZNF423 W

(A) and CTSO V/ZNF423 V (B) respond to 4-OH TAM treatment comparing to vehicle. LCLs with CTSO W/

ZNF423 V (C) or CTSO V/ZNF423 W (D) failed to respond to 4-OH TAM treatment comparing to vehicle. Cells

were treated with vehicle, E2, TAM, or E2 plus TAM as described in material and methods. Error bars represent

SEM. n = 4 for each group. * = p < 0.05; ** = p < 0.01.

https://doi.org/10.1371/journal.pgen.1007031.g005
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CTSO V / ZNF423 WT group was significantly upregulated in the presence of E2 and then

decreased upon addition of 4OH-TAM treatment (Fig 6). The opposite effects on BRCA1 pro-

tein level upon treatment of E2 or E2 plus 4OH-TAM were observed in CTSO V / ZNF423 V

group compared with CTSO V / ZNF423 WT group (Fig 6B). The higher BRCA1 level in

CTSO V / ZNF423 V group compared to the CTSO V / ZNF423 WT group in the presence of

4OH-TAM could explain the tamoxifen response seen in CTSO V / ZNF423 V group, but not

in CTSO V / ZNF423 WT group (Figs 4 and 5B and 5D). In the presence of TAM, cells with

CTSO W / ZNF423 W genotype were also showed relatively higher BRCA1 levels, even though

with this genetic background the baseline BRCA1 was higher compared with other genotype

groups (Fig 6B). Therefore, cells with CTSO W / ZNF423 W also benefit from TAM treatment

(Fig 5A). We also measured ER level in these four groups of LCLs upon different treatment to

account for its potential impact, and did not observe difference in ER level among the four

genotype combination groups, furthermore, E2 and TAM treatment did not change the level

of ER compared to vehicle treatment for each genotype combination (Fig 6). Therefore, the

ZNF423 and CTSO SNPs-dependent effects on TAM response were not due to ER expression

level.

When compared the cell proliferation in the presence of different treatments among differ-

ent genotypes, cells with CTSO V/ZNF423 W showed the fastest growth rate, regardless of

whether they received no treatment, estradiol (E2) alone, 4OH-TAM alone, or the combina-

tion of E2 plus 4OH-TAM (S3 Fig), while cells with CTSO WT/ZNF423 V grew slowest among

all genotype combination groups in all treatment groups (S3 Fig). This was consistent with our

previous finding that the odds ratios for CTSO V/ZNF423 W (OR = 5.71) was the highest, and

that for CTSO WT/ZNF423 V (OR = 1.00) was the lowest for breast cancer risk in the P-1, P-2

trials [20].

ZNF423 and CTSO SNP genotypes and breast cancer proliferation with

PARP inhibitor therapy

Loss of BRCA1 function leads to defects in the HR DNA repair pathway, which renders cells

more sensitive to PARP inhibitors [29–32]. In BRCA1/2 mutated cells, the DSBs at the replica-

tion fork caused by PARP inhibitor treatment cannot be repaired, resulting in synthetic lethal-

ity and cell death. We have shown that the LCL CTSO WT/ZNF423 WT (Fig 5A) and CTSO V/

ZNF423 V (Fig 5B) groups respond to 4OH-TAM treatment but not the CTSO WT/ZNF423 V

(Fig 5C) and CTSO V/ZNF423 WT (Fig 5D) groups (Table 1). In addition, comparing the two

4OH-TAM-resistant groups, CTSO WT/ZNF423 V cells showed higher BRCA1 level upon

Table 1. ZNF423 and CTSO SNP joint analysis on 4OH-TAM response with or without olaparib.

Genotype CTSO

WT (AF = 55%) V (AF = 45%)

WT (AF = 61%) PGC = 55%*55%*61%*61% = 11.26%

Tam responsive,

No PARPi benefit

PGC = 45%*45%*61%*61% = 7.54%

Tam non-responsive,

Responsive with PARPi added

ZNF423

V (AF = 39%) PGC = 55%*55%*39%*39% = 4.60%

Tam non-responsive,

No PARPi benefit

PGC = 45%*45%*39%*39% = 3.08%

Tam responsive,

No PARPi benefit

Prevalence of the genotype combination (PGC) is calculated based on homozygous allele frequency (AF) for ZNF423 SNP (Minor allele frequency = 39%)

and homozygous AF for CTSO SNP (Minor allele frequency = 45%).

https://doi.org/10.1371/journal.pgen.1007031.t001
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Fig 6. ZNF423 and CTSO SNPs joint effects on BRCA1 protein level during tamoxifen therapy. (A) 4 groups of LCLs carrying CTSO W/

ZNF423 W, CTSO V/ZNF423 W, CTSO W/ZNF423 V, and CTSO V/ZNF423 V were treated with vehicle, E2, or E2 plus TAM as described in material

and methods. BRCA1 protein was analyzed by western blotting. (B) Quantitative analysis of BRCA1 protein level of the results from (A) using Image

J. BRCA1 protein levels were first normalized to ACTIN for each genotype and treatment, and then the level of BRCA1 relative to CTSO W/ZNF423

W vehicle treated group was shown for all the genotype combination and treatments. Error bars represent ± SEM of three independent experiments.

** = p < 0.01.

https://doi.org/10.1371/journal.pgen.1007031.g006
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4OH-TAM treatment than CTSO V/ZNF423 WT cells (Fig 6B). As a result, we hypothesized

that the combination of a PARP inhibitor and 4OH-TAM might achieve better therapeutic

outcomes in the CTSO V/ZNF423 WT group that displayed lower levels of BRCA1. To deter-

mine the effect of a PARP inhibitor in this setting, we treated 4OH-TAM-responsive CTSO
WT/ZNF423 WT and CTSO V/ZNF423 V LCLs as well as 4OH-TAM-resistant CTSO WT/

ZNF423 V and CTSO V/ZNF423 WT LCLs with either 4OH-TAM alone or 4OH-TAM plus

the PARP inhibitor, olaparib. Olaparib did not increase 4OH-TAM sensitivity in the two

4OH-TAM-responsive CTSO WT/ZNF423 WT and CTSO V/ZNF423 V groups (Fig 7A, upper

panel, and Table 1). However, olaparib significantly sensitized the 4OH-TAM-resistant CTSO
V/ZNF423 WT cells to tamoxifen treatment, but not the CTSO WT/ZNF423 V cells (Fig 7A,

lower panel, and Table 1). The differential effects of olaparib in the two 4OH-TAM-resistant

groups can be explained, at least partially, by the differences in BRCA1 levels (Fig 6B). Upon

4OH-TAM treatment, the 4OH-TAM-resistant CTSO V/ZNF423 WT cells had lower BRCA1

levels compared with the CTSO WT/ZNF423 V cells, resulting in sensitization by combining

olaparib with 4OH-TAM. The 4OH-TAM-resistant CTSO WT/ZNF423 V cells had high level

of BRCA1, consistent with olaparib having little effect.

We also confirmed the therapeutic effect of the combination of olaparib and 4OH-TAM in

ER+ breast cancer cells, CAMA-1 and ZR75-1 that had WT BRCA1 and were resistant to ola-

parib (Fig 7B). Knock down of CTSO resulted in striking increases of BRCA1 protein level

(Fig 3A), therefore, the addition of olaparib did not increase 4OH-TAM sensitivity (Fig 7B).

However, olaparib significantly increased 4OH-TAM sensitivity in cells transfected with nega-

tive control siRNA due to lower baseline BRCA1 level comparing with CTSO knockdown cells

(Fig 7B, p<0.05). 4OH-TAM showed the 50% inhibitory concentration (IC50) of 11.22 μM for

CAMA-1, and 10.17 μM for ZR75-1 cells transfected with negative control siRNA respectively.

The IC50 of 4OH-TAM decreased significantly when co-treated with olaparib in negative con-

trol siRNA transfected CAMA-1 and ZR75-1 cells (CAMA-1: IC50 = 5.10±0.26μM; ZR75-1:

IC50 = 4.70±0.18 μM) (Fig 7B, p<0.05). In summary, these results indicated that the down-

regulation of CTSO could increase BRCA1 levels, resulting in decreased cell growth and poten-

tial therapeutic effects.

Discussion

Understanding intrinsic or acquired resistance to endocrine therapy in the treatment or pre-

vention of breast cancer is of great importance [11]. Tamoxifen is still widely used to treat ER

+ breast cancer and, along with the SERM raloxifene, are the only FDA-approved drugs for

prevention of breast cancer in high-risk women. Our previous GWAS study identified SNPs

on chromosome 4, near the CTSO gene that were associated with increased risk for the devel-

opment of breast cancer during five years of breast cancer prevention therapy with tamoxifen

or raloxifene in the NSABP P-1 and P-2 breast cancer prevention trials [20]. Recently, Hato

et al reported a correlation between the variant (GG) genotype for CTSO rs10030044 and

shorter disease-free survival, and shorter overall survival in hormone receptor-positive breast

cancer patients receiving adjuvant tamoxifen therapy [21]. Multivariate Cox regression analy-

sis revealed that this genotype was an independent factor indicating a poor prognosis in hor-

mone receptor-positive breast cancer patients receiving adjuvant tamoxifen therapy [21]. Our

previous work has largely focused on CTSO SNP-dependent estrogen induction of CTSO and

BRCA1 mRNA in LCLs [20]. However, the exact mechanism by which CTSO regulates

BRCA1 is not clear. Adding E2 can have multiple effects on both CTSO and BRCA1. Addition-

ally, the different combinations of ZNF423 and CTSO genotypes also add additional complex-

ity of regulation of downstream proteins like BRCA1. Therefore, in this study, we focused on
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Fig 7. PARP inhibitor enhances tamoxifen sensitivity that allows bypass of CTSO SNP effect on BRCA1. (A) Olaparib (Ola)

sensitizes cells with high CTSO level to 4-OH TAM treatment. Olaparib does not change 4-OH TAM sensitivity in the 4-OH TAM-

sensitive LCLs, CTSO W/ZNF423 W and CTSO V/ZNF423 V comparing to 4-OH TAM alone. Olaparib sensitizes 4-OH TAM-resistant

LCLs with CTSO V/ZNF423 W to 4-OH TAM treatment comparing to 4-OH TAM alone. (B) CAMA-1 and ZR75-1 cells are resistant to

olaparib alone treatment. Olaparib sensitizes ER+ breast cancer cells with high CTSO level (negative siRNA transfected) to 4-OH

TAM treatment comparing to cells with lower CTSO (siCTSO transfected). Error bars represent SEM. * = p < 0.05; ** = p < 0.01. IC50

values for 4-OH TAM were calculated using GraphPad Prism 7 software (n = 3, mean ± SEM).

https://doi.org/10.1371/journal.pgen.1007031.g007
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the possible mechanisms of CTSO gene involvement in the regulation of BRCA1 and response

to therapy in different genotype background. The data presented here demonstrated a possible

role for CTSO in resistance to tamoxifen, since the down-regulation of CTSO led to the inhibi-

tion of cell growth and increased BRCA1 protein level through both regulation of BRCA1 tran-

scription factors and BRCA1 protein degradation in ER+ breast cancer cells. In addition, we

obtained evidence that the addition of PARP inhibitor to tamoxifen could reverse resistance to

tamoxifen in breast cancer cells with higher levels of CTSO gene expression. Genotypes for

ZNF423 and CTSO could regulate gene expression in an estrogen or tamoxifen-dependent

fashion, in turn, influencing downstream BRCA1 levels. Therefore, based on individual geno-

types, we could potentially select different treatments to achieve the best outcomes, i.e. preci-

sion breast cancer prevention or therapy.

CTSO is a cysteine protease. This class of proteases mediates catabolism of intracellular pro-

teins and selectively activates extracellular protein degradation, macrophage function, and

bone resorption [33]. Cysteine proteases have been shown to function extracellularly as well as

intracellularly [34, 35], and have been suggested as potential targets for anti-cancer therapy

[35, 36]. Cathepsins B, D, H, L, or L2 are thought to play a role in several cancers [37–39]. The

role of cathepsins in resistance to cancer therapy is an area of emerging interest [40, 41]. Our

current studies demonstrate the mechanisms underlying CTSO-mediated tamoxifen resistance

in ER+ breast cancer.

Specifically, our functional genomic studies demonstrated that, among the top 8 SNPs near

the CTSO gene from our previous GWAS, the rs10030044 and rs6810983 SNPs could regulate

CTSO gene expression, and these SNPs were associated with higher CTSO gene expression lev-

els (Fig 1). We next examined the possible relationship between CTSO expression and that of

BRCA1, a gene known to be induced by estrogen exposure through a mechanism that has

remained unclear [42, 43].

We found a negative correlation between CTSO and BRCA1 protein levels (Fig 2). Based

on our observations of the effect of CTSO on both BRCA1 protein and mRNA levels, we first

hypothesized that CTSO might regulate BRCA1 through a cysteine protease -mediated path-

way, which we experimentally confirmed by treatment with a cysteine protease inhibitor (Fig

2B). Furthermore, regulation of the transcription of BRCA1 by CTSO was found to be through

the regulation of ZNF423 [20], MTDH [44, 45], PABPC4L [46], LMNA [47], and EEF1A1 [48]

transcription factors (Figs 2 and 3). MTDH (AEG-1) regulates c-MYC through PLZF, and c-

MYC induces BRCA1 gene expression [44, 45]. PABPC4L (Poly A Binding Protein Cyto-

plasmic 4 Like) is a member of PABP family. PABP recognizes the 30 mRNA poly (A) tail and

plays critical roles in eukaryotic translation initiation and mRNA stabilization/degradation

[46, 49]. LMNA (A-type lamin) has been shown to control transcription of BRCA1 [47].

EEF1A1 (translation elongation factor 1-alpha 1) affects gene expression through regulating

mRNA stability [48], and could also regulate BRCA1 through E2F1 [50, 51]. Therefore, the

ultimate BRCA1 protein level is regulated by CTSO at both transcription as well as protein lev-

els. Decreased BRCA1 has been shown to abolish tamoxifen suppression of cell proliferation

[15]. We showed that down-regulation of CTSO increased BRCA1 protein level and inhibited

proliferation of ER+ cells with or without tamoxifen treatment (Figs 3 and 4). Inhibition could

be restored by co-silencing BRCA1 and CTSO gene expression (Fig 4), suggesting that CTSO

may regulate cell proliferation and tamoxifen response through BRCA1.

Our initial GWAS had identified SNPs associated with decreased (ZNF423) and increased

(CTSO) risk for breast cancer occurrence [20], both of which appeared to regulate BRCA1. The

joint odds ratios for the development of breast cancer while on SERM therapy for five years for

these two sets of SNPs ranged from 1.00 for women homozygous for both sets of favorable,

low-risk alleles, to 5.71 for women homozygous for unfavorable, high- risk alleles for both
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ZNF423 and CTSO. In the present study, we also evaluated their joint effect on cell proliferation

in the presence of tamoxifen in LCLs carrying different combinations of ZNF423 and CTSO
genotypes. We found that the cells homozygous for the favorable alleles of both CTSO and

ZNF423 (CTSO W/ZNF423 V) proliferated slowest, while cells homozygous for the unfavorable

alleles of both CTSO and ZNF423 (CTSO V/ZNF423 W) proliferated fastest at baseline without

treatment (S3 Fig). With tamoxifen treatment, these two genotype groups remained the slow-

est-growing (favorable) and fastest-growing (unfavorable) groups among the four different

genotype groups (S3 Fig), suggesting that tamoxifen had no further effect on the proliferation

of cells with these two genotype groups (Fig 5C and 5D). At the mechanistic level, tamoxifen

benefit is partially determined by the induction of BRCA1 level. Cells homozygous for one

favorable allele and the other unfavorable allele (CTSO W/ZNF423 W, and CTSO V/ZNF423 V

groups) responded to tamoxifen treatment (Fig 5A and 5B, Table 1), both of which showed

high induction of BRCA1 levels in the presence of TAM (Fig 6B), indicating that patients with

these two genotype groups might benefit the most from tamoxifen treatment. For the two

tamoxifen-nonresponsive cell groups, in cells carrying CTSO V/ZNF423 W genotypes, PARP

inhibitor treatment restored tamoxifen sensitivity (Fig 7A). However, a PARP inhibitor did not

sensitize tamoxifen in the other tamoxifen- non responsive cells with the CTSO W/ZNF423 V

genotypes, which might be due to the higher level of BRCA1 level in those cells (Figs 6 and 7A,

Table 1). Consistent with a previous study [52], we found that cells with lower BRCA1 level due

to higher CTSO were very sensitive to PARP inhibition (Fig 7B). The combination of genotyp-

ing for CTSO SNPs and ZNF423 SNPs offers the potential for the stratification of ER+ breast

cancer patients into different drug response subgroups. Specifically, the use of PARP inhibitors

in combination with tamoxifen in patients carrying the CTSO V/ZNF423 W SNP genotypes

offers an opportunity for improving tamoxifen sensitivity and prognosis in these patients. The

findings of no efficacy for tamoxifen alone or in combination with a PARP inhibitor in patients

with the favorable SNP genotype profile of CTSO W/ZNF423 V raises the possibility that alter-

native approaches to prevention in low-risk patients should be studied in such patients.

Conclusions

In conclusion, we present evidence in the present study that CTSO is a new factor of impor-

tance for tamoxifen efficacy as a chemopreventive agent in women at high risk of developing

breast cancer as well as evidence for a potential mechanism by which this effect involves

BRCA1. The underlying mechanisms identified require validation and further refinement but

they also provide pharmacogenomic insights into tamoxifen as a preventative agent. We have

demonstrated that a PARP inhibitor, which can effectively restore tamoxifen sensitivity in

tamoxifen—resistant ER+ breast cancer cells, might be a potentially promising addition to

tamoxifen as a combination regimen for patients carrying the CTSO V/ZNF423 W SNP geno-

type. As a result, our study has revealed a new potential biomarker signature involving CTSO
and ZNF423-related SNPs for the therapeutic stratification of patients at high risk for the

development of breast cancer.

Materials and methods

Chemicals and reagents

Dulbecco’s minimum essential medium (DMEM), glutamine and penicillin/streptomycin/gluta-

mine stock mix were purchased from Life Technologies, Inc. (Carlsbad, CA, USA). Fetal bovine

serum (FBS) and charcoal-stripped FBS were from Invitrogen (Carlsbad, CA, USA). L-trans-

Epoxysuccinyl-leucylamido (4-guanidino) butane (E-64) was from Sigma-Aldrich (St. Louis,

MO USA). CTSO, MTDH, PABPC4L, LMNA, EEFiA1and control small interfering RNAs
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(siRNA) were purchased from Dharmacon (Thermo Scientific Dharmacon, Inc.). CTSO plas-

mid was purchased from OriGene (Rockville, MD, USA). Affinity purified rabbit and mouse

antibodies against human BRCA1 and CTSO were from Santa Cruz Biotechnologies (Santa

Cruz, CA, USA). ZNF423 antibody was purchased from Abcam (Cambridge, MA, USA). Actin,

MTDH, PABPC4L, LMNA, and EEFiA1 antibodies were from cell signaling (Danvers, MA,

USA). For standard PCR, HotStart Taq Plus DNA Polymerase was used (Qiagen, Germantown,

MD, USA). Reagents and primers for real time PCR were purchased from Qiagen (Valencia,

CA, USA). The protease inhibitor cocktail kit was obtained from Pierce Biotechnology (Rock-

ford, IL, USA). 17β-estradiol (E2) and 4-hydroxytamoxifen (OH-TAM) were purchased from

Sigma Aldrich (Saint Louis, MO USA). Olaparib was from Selleckchem (Houston, TX, USA).

Cell lines

Lymphoblastoid cell lines (LCLs) with known genotypes for the chromosome (chr) 4 CTSO

SNPs were cultured in RPMI 1640 media containing 15% (vol/vol) FBS (Invitrogen, San

Diego, CA). T47D, ZR75-1, CAMA-1, MDA-MB-231 cell lines were obtained from American

Type Culture Collection (ATCC) (Manassus, VA). T47D and ZR75-1 were cultured in RPMI-

1640 (Grand Island, NY) containing 10% fetal bovine serum (FBS). CAMA-1 cells were cul-

tured in Eagle’s Minimum Essential Medium containing FBS to a final concentration of 10%.

MDA-MB-231 cells were cultured in Leibovitz’s L-15 Medium containing 10% FBS at 37˚C

without CO2.

CTSO reporter gene assays

Luciferase reporter gene constructs containing various SNP genotypes were generated by PCR

based mutagenesis. Specifically, a 1924 bp segment of the CTSO promoter containing ERE was

PCR amplified with the primers: 5’- TAAGCAGATATCACTGACATCATGCCACACCT’

and 5- ACGATGCTGAGATTGACCCTAAGCTTTAAGCA -3’ and was cloned into the

EcoRV and HindIII sites of pGL3 basic plasmid to make the pGL3-CTSO construct. A 150–

250 bp DNA segment that included the rs10030044, rs6810983, rs6835859, rs4550865,

rs62328155, rs11737651, and rs4256192 SNPs respectively was also PCR amplified using prim-

ers as described in S1 File.

These fragments were cloned into the KpnI and NheI sites upstream of the CTSO promoter

sequence to make the plasmids pGL3-WT-CTSO or pGL3-V-CTSO. The WT SNP sequence

was amplified with LCL genomic DNA as a template that was homozygous for this WT SNP

genotype. This variant SNP sequence was amplified using LCL genomic DNA shown to be

homozygous for the variant genotype as template. These 150 -250bp amplicons contained the

rs10030044, rs6810983, rs6835859, rs4550865, rs62328155, rs11737651, and rs4256192 SNPs

respectively.

T47D and ZR75-1 cells were then seeded in triplicate in 12-well cell culture plates at a con-

centration of 105 cells / well. After 24 h, the cells were transfected using Lipofectamine 2000

(Invitrogen) with 4 μg of the pGL3-WT-CTSO or pGL-V-CTSO constructs and 2 μg

pRL-CMV encoding a CMV-driven renilla luciferase vector (Promega), together with the car-

rier DNA (pGL3 basic). Luciferase assays were performed 48 h after transfection using a lucif-

erase reporter assay system (Promega). The renilla luciferase activity was used to correct for

the transfection efficiency.

Human variation panel LCLs

The human variation panel model system consists of LCLs from 300 healthy subjects (100

European-Americans, 100 African-Americans, and 100 Han Chinese-Americans). This panel
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was generated by the Coriell Institute (Camden, New Jersey). We genotyped all 300 cell lines

for genome-wide SNPs using Illumina 550K and 510S SNP BeadChips (Illumina), and the

Coriell Institute obtained Affymetrix SNP array 6.0 (Affymetrix) data for the same cell lines.

These combined SNP genotype data (~1.3 million genotyped SNPs) were used to impute a

total of approximately 7 million SNPs per cell line. This LCL model system has been used

repeatedly to generate and/or test pharmacogenomic hypotheses arising from clinical GWAS

[3, 12, 17–19, 53]. The application of these cell lines made it possible to evaluate the function

of CTSO and ZNF423 SNP genotypes. To study the effect of the SNP on CTSO expression,

LCLs were cultured in base media containing 5% charcoal-stripped FBS for 24 hours and were

subsequently cultured in FBS-free base media containing 0.1 nM E2 for another 48 hours. Cell

lysates were used to perform Western blot analysis, and total RNA was isolated for qRT-PCR.

Drug treatment and cell growth assay

Breast cancer cells were cultured in specific base media, as described above, supplemented

with 10% FBS. 5000 cells were seeded in triplicate in 96-well plates, and were cultured in base

media containing 5% (vol/vol) charcoal-stripped FBS for 24 hours and were subsequently cul-

tured in FBS-free base media for another 24 hours. Cells were then transfected with either con-

trol siRNA or siRNA targeting CTSO. Twenty-four hours after transfection the media was

replaced with fresh FBS-free base media and the cells were treated with 0.1 nM E2 for 24

hours, and then treated with 100 nM 4-OH- tamoxifen. Cell growth was measured at different

time points (0, 24, 48, and 72 hours) post tamoxifen treatment using the BrdU Cell Prolifera-

tion Assay kit (Cell Signaling, Danvers, MA) at intervals of 24 h following the manufacturer’s

instructions. The plates were measured in a Safire2 microplate reader (Tecan AG,

Switzerland).

LCLs selected based on ZNF423 and CTSO genotypes were cultured in RPMI 1640 media

(Cellgro) supplemented with 15% FBS. Cells were cultured in RPMI 1640 media containing

5% (vol/vol) charcoal-stripped FBS for 24 hours and were subsequently seeded in triplicate in

96-well plates and cultured in FBS-free RPMI 1640 media for another 24 hours before treat-

ment. Cells were treated with 0.1 nM E2, 50nM tamoxifen, or the combination of both 0.1 nM

E2 and 50nM tamoxifen. Cell growth was measured at different time points (0, 24, 48, 72, and

96 hours) post treatment using the CYQUANT Direct Cell Proliferation Assay (#C35012, Invi-

trogen) following the manufacturer’s instructions at intervals of 24 h. The plates were mea-

sured in a Safire2 microplate reader (Tecan AG, Switzerland).

Transfection and gene silencing

Cells were plated at 70% confluence in culture medium supplemented with 10% FBS, and were

transfected with empty vector or CTSO plasmid (OriGene) using lipofectamine 2000 (Invitro-

gen, Carlsbad, CA) according to the vendor’s protocol. Cells were collected for protein analysis

48 hours after transfection. In some experiments, 24 hours after transfection, cells were treated

with 10 μM E-64, a cysteine proteases inhibitor, for additional 24 hours. Cells were then col-

lected for protein analysis.

Specific siGENOME siRNA SMARTpool reagents against a given gene as well as a negative

control, siGENOME Non-Targeting siRNA, were purchased from Dharmacon Inc. (Lafayette,

CO, USA). Cells were transfected with control siRNA, and specific siRNAs (10nM) in 96-well

plates or 12-well plates using lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA) according

to the vendor’s protocol. For the purpose of cell growth assay, cells were plated in base medium

supplemented with 5% charcoal stripped FBS for 24 hours, and then cultured in FBS-free

RPMI 1640 media for another 24 hours before transfection. Different treatments were started
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24 hours after transfection. For the purpose of testing gene expression level, cells were trans-

fected with control siRNA and specific siRNAs (10nM) in 12-well plates using lipofectamine

RNAiMAX for 48 hours.

Western blot

Breast cancer cells were harvested by trypsinization, lysed in SDS buffer. Cell lysates were

heated to 95˚C for five minutes. Protein samples (10 to 20 μg) were resolved by electrophoresis

on 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels and

electrophoretically transferred to PVDF membranes (Millipore Corporation, Bedford, MA,

USA). The blots were probed with the appropriate primary antibody and the appropriate

horseradish peroxidase conjugated secondary antibody. The protein bands detected with the

Pierce enhanced chemiluminescence Western blotting substrate (Thermo Scientific, Rockford,

IL, USA) and were visualized using Geldoc (Bio-Rad Laboratories).

LCLs selected based on ZNF423 and CTSO genotypes were cultured in RPMI 1640 media

containing 5% (vol/vol) charcoal-stripped FBS for 24 hours and were subsequently seeded in

6-well plates and cultured in FBS-free RPMI 1640 media for another 24 hours before treat-

ment. Cells were treated with 0.1 nM E2, 50nM tamoxifen, or combination of both 0.1 nM E2

and 50nM tamoxifen for 48 hours and lysed in RIPA buffer supplemented with protease and

phosphatase inhibitors. Cell lysates were used to perform Western blot analysis. Quantification

of the blots was analyzed using Image J.

Immunoprecipitation and immunoblotting

Cells were lysed in NETN buffer (20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5%

Nonidet P-40) supplemented with protease and phosphatase inhibitors. Lysates were clarified

by centrifugation (13,000 r.p.m., 20 min, 4˚C) and 500 μg–1mg proteins were used per immu-

noprecipitation. Proteins were captured with 2 μg CTSO antibody and protein G-sepharose

Fast-Flow (Sigma). Immunoprecipitation with mouse serum was used as negative controls.

The immuno-complexes were then washed with NETN buffer three times followed by separa-

tion on SDS-PAGE. Proteins were resolved by SDS–PAGE, transferred onto PVDF mem-

branes and probed using the appropriate primary and secondary antibodies coupled to horse-

radish peroxidase.

RNA isolation and quantitative real time PCR (qRT-PCR)

Total RNA was isolated from cultured cells with the QIAGEN RNeasy kit (QIAGEN Inc.,

Valencia, CA, USA), followed by qRT-PCR performed with the one-step Brilliant SYBR Green

qRT-PCR master mix kit (Stratagene, La Jolla, CA, USA). Specifically, primers purchased from

QIAGEN were used to perform qRT-PCR with the Stratagene Mx3005P real-time PCR detec-

tion system (Stratagene). All experiments were performed in triplicate with GAPDH as an

internal control. Reverse-transcribed Universal Human Reference RNA (Stratagene) was used

to generate a standard curve. Control reactions lacked the RNA template. The 2-δδcycle threshold

method was used for statistical data analysis.

Cytotoxicity assay

Drugs were dissolved in DMSO, and aliquots of stock solutions were frozen at −80˚C. Cytotox-

icity assays were performed in triplicate at each drug concentration. Specifically, 4000 breast

cancer cells were seeded in 96-well plates and were cultured in base media containing 5% (vol/

vol) charcoal-stripped FBS for 24 hours and were subsequently cultured in FBS-free base media
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for another 24 hours. Cells were then transfected with either control siRNA or siRNA targeting

CTSO. Twenty-four hours after transfection the media was replaced with fresh FBS-free base

media and the cells were treated with 10 μL of tamoxifen at final concentrations of 0, 0.5, 1, 2,

4, 6, 8, 12, 24, and 48 μM with or without 10 μM olaparib. After incubation for an additional 72

hours, cytotoxicity was determined by quantification of DNA content using CYQUANT assay

(#C35012, Invitrogen) following the manufacturer’s instructions. 100μL of CyQUANT assay

solution was added, and plates were incubated at 37˚C for one hour, and then read in a Safire2

plate reader with filters appropriate for 480 nm excitation and 520 nm emission.

LCLs selected based on ZNF423 and CTSO genotypes were cultured in RPMI 1640 media

containing 5% charcoal-stripped FBS for 24 hours and 5x104 cells were subsequently seeded in

triplicate in 96-well plates and cultured in FBS-free RPMI 1640 media for another 24 hours

before treatment. Cells were treated with 10 μL of tamoxifen at final concentrations of 0, 0.5, 1,

2, 4, 6, 8, 12, 24, and 48 μM with or without 5 μM olaparib. After incubation for an additional 72

hours, cytotoxicity was determined by quantification of DNA content using CYQUANT assay.

CTSO interacting protein detected by Mass spectrometry

ZR75-1 cells were transfected with CTSO plasmid. After 72 hr, cells were lysed by NETN

buffer. Cell lysates were incubated with control IgG or CTSO antibody at 4˚C for 4 hr, and

then incubated with protein G-sepharose Fast-Flow for 2 hr. After washing with NETN buffer

three times, bound proteins were eluted, and size fractionated by 10% SDS-PAGE. Coomassie-

stained gel slices covering the entire molecular weight range were processed for analysis by

mass spectrometer following a standard protocol at the Harvard Medical School Taplin Mass

Spectrometry Facility.

Statistical analysis

All data were presented as mean ± SD of at least three independent experiments. Statistical

analysis was performed using SPSS22.0 and Prism 5 (GraphPad Software Inc., San Diego, CA,

USA). Single-factor analysis of the variance test was used for comparisons among multiple

groups, and a t-test was used for comparisons between two groups; P <0.05 was considered

statistically significant.

Supporting information

S1 File. This file provides detailed materials and methods for the additional figures.

(DOCX)

S1 Table. Genotype for CTSO and ZNF423 SNPs in a panel of breast cancer cell lines.

(XLSX)

S2 Table. 130 proteins interact with CTSO based on mass spectrometry screening.

(XLSX)

S3 Table. Among the 130 proteins interacting with CTSO, 20 associated with BRCA1 with

p< 1E-05 in TCGA breast cancer database.

(XLSX)

S1 Fig. mRNA levels of CTSO and BRCA1 in LCLs with homozygous WT and variant

CTSO SNP after exposure to increasing concentrations of estradiol (E2). Error bars repre-

sent SEM.
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S2 Fig. The effects of CTSO interacting genes on BRCA1 gene expression in breast cancer

cells.

(TIF)

S3 Fig. ZNF423 and CTSO SNPs joint effects on cell proliferation.

(TIF)

Acknowledgments

We would like to thank collaborators who contributed to the development and conduct of the

NSABP source studies but who did not directly contribute to the current study. We are thank-

ful to the George M. Eisenberg Foundation for Charities.

Author Contributions

Conceptualization: Junmei Cairns, James N. Ingle, Lawrence D. Wickerham, Richard Wein-

shilboum, Liewei Wang.

Data curation: Junmei Cairns, Mohan Liu.

Formal analysis: Junmei Cairns.

Funding acquisition: James N. Ingle, Lawrence D. Wickerham, Liewei Wang.

Investigation: Junmei Cairns.

Methodology: Junmei Cairns.

Resources: Junmei Cairns, Lawrence D. Wickerham.

Supervision: James N. Ingle, Liewei Wang.

Validation: Junmei Cairns.

Writing – original draft: Junmei Cairns.

Writing – review & editing: James N. Ingle, Lawrence D. Wickerham, Richard Weinshil-

boum, Liewei Wang.

References

1. Harvey JM, Clark GM, Osborne CK, Allred DC. Estrogen receptor status by immunohistochemistry is

superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast can-

cer. J Clin Oncol. 1999; 17(5):1474–81. https://doi.org/10.1200/JCO.1999.17.5.1474 PMID: 10334533.

2. Johnston SR, Dowsett M. Aromatase inhibitors for breast cancer: lessons from the laboratory. Nat Rev

Cancer. 2003; 3(11):821–31. https://doi.org/10.1038/nrc1211 PMID: 14668813.

3. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat

Rev Cancer. 2009; 9(9):631–43. https://doi.org/10.1038/nrc2713 PMID: 19701242.

4. Frasor J, Danes JM, Komm B, Chang KC, Lyttle CR, Katzenellenbogen BS. Profiling of estrogen up-

and down-regulated gene expression in human breast cancer cells: insights into gene networks and

pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology. 2003; 144

(10):4562–74. https://doi.org/10.1210/en.2003-0567 PMID: 12959972.

5. Burstein HJ, Temin S, Anderson H, Buchholz TA, Davidson NE, Gelmon KE, et al. Adjuvant endocrine

therapy for women with hormone receptor-positive breast cancer: american society of clinical oncology

clinical practice guideline focused update. J Clin Oncol. 2014; 32(21):2255–69. https://doi.org/10.1200/

JCO.2013.54.2258 PMID: 24868023.

6. Charehbili A, Fontein DB, Kroep JR, Liefers GJ, Mieog JS, Nortier JW, et al. Neoadjuvant hormonal

therapy for endocrine sensitive breast cancer: a systematic review. Cancer Treat Rev. 2014; 40(1):86–

92. https://doi.org/10.1016/j.ctrv.2013.06.001 PMID: 23891267.

CTSO SNPs and tamoxifen response in breast cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007031 October 2, 2017 21 / 24

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007031.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007031.s007
https://doi.org/10.1200/JCO.1999.17.5.1474
http://www.ncbi.nlm.nih.gov/pubmed/10334533
https://doi.org/10.1038/nrc1211
http://www.ncbi.nlm.nih.gov/pubmed/14668813
https://doi.org/10.1038/nrc2713
http://www.ncbi.nlm.nih.gov/pubmed/19701242
https://doi.org/10.1210/en.2003-0567
http://www.ncbi.nlm.nih.gov/pubmed/12959972
https://doi.org/10.1200/JCO.2013.54.2258
https://doi.org/10.1200/JCO.2013.54.2258
http://www.ncbi.nlm.nih.gov/pubmed/24868023
https://doi.org/10.1016/j.ctrv.2013.06.001
http://www.ncbi.nlm.nih.gov/pubmed/23891267
https://doi.org/10.1371/journal.pgen.1007031


7. Lumachi F, Luisetto G, Basso SM, Basso U, Brunello A, Camozzi V. Endocrine therapy of breast can-

cer. Curr Med Chem. 2011; 18(4):513–22. PMID: 21143113.

8. Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, et al. Tamoxifen for

prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1

Study. J Natl Cancer Inst. 1998; 90(18):1371–88. PMID: 9747868.

9. Vogel VG, Costantino JP, Wickerham DL, Cronin WM, Cecchini RS, Atkins JN, et al. Update of the

National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene (STAR) P-2

Trial: Preventing breast cancer. Cancer Prev Res (Phila). 2010; 3(6):696–706. https://doi.org/10.1158/

1940-6207.CAPR-10-0076 PMID: 20404000.

10. Early Breast Cancer Trialists’ Collaborative G, Dowsett M, Forbes JF, Bradley R, Ingle J, Aihara T, et al.

Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the rando-

mised trials. Lancet. 2015; 386(10001):1341–52. https://doi.org/10.1016/S0140-6736(15)61074-1

PMID: 26211827.

11. Normanno N, Di Maio M, De Maio E, De Luca A, de Matteis A, Giordano A, et al. Mechanisms of endo-

crine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer. 2005; 12

(4):721–47. https://doi.org/10.1677/erc.1.00857 PMID: 16322319.

12. Osborne CK, Schiff R. Mechanisms of endocrine resistance in breast cancer. Annu Rev Med. 2011;

62:233–47. https://doi.org/10.1146/annurev-med-070909-182917 PMID: 20887199.

13. Ma YX, Tomita Y, Fan S, Wu K, Tong Y, Zhao Z, et al. Structural determinants of the BRCA1: estrogen

receptor interaction. Oncogene. 2005; 24(11):1831–46. https://doi.org/10.1038/sj.onc.1208190 PMID:

15674350.

14. Birgisdottir V, Stefansson OA, Bodvarsdottir SK, Hilmarsdottir H, Jonasson JG, Eyfjord JE. Epigenetic

silencing and deletion of the BRCA1 gene in sporadic breast cancer. Breast Cancer Res. 2006; 8(4):

R38. https://doi.org/10.1186/bcr1522 PMID: 16846527.

15. Wen J, Li R, Lu Y, Shupnik MA. Decreased BRCA1 confers tamoxifen resistance in breast cancer cells

by altering estrogen receptor-coregulator interactions. Oncogene. 2009; 28(4):575–86. https://doi.org/

10.1038/onc.2008.405 PMID: 18997820.

16. Berry M, Metzger D, Chambon P. Role of the two activating domains of the oestrogen receptor in the

cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxytamoxifen.

EMBO J. 1990; 9(9):2811–8. PMID: 2118104.

17. Huen MS, Sy SM, Chen J. BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol

Cell Biol. 2010; 11(2):138–48. https://doi.org/10.1038/nrm2831 PMID: 20029420.

18. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-defi-

cient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005; 434(7035):913–7. https://

doi.org/10.1038/nature03443 PMID: 15829966.

19. Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N, et al. PARP is activated at stalled

forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 2009; 28(17):2601–

15. https://doi.org/10.1038/emboj.2009.206 PMID: 19629035.

20. Ingle JN, Liu M, Wickerham DL, Schaid DJ, Wang L, Mushiroda T, et al. Selective estrogen receptor

modulators and pharmacogenomic variation in ZNF423 regulation of BRCA1 expression: individualized

breast cancer prevention. Cancer Discov. 2013; 3(7):812–25. https://doi.org/10.1158/2159-8290.CD-

13-0038 PMID: 23764426.

21. Hato Y, Kondo N, Yoshimoto N, Endo Y, Asano T, Dong Y, et al. Prognostic impact of a single-nucleo-

tide polymorphism near the CTSO gene in hormone receptor-positive breast cancer patients. Int J Clin

Oncol. 2016; 21(3):539–47. https://doi.org/10.1007/s10147-015-0913-5 PMID: 26482374.

22. Foekens JA, Look MP, Bolt-de Vries J, Meijer-van Gelder ME, van Putten WL, Klijn JG. Cathepsin-D in

primary breast cancer: prognostic evaluation involving 2810 patients. Br J Cancer. 1999; 79(2):300–7.

https://doi.org/10.1038/sj.bjc.6990048 PMID: 9888472.

23. Niu N, Qin Y, Fridley BL, Hou J, Kalari KR, Zhu M, et al. Radiation pharmacogenomics: a genome-wide

association approach to identify radiation response biomarkers using human lymphoblastoid cell lines.

Genome Res. 2010; 20(11):1482–92. https://doi.org/10.1101/gr.107672.110 PMID: 20923822.

24. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;

490(7418):61–70. https://doi.org/10.1038/nature11412 PMID: 23000897.

25. Somasundaram K, Zhang H, Zeng YX, Houvras Y, Peng Y, Zhang H, et al. Arrest of the cell cycle by the

tumour-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/CiP1. Nature. 1997; 389(6647):187–

90. https://doi.org/10.1038/38291 PMID: 9296497.

26. Ouchi T, Monteiro AN, August A, Aaronson SA, Hanafusa H. BRCA1 regulates p53-dependent gene

expression. Proc Natl Acad Sci U S A. 1998; 95(5):2302–6. PMID: 9482880.

CTSO SNPs and tamoxifen response in breast cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007031 October 2, 2017 22 / 24

http://www.ncbi.nlm.nih.gov/pubmed/21143113
http://www.ncbi.nlm.nih.gov/pubmed/9747868
https://doi.org/10.1158/1940-6207.CAPR-10-0076
https://doi.org/10.1158/1940-6207.CAPR-10-0076
http://www.ncbi.nlm.nih.gov/pubmed/20404000
https://doi.org/10.1016/S0140-6736(15)61074-1
http://www.ncbi.nlm.nih.gov/pubmed/26211827
https://doi.org/10.1677/erc.1.00857
http://www.ncbi.nlm.nih.gov/pubmed/16322319
https://doi.org/10.1146/annurev-med-070909-182917
http://www.ncbi.nlm.nih.gov/pubmed/20887199
https://doi.org/10.1038/sj.onc.1208190
http://www.ncbi.nlm.nih.gov/pubmed/15674350
https://doi.org/10.1186/bcr1522
http://www.ncbi.nlm.nih.gov/pubmed/16846527
https://doi.org/10.1038/onc.2008.405
https://doi.org/10.1038/onc.2008.405
http://www.ncbi.nlm.nih.gov/pubmed/18997820
http://www.ncbi.nlm.nih.gov/pubmed/2118104
https://doi.org/10.1038/nrm2831
http://www.ncbi.nlm.nih.gov/pubmed/20029420
https://doi.org/10.1038/nature03443
https://doi.org/10.1038/nature03443
http://www.ncbi.nlm.nih.gov/pubmed/15829966
https://doi.org/10.1038/emboj.2009.206
http://www.ncbi.nlm.nih.gov/pubmed/19629035
https://doi.org/10.1158/2159-8290.CD-13-0038
https://doi.org/10.1158/2159-8290.CD-13-0038
http://www.ncbi.nlm.nih.gov/pubmed/23764426
https://doi.org/10.1007/s10147-015-0913-5
http://www.ncbi.nlm.nih.gov/pubmed/26482374
https://doi.org/10.1038/sj.bjc.6990048
http://www.ncbi.nlm.nih.gov/pubmed/9888472
https://doi.org/10.1101/gr.107672.110
http://www.ncbi.nlm.nih.gov/pubmed/20923822
https://doi.org/10.1038/nature11412
http://www.ncbi.nlm.nih.gov/pubmed/23000897
https://doi.org/10.1038/38291
http://www.ncbi.nlm.nih.gov/pubmed/9296497
http://www.ncbi.nlm.nih.gov/pubmed/9482880
https://doi.org/10.1371/journal.pgen.1007031


27. Liu M, Goss PE, Ingle JN, Kubo M, Furukawa Y, Batzler A, et al. Aromatase inhibitor-associated bone

fractures: a case-cohort GWAS and functional genomics. Mol Endocrinol. 2014; 28(10):1740–51.

https://doi.org/10.1210/me.2014-1147 PMID: 25148458.

28. Li L, Fridley B, Kalari K, Jenkins G, Batzler A, Safgren S, et al. Gemcitabine and cytosine arabinoside

cytotoxicity: association with lymphoblastoid cell expression. Cancer Res. 2008; 68(17):7050–8. https://

doi.org/10.1158/0008-5472.CAN-08-0405 PMID: 18757419.

29. Konecny GE, Kristeleit RS. PARP inhibitors for BRCA1/2-mutated and sporadic ovarian cancer: current

practice and future directions. Br J Cancer. 2016; 115(10):1157–73. https://doi.org/10.1038/bjc.2016.

311 PMID: 27736844.

30. Tewari KS, Eskander RN, Monk BJ. Development of Olaparib for BRCA-Deficient Recurrent Epithelial

Ovarian Cancer. Clin Cancer Res. 2015; 21(17):3829–35. https://doi.org/10.1158/1078-0432.CCR-15-

0088 PMID: 26169965.

31. Henneman L, van Miltenburg MH, Michalak EM, Braumuller TM, Jaspers JE, Drenth AP, et al. Selective

resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast can-

cer. Proc Natl Acad Sci U S A. 2015; 112(27):8409–14. https://doi.org/10.1073/pnas.1500223112

PMID: 26100884.

32. Naipal KA, Verkaik NS, Ameziane N, van Deurzen CH, Ter Brugge P, Meijers M, et al. Functional ex

vivo assay to select homologous recombination-deficient breast tumors for PARP inhibitor treatment.

Clin Cancer Res. 2014; 20(18):4816–26. https://doi.org/10.1158/1078-0432.CCR-14-0571 PMID:

24963051.

33. Zucker S, Cao J, Chen WT. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer

treatment. Oncogene. 2000; 19(56):6642–50. https://doi.org/10.1038/sj.onc.1204097 PMID:

11426650.

34. Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer.

2006; 6(10):764–75. https://doi.org/10.1038/nrc1949 PMID: 16990854.

35. Gocheva V, Joyce JA. Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle. 2007; 6

(1):60–4. https://doi.org/10.4161/cc.6.1.3669 PMID: 17245112.

36. Jedeszko C, Sloane BF. Cysteine cathepsins in human cancer. Biol Chem. 2004; 385(11):1017–27.

https://doi.org/10.1515/BC.2004.132 PMID: 15576321.

37. Fujise N, Nanashim A, Taniguchi Y, Matsuo S, Hatano K, Matsumoto Y, et al. Prognostic impact of

cathepsin B and matrix metalloproteinase-9 in pulmonary adenocarcinomas by immunohistochemical

study. Lung Cancer. 2000; 27(1):19–26. PMID: 10672780.

38. Lankelma JM, Voorend DM, Barwari T, Koetsveld J, Van der Spek AH, De Porto AP, et al. Cathepsin L,

target in cancer treatment? Life Sci. 2010; 86(7–8):225–33. https://doi.org/10.1016/j.lfs.2009.11.016

PMID: 19958782.

39. Skrzypczak M, Springwald A, Lattrich C, Haring J, Schuler S, Ortmann O, et al. Expression of cysteine

protease cathepsin L is increased in endometrial cancer and correlates with expression of growth regu-

latory genes. Cancer Invest. 2012; 30(5):398–403. https://doi.org/10.3109/07357907.2012.672608

PMID: 22452389.

40. Wang W, Long L, Wang L, Tan C, Fei X, Chen L, et al. Knockdown of Cathepsin L promotes radiosensi-

tivity of glioma stem cells both in vivo and in vitro. Cancer Lett. 2016; 371(2):274–84. https://doi.org/10.

1016/j.canlet.2015.12.012 PMID: 26706414.

41. Gangoda L, Keerthikumar S, Fonseka P, Edgington LE, Ang CS, Ozcitti C, et al. Inhibition of cathepsin

proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells

to doxorubicin. Oncotarget. 2015; 6(13):11175–90. https://doi.org/10.18632/oncotarget.3579 PMID:

25883214.

42. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, et al. TRANSFAC and its module

TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 2006; 34(Database

issue):D108–10. https://doi.org/10.1093/nar/gkj143 PMID: 16381825.

43. Marks JR, Huper G, Vaughn JP, Davis PL, Norris J, McDonnell DP, et al. BRCA1 expression is not

directly responsive to estrogen. Oncogene. 1997; 14(1):115–21. https://doi.org/10.1038/sj.onc.

1200808 PMID: 9010238.

44. Thirkettle HJ, Mills IG, Whitaker HC, Neal DE. Nuclear LYRIC/AEG-1 interacts with PLZF and relieves

PLZF-mediated repression. Oncogene. 2009; 28(41):3663–70. https://doi.org/10.1038/onc.2009.223

PMID: 19648967.

45. Menssen A, Hermeking H. Characterization of the c-MYC-regulated transcriptome by SAGE: identifica-

tion and analysis of c-MYC target genes. Proc Natl Acad Sci U S A. 2002; 99(9):6274–9. https://doi.org/

10.1073/pnas.082005599 PMID: 11983916.

CTSO SNPs and tamoxifen response in breast cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007031 October 2, 2017 23 / 24

https://doi.org/10.1210/me.2014-1147
http://www.ncbi.nlm.nih.gov/pubmed/25148458
https://doi.org/10.1158/0008-5472.CAN-08-0405
https://doi.org/10.1158/0008-5472.CAN-08-0405
http://www.ncbi.nlm.nih.gov/pubmed/18757419
https://doi.org/10.1038/bjc.2016.311
https://doi.org/10.1038/bjc.2016.311
http://www.ncbi.nlm.nih.gov/pubmed/27736844
https://doi.org/10.1158/1078-0432.CCR-15-0088
https://doi.org/10.1158/1078-0432.CCR-15-0088
http://www.ncbi.nlm.nih.gov/pubmed/26169965
https://doi.org/10.1073/pnas.1500223112
http://www.ncbi.nlm.nih.gov/pubmed/26100884
https://doi.org/10.1158/1078-0432.CCR-14-0571
http://www.ncbi.nlm.nih.gov/pubmed/24963051
https://doi.org/10.1038/sj.onc.1204097
http://www.ncbi.nlm.nih.gov/pubmed/11426650
https://doi.org/10.1038/nrc1949
http://www.ncbi.nlm.nih.gov/pubmed/16990854
https://doi.org/10.4161/cc.6.1.3669
http://www.ncbi.nlm.nih.gov/pubmed/17245112
https://doi.org/10.1515/BC.2004.132
http://www.ncbi.nlm.nih.gov/pubmed/15576321
http://www.ncbi.nlm.nih.gov/pubmed/10672780
https://doi.org/10.1016/j.lfs.2009.11.016
http://www.ncbi.nlm.nih.gov/pubmed/19958782
https://doi.org/10.3109/07357907.2012.672608
http://www.ncbi.nlm.nih.gov/pubmed/22452389
https://doi.org/10.1016/j.canlet.2015.12.012
https://doi.org/10.1016/j.canlet.2015.12.012
http://www.ncbi.nlm.nih.gov/pubmed/26706414
https://doi.org/10.18632/oncotarget.3579
http://www.ncbi.nlm.nih.gov/pubmed/25883214
https://doi.org/10.1093/nar/gkj143
http://www.ncbi.nlm.nih.gov/pubmed/16381825
https://doi.org/10.1038/sj.onc.1200808
https://doi.org/10.1038/sj.onc.1200808
http://www.ncbi.nlm.nih.gov/pubmed/9010238
https://doi.org/10.1038/onc.2009.223
http://www.ncbi.nlm.nih.gov/pubmed/19648967
https://doi.org/10.1073/pnas.082005599
https://doi.org/10.1073/pnas.082005599
http://www.ncbi.nlm.nih.gov/pubmed/11983916
https://doi.org/10.1371/journal.pgen.1007031


46. Deo RC, Bonanno JB, Sonenberg N, Burley SK. Recognition of polyadenylate RNA by the poly(A)-bind-

ing protein. Cell. 1999; 98(6):835–45. PMID: 10499800.

47. Redwood AB, Gonzalez-Suarez I, Gonzalo S. Regulating the levels of key factors in cell cycle and DNA

repair: new pathways revealed by lamins. Cell Cycle. 2011; 10(21):3652–7. https://doi.org/10.4161/cc.

10.21.18201 PMID: 22045204.

48. Yan G, You B, Chen SP, Liao JK, Sun J. Tumor necrosis factor-alpha downregulates endothelial nitric

oxide synthase mRNA stability via translation elongation factor 1-alpha 1. Circ Res. 2008; 103(6):591–

7. https://doi.org/10.1161/CIRCRESAHA.108.173963 PMID: 18688046.

49. Sachs AB. Messenger RNA degradation in eukaryotes. Cell. 1993; 74(3):413–21. PMID: 7688664.

50. Farra R, Scaggiante B, Guerra C, Pozzato G, Grassi M, Zanconati F, et al. Dissecting the role of the

elongation factor 1A isoforms in hepatocellular carcinoma cells by liposome-mediated delivery of siR-

NAs. Int J Pharm. 2017; 525(2):367–76. https://doi.org/10.1016/j.ijpharm.2017.02.031 PMID:

28229942.

51. Wang Y, Deng O, Feng Z, Du Z, Xiong X, Lai J, et al. RNF126 promotes homologous recombination via

regulation of E2F1-mediated BRCA1 expression. Oncogene. 2016; 35(11):1363–72. https://doi.org/10.

1038/onc.2015.198 PMID: 26234677.

52. Drew Y, Mulligan EA, Vong WT, Thomas HD, Kahn S, Kyle S, et al. Therapeutic potential of poly(ADP-

ribose) polymerase inhibitor AG014699 in human cancers with mutated or methylated BRCA1 or

BRCA2. J Natl Cancer Inst. 2011; 103(4):334–46. https://doi.org/10.1093/jnci/djq509 PMID: 21183737.

53. de Murcia JM, Niedergang C, Trucco C, Ricoul M, Dutrillaux B, Mark M, et al. Requirement of poly

(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci U S A.

1997; 94(14):7303–7. PMID: 9207086.

CTSO SNPs and tamoxifen response in breast cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007031 October 2, 2017 24 / 24

http://www.ncbi.nlm.nih.gov/pubmed/10499800
https://doi.org/10.4161/cc.10.21.18201
https://doi.org/10.4161/cc.10.21.18201
http://www.ncbi.nlm.nih.gov/pubmed/22045204
https://doi.org/10.1161/CIRCRESAHA.108.173963
http://www.ncbi.nlm.nih.gov/pubmed/18688046
http://www.ncbi.nlm.nih.gov/pubmed/7688664
https://doi.org/10.1016/j.ijpharm.2017.02.031
http://www.ncbi.nlm.nih.gov/pubmed/28229942
https://doi.org/10.1038/onc.2015.198
https://doi.org/10.1038/onc.2015.198
http://www.ncbi.nlm.nih.gov/pubmed/26234677
https://doi.org/10.1093/jnci/djq509
http://www.ncbi.nlm.nih.gov/pubmed/21183737
http://www.ncbi.nlm.nih.gov/pubmed/9207086
https://doi.org/10.1371/journal.pgen.1007031

