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Abstract

Background: Most studies investigating the neurobiology of depression and suicide have focused on the serotonergic
system. While it seems clear that serotonergic alterations play a role in the pathogenesis of these major public health
problems, dysfunction in additional neurotransmitter systems and other molecular alterations may also be implicated.
Microarray expression studies are excellent screening tools to generate hypotheses about additional molecular processes
that may be at play. In this study we investigated brain regions that are known to be implicated in the neurobiology of
suicide and major depression are likely to represent valid global molecular alterations.

Methodology/Principal Findings: We performed gene expression analysis using the HG-U133AB chipset in 17 cortical and
subcortical brain regions from suicides with and without major depression and controls. Total mRNA for microarray analysis
was obtained from 663 brain samples isolated from 39 male subjects, including 26 suicide cases and 13 controls diagnosed
by means of psychological autopsies. Independent brain samples from 34 subjects and animal studies were used to control
for the potential confounding effects of comorbidity with alcohol. Using a Gene Ontology analysis as our starting point, we
identified molecular pathways that may be involved in depression and suicide, and performed follow-up analyses on these
possible targets. Methodology included gene expression measures from microarrays, Gene Score Resampling for global
ontological profiling, and semi-quantitative RT-PCR. We observed the highest number of suicide specific alterations in
prefrontal cortical areas and hippocampus. Our results revealed alterations of synaptic neurotransmission and intracellular
signaling. Among these, Glutamatergic (GLU) and GABAergic related genes were globally altered. Semi-quantitative RT-PCR
results investigating expression of GLU and GABA receptor subunit genes were consistent with microarray data.

Conclusions/Significance: The observed results represent the first overview of global expression changes in brains of
suicide victims with and without major depression and suggest a global brain alteration of GLU and GABA receptor subunit
genes in these conditions.
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Introduction

Suicide accounts for almost 2% of the world’s deaths, and in

most developed countries it is the leading cause of death for males

younger than 40 years of age [1]. Suicide is caused by a set of

complex conditions and is frequently, but not exclusively,

associated with depressive disorders. Although it is clear that

these conditions are mediated by specific neurobiological processes

[2,3], the precise molecular alterations and the brain circuits

involved in suicide and major depression remain largely unknown.

The suicide brain is believed to have a complex pattern of

neurochemical alterations involving several neurotransmitter

systems and different brain regions [4]. While most of the

attention to date has focused on the possible dysregulation of the

serotonergic system, and to a lesser extent, the noradrenergic

neurotransmitter system [5–11], there is also evidence implicating

other neurotransmitters, such as the dopaminergic [12–15],

polyaminergic [16], glutamatergic [17–20] and GABAergic

systems [4,5,21–23]. In addition, several studies have also

investigated the role of signal transduction and other molecular
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systems [24–27]. Imaging studies of subjects with major depression

and/or suicidal behavior using functional magnetic resonance and

positron emission tomography have pointed to possible dysfunc-

tion of prefrontal neuronal circuits and subcortical areas of the

brain, particularly some areas of the limbic system [28–34]. The

complexity of neurotransmitter systems interacting in many

distinct neuroanatomical regions underlines the need of a more

comprehensive and inclusive approach monitoring alterations in

different regions of the brain.

Microarray technology offers the possibility of parallel moni-

toring expression levels of several thousands to virtually all genes

based on the hybridization of nucleotide probes mounted on high

density arrays to a target nucleotide sequence [35,36]. Recently

this technology was implemented in psychiatry to study gene

expression changes in postmortem brain tissue from psychiatric

patients (for a review see [37]) and from suicide completers

[16,38,39].

One of the major problems of experiments using dense

microarrays is the level of multiple comparisons leading to false

positive results. While different statistical approaches exist to

correct for type I errors [40–42], independent replication, both

internal and external, is the method of choice to determine the

accuracy of results [43]. We hypothesized that biological processes

that are globally altered across different brain regions believed to

be implicated in the neurobiology of suicide and major depression

are likely to represent valid global molecular alterations.

Therefore, in this study, we conducted a global gene expression

survey in 17 cortical and subcortical brain areas of male suicides

with and without major depression versus matched psychiatrically

normal controls aiming at the identification of molecular pathways

that are differentially expressed, consistently, across those brain

regions.

Methods

Subjects and diagnostic procedures
Quebec Suicide Brain Bank. Brain tissue was obtained

from the Quebec Suicide Brain Bank. All samples used in the

present study were from male subjects of French-Canadian origin,

a homogeneous population with a well-known founder effect [44].

Cases and controls were group-matched for age and post-mortem

interval. To be included in this study, suicides and controls had to

die suddenly, with no medical or paramedic intervention, and with

no prolonged agonal period. Brains were dissected at 4uC and

snap-frozen in liquid nitrogen before storage at -80uC. Brain tissue

was dissected and Brodmann areas (BA) identified in accordance

with standard neuroanatomical definitions [45]. The anterior and

posterior cingulate corresponded to the most anterior and the most

posterior parts of the cingulate gyrus. In all cases, 1 cm3 human

tissue blocks were paraffin-embedded, cryostat-sectioned, slide-

mounted, and examined for any signs of disease by two

independent pathologists in at least 3 different brain regions. No

cases were excluded on this basis. This study was approved by our

IRB and signed informed consent was obtained from next of kin.

All suicide and control subjects were psychiatrically diagnosed

by means of psychological autopsies, which is a validated method

to reconstruct psychiatric history by means of extensive proxy-

based interviews, as outlined elsewhere [46]. In total, we analyzed

663 brain samples isolated from 39 subjects throughout the 17

regions, including suicides who died during an episode of major

depression (SMD; N = 16); suicide victims with no history of major

depression (S; N = 10); and matched psychiatrically normal

controls (C; N = 13) who died suddenly from causes other than

suicide and had no history of suicidal behavior. No other mood

disorders were included in the present study. The vast majority of

suicide completers from both the S and the SMD groups died by

hanging. This is the most common method of suicide in Canada

[46]. Controls died suddenly, without medical intervention by

either accidents or myocardial infarctions. While this represents

the total sample used in this study, there was some variability

between regions following outlier exclusion (see below).

Controlling for alcohol confounding effects. To exclude

the possible effect of alcohol on our positive findings, we followed

up these results in an independent sample obtained from the

University of California, Irvine (UCI) Brain Bank. This sample

consisted of brain tissue from 13 male alcohol abusers and 21

controls, both groups psychiatrically normal otherwise. We

investigated the dorsolateral prefrontal cortex (BA 9–46), a brain

region that has been implicated in the etiology of alcoholism [47].

All subjects were clinically characterized by means of

psychological autopsies and died suddenly without prolonged

agonal state as described elsewhere [18]. All of the cases and none

of the controls from the UCI sample had 6-month histories of

alcohol abuse. Control for potential confounding effect of alcohol

was also carried out by means of animal experiments as described

below.

RNA quality control and microarray experiments
All 663 RNA samples used in this study had a minimum A260/

A280 ratio of.1.9 (mean = 2.0360.14). The samples were further

checked for evidence of degradation and integrity. Samples had a

minimum 28S/18S ratio.1.6 and an average RIN of 7.1460.85

(2100-Bioanalyzer, Agilent Technologies).

We used the HG-U133AB chipset, containing around 45,000

probe sets derived from approximately 33,000 human genes

(http://www.affymetrix.com). Sample preparation and processing,

hybridization to the Human Genome U133 Set, and normalization

were performed as described in the Affymetrix GeneChip

Expression Analysis Manual (Affymetrix, Santa Clara, CA) in

collaboration with Gene Logic Inc (Gaithersburg, MD). The

GeneChip IVT Express and the GeneChipH Hybridization, Wash,

and Stain kits from Affymetrix were used for first and second cDNA

synthesis, IVT/labeling and purification of aRNA, fragmentation

and purification. GeneChip analysis was also performed based on

the Affymetrix GeneChip Manual, with Microarray Analysis Suite

(MAS) 5.1, Data Mining Tool (DMT) 2.0, and Microarray

Database software. All of the genes represented on the GeneChip

were globally normalized and scaled to a signal intensity of 100.

Description of the Affymetrix normalization is available at the

following site (http://www.affymetrix.com/support/technical/

technotes/statistical_reference_guide.pdf).

Expression data was analyzed using Genesis 2.0 (GeneLogic

Inc, Gaithersburg, MD) and AVADIS (Strand Genomics,

Redwood City, CA). Several RNA integrity measures, in addition

to 28S/18S ratios and RIN numbers, were used in this study to

detect samples with poor RNA quality before final analysis: noise

(RawQ), consistent number of genes detected as present across

arrays, consistent scale factor, and consistent b-actin and GAPDH

59/39 signal ratios. Arrays with a significant deviation from the

average RawQ, scale factor and 59/39 ratios were excluded.

Problematic arrays were also identified using principal component

analysis (PCA). Outlier subjects/arrays were excluded on a region

specific basis, without any subject being excluded from all the

regions. The data from this manuscript is available upon request.

Semi-quantitative RT-PCR
For technical validation of differentially expressed genes, we

performed semi-quantitative RT-PCR using RNA extracted from
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additional samples that were collected in each brain region from

tissue adjacent to that used in the microarray expression study. All

the subjects that passed quality control were also used in these

experiments. Reverse transcription was performed in a total

volume of 40 ml with 2 mg of total mRNA using M-MLV reverse

transcriptase (Gibco, Burlington, Ontario) and oligo(dT)16 primers.

PCR amplification was carried out using the Platinum Taq DNA

Polymerase (Invitrogen, Carlsbad, CA), to determine the log linear

phase of the amplification and to perform the semi-quantitative

PCR. mRNA-specific primers, were designed using Primer3

(www-genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi) and

their sequence is available upon request. Products were visualized

using ethidium bromide staining after electrophoresis in a 3%

agarose gel. Images were digitalized and analyzed using Gene Tools

(Syngene, Cambridge). Experiments were carried in parallel in

triplicate and b-actin was used as an internal control gene.

Statistical analysis
The Microarray Suite software 5.1 (MAS 5.1) uses an algorithm

that associates P-values to indicate statistical significance for gene

expression detection and assign a Present, Marginal or Absent call.

For each brain area, the list of genes were filtered prior to analysis

such that only genes present (according to MAS 5.1) in at least 75

% of the subjects in at least one of the groups were included in our

analyses. On average, 14,777 genes were analyzed per region

across the 17 regions analyzed.

Gene expression values were floored to 1 and then log2-

transformed. ANCOVAs were initially performed for each gene to

identify statistically significant gene expression changes between

the three groups, with substance abuse/dependence as a covariate.

Statistically significant genes according to the ANCOVA were

then subjected to a post-hoc t-test and fold-change analysis (FC) in

order to identify pair-wise differences between the suicides with

major depression (SMD), the suicides without major depression

(S), and the controls (C). For a gene to be considered as

differentially expressed, it had to have an ANCOVA P-value of

less than or equal to 0.01 and a fold change of at least a 1.3 fold

change in either direction. Post-hoc analyses were carried out

using the Fisher protected LSD test with a P-value set at 0.01.

Cluster analysis was performed using average-linkage hierar-

chical cluster analysis with a correlation metric. Both expression

patterns in individuals and genes were clustered. Principal

component analysis (PCA) was performed based on the initial

gene sets and on the selected genes (according to our significance

criteria).

Functional ontological profiling of the expression changes was

performed across all 17 regions using the Gene Score Resampling

(GSR) method implemented in the ErmineJ software (version

2.1.8, Columbia University, NY) that examines the distributions of

scores (FC or P-values) across the whole array [48]. This method

compares the number of genes in a class ontology that show

significant differential expression with the expected number of

genes in that same class under the null hypothesis [48], eliminating

the risk of finding false over-represented categories due to over-

representation on the microarray chip. The parameters used were

the following: Maximum gene set size: 300; Minimum gene set

size: 5; with the mean of replicates, 10,000 iterations and full

resampling. The rank and P-value computed by ErmineJ were

used to calculate the most overrepresented ontologies across all

regions. The distribution pattern of the ErmineJ calculated P-

values in the different regions of the brain was examined by

hierarchical clustering using AVADIS, with the normalized

negative log of the P-values as the input. Further annotations

were conducted using the Database for Annotation, Visualization

and Integrated Discovery (DAVID) [49].

Animal experiments
Adult male Sprague Dawley rats (Charles River, St. Constant,

Québec) housed individually in clear Plexiglas cages

(46 cm618 cm630 cm) on a 12-hr reverse-light cycle with food

and water available ad libitum were used to study the effect of

alcohol consumption on selected genes. All procedures were

conducted in accordance with guidelines established by the

Canadian Council on Animal Care.

For the acute ethanol (EtOH) administration, rats received a

single injection of either vehicle (n = 5; 1 ml/kg ip) or EtOH (n = 5;

2.5 g/kg EtOH ip; 15% v/v EtOH in 0.9% saline) [50,51]. The

prefrontal cortex (PFC) was quickly dissected, flash frozen in

isopentene and stored at 280uC until further analysis. For the

chronic ethanol administration, food and water consumption were

monitored for 3 days prior to treatment to ensure no differences in

baseline consumption existed between the treatment groups. Rats

were randomly assigned to one of 3 treatment conditions: water

control (n = 5), sucrose control (n = 5; 10% sucrose solution) or

EtOH (n = 5; 15% EtOH in a 10% sucrose solution). Once rats in

the EtOH group readily drank the 10% sucrose solution (for 1 day)

they were gradually habituated to the 15% EtOH solution [52].

EtOH rats received 5% EtOH in 10 % sucrose for 1 day, followed

by 10% EtOH in 10% sucrose for 2 days. The solution was then

changed to the 15% EtOH in 10% sucrose. Chronic EtOH

treatment persisted for 28 days once the rats had access to the 15%

EtOH solution. Twenty-nine days after the 15% EtOH treatment

began, rats were sacrificed prior to lights off. Brains were removed

and PFC was quickly dissected, flash frozen in isopentane, and

stored at 280uC until subsequent analysis.

Results

Global analysis
Demographic and clinical characteristics of the subjects

included in this study are shown in Table 1. No significant

differences were observed between the groups for different

demographic measures such as age (mean6sd: C = 35611;

S = 3469; SMD = 37613;), post-mortem interval (mean6sd:

C = 2466; S = 29615; SMD = 2567), or brain tissue pH

(mean6standard deviation: C = 6.4460.26; S = 6.3260.27;

SMD = 6.5560.32). Furthermore, no significant correlation was

observed in our sample as a whole between quality control

parameters such as noise (RawQ), number of genes detected as

present across arrays, scale factor, b-actin and GAPDH 59/39

(data not shown). This suggests that RNA quality from our tissue

was acceptable, probably reflecting our brain recruitment

procedures, which are limited to sudden death without medical

intervention, prolonged agonal periods or extended PMI. All

subjects in this study underwent toxicological screens and we

detected only one subject with an SSRI in his blood, suggesting

that medication is not a confounding factor in this study (Table 1).

Overall, 251,206 probe sets passed the initial filtering criteria

and were included in the analysis across the 17 regions with an

average of around 15,000 probe sets per region. A summary of the

analyzed and the differentially expressed probe sets per region and

per group comparison, controlling for the possible effect of

substance abuse/dependence, are shown in Table 2. Figure 1

provides the distribution of the total number of differentially

expressed genes in prefrontal and subcortical brain areas. The

region with the least probe sets analyzed was BA10 with 11,935

and the one with the most was BA45 with 15,886 probe sets. A
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total of 5,868 probe sets were significantly altered with the

ANCOVA at the P#0.01 level. Of these, 4,472 probe sets were

differentially expressed across the regions after the Fisher

protected LSD tests and fold-change (FC) filtering. These 4,472

probe sets were annotated to 3320 unique genes using DAVID.

There was substantial variation between regions in terms of total

number of differentially expressed genes, ranging from 83 in BA29

to 636 in BA10. In addition to BA10, the region with the second

largest number of differentially expressed genes was BA46 with

626 genes. BA46 and BA10 are two prefrontal cortex regions

which are anatomically close and have previously been associated

with both suicidal behaviors and major depression. On the other

hand, two limbic regions located in the cingulate cortex, BA24 and

BA29, had the least number of differentially expressed genes, 84

and 83 respectively.

Functional profiling
In order to identify altered functional pathways across all the

regions investigated in this study, we initially used ErmineJ [48] to

generate a list of overrepresented gene ontologies in each of the 17

Table 1. Demographic, clinical and toxicological characteristics of the subjects included in the study.

Group Age PMI Cause of death DSM-IV (six months diagnosis) Toxicology screening

C 51 15 Motor vehicle accident Alcohol dependence Alcohol

C 31 24 Cardiac arrest Alcohol dependence

C 19 32 Motor vehicle accident

C 47 12 Cardiac arrest Alcohol abuse

C 30 30 Cardiac arrest

C 28 27 Motor vehicle accident

C 41 24 Myocardial Infarction

C 31 29.5 Motor vehicle accident

C 46 19.5 Myocardial Infarction

C 21 24 Cardiac arrest

C 27 20.5 Cardiac arrest

C 32 26.5 Cardiac arrest Cannabis abuse

C 55 24 Motor vehicle accident

S 38 23 Hanging Alcohol dependence, cocaine dependence Alcohol

S 21 21 Asphyxiation OCD, Alcohol dependence Alcohol

S 31 32.5 Hanging

S 29 26.5 Hanging

S 33 18 Hanging

S 26 69 Hanging

S 30 27 Stabbing Paranoid schizophrenia

S 36 25 Hanging

S 51 21 Self inflicted gun shot Alcohol dependence

S 42 27 Carbon monoxide

SMD 28 20 Hanging MDD, alcohol dependence Alcohol

SMD 22 11.5 Hanging MDD, alcohol dependence Alcohol, cocaine

SMD 53 14 Carbon monoxide MDD

SMD 26 34 Hanging MDD Cocaine

SMD 40 23 Hanging MDD, alcohol dependence

SMD 19 29.5 Hanging MDD

SMD 53 29 Hanging MDD, alcohol dependence

SMD 42 21 Drowning MDD SSRI

SMD 45 20.5 Self inflicted gun shot MDD, pathological gambling

SMD 35 31 Hanging MDD, alcohol dependence

SMD 39 25.5 Hanging MDD

SMD 49 32 Hanging MDD, alcohol abuse

SMD 40 22 Hanging MDD

SMD 53 33.5 Hanging MDD

SMD 18 27 Carbon monoxide MDD

SMD 22 20 Hanging MDD

C = control, S = suicide, SMD = suicide with major depression, MDD = major depressive disorder, SSRI = Selective serotonin reuptake inhibitor.
doi:10.1371/journal.pone.0006585.t001
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brain regions independently and then the resulting significant

ontologies were compiled to reflect the overlap of global ontologies.

Subsequently, hierarchical clustering analyses were carried out to

identify those biological processes that were commonly altered across

all brain regions, Figure 2 shows the 20 top overrepresented

ontologies. We then focused on the 10 most commonly overrepre-

sented ontologies based on rankings and P-values in the 17 brain areas

from the GSR analysis in ErmineJ. In order, from most to least

commonly represented, these were signal transduction, intracellular

signaling cascade, cell organization and biogenesis, protein localiza-

tion, protein transport, establishment of protein localization, trans-

mission of nerve impulse, small GTPase mediated signal transduction,

synaptic transmission and vesicle-mediated transport. The corre-

sponding probe sets belonging to these 10 globally overrepresented

ontologies were further annotated using DAVID, resulting in the

identification of 568 unique genes. As shown in Table 3, the majority

of these genes corresponded to genes implicated in cell communica-

tion processes and related subcategories of functions such as

intracellular signaling cascade, signal transduction, transmission of

nerve impulse, and more specifically, synaptic transmission.

As intracellular signaling cascade, signal transduction and

transmission of nerve impulse are parent nodes related to synaptic

transmission, a more specialized molecular function that is of

particular interest to the neurobiological investigation of major

depression and suicide, we explored more specifically the genes

related to synaptic transmission. A total of 57 genes corresponded to

this category (Table 4) and consisted of several pre-synaptic proteins

(SYN2, SYPL1, SNAP25, SYT1, SYT5, SNPH) and signal

transduction genes such as the mitogen-activated protein kinase 1

(MAPK1) and the 29,39-cyclic nucleotide 39 phosphodiesterase

(CNP). However, it was remarkable that a large proportion of these

57 genes (22 out of 57 or 38.6%) corresponded to genes implicated in

GABAergic or glutamatergic neurotransmission or in the transport of

these neurotransmitters (Table 4). For the following analyses, we then

also opted to further explore GABAergic and glutamatergic genes,

because of prior reports to their implication in both major depression

[22,23,53–55] and in suicide [17,19,20,55,56].

Pathways globally differentially expressed
In order to specifically explore GABAergic and glutamatergic

genes that were differentially expressed across the different brain

regions, we interrogated the list of 5,868 differentially expressed

genes using the probe sets identified and annotated using DAVID.

GABAergic genes. A total of 27 GABAergic-related probe sets

were differentially expressed across the regions, many corresponding

in fact to probe sets for the same genes as graphically represented in

Figure 3. For instance, one gene, the Gamma-aminobutyric acid

(GABA) A receptor, delta (GABRD) gene was differentially expressed

in BA6, BA44, BA45, BA46 and the GABA(A) receptor-associated

protein like 1 gene (GABARAPL1) was differentially expressed in

BA10, BA20 and BA46 (Figure 3). Part of the ventrolateral prefrontal

cortex, BA46 was of particular interest with a total of six GABAergic

genes differentially expressed (GABARAPL1, GABRA5, GABRB1,

GABRD, GABRG1, GABRG2). Also noteworthy, the majority of

the differentially expressed GABAergic genes (19 out of 27)

corresponded to different subunits of the GABA(A) receptor,

particularly the alpha, beta, delta, gamma and rho subunits. As

seen in Figure 3, a clear pattern of dysregulation was observed in

terms of genes and regions implicated with a majority of GABAergic

genes being up-regulated (red) among the suicides with major

Table 2. Summary of the differential expression analysis in 17 brain areas of controls and suicides with and without major
depression.

Brain Region
Genes
analyzed

Genes
significant C-SMD C-S SMD-S

BA4 (C = 6; S = 5; SMD = 8) 14632 202 128 (66 up; 62 down) 55 (28 up; 27 down) 62 (35 up; 27 down)

BA6 (C = 7; S = 6; SMD = 13) 15266 286 216 (105 up; 111 down) 76 (31 up; 45 down) 46 (20 up; 26 down)

BA8,9 (C = 6; S = 5; SMD = 9) 14854 589 73 (33 up; 40 down) 302 (71 up; 231 down) 411 (147 up; 264 down)

BA10 (C = 6; S = 6; SMD = 7) 11935 636 604 (436 up; 168 down) 41 (30 up; 11 down) 69 (31 up; 38 down)

BA11 (C = 6; S = 5; SMD = 9) 14410 152 85 (19 up; 66 down) 33 (11 up; 22 down) 77 (50 up; 27 down)

BA20 (C = 5; S = 5; SMD = 6) 13944 255 77 (36 up; 41 down) 68 (21 up; 47 down) 173 (50 up; 123 down)

BA21 (C = 9; S = 6; SMD = 5) 14129 204 161 (42 up; 119 down) 20 (8 up; 12 down) 64 (37 up; 27 down)

BA38 (C = 7; S = 5; SMD = 6) 14395 182 65 (37 up; 28 down) 102 (58 up; 44 down) 64 (16 up; 48 down)

BA24 (C = 7; S = 5; SMD = 9) 15243 84 52 (27 up; 25 down) 20 (5 up; 15 down) 27 (15 up; 12 down)

BA29 (C = 8; S = 7; SMD = 10) 15032 83 19 (7 up; 12 down) 40 (13 up; 27 down) 40 (24 up; 16 down)

Amy (C = 8; S = 6; SMD = 14) 15007 153 95 (56 up; 39 down) 47 (22 up; 25 down) 35 (25 up; 10 down)

Hippo (C = 6; S = 6; SMD = 10) 14495 426 34 (16 up; 18 down) 118 (60 up; 58 down) 359 (196 up; 163 down)

NAcc (C = 6; S = 6; SMD = 10) 15232 140 22 (8 up; 14 down) 60 (10 up; 50 down) 91 (11 up; 80 down)

BA44 (C = 12; S = 6; SMD = 13) 15788 140 88 (32 up; 56 down) 24 (15 up; 9 down) 48 (30 up; 18 down)

BA45 (C = 11; S = 6; SMD = 12) 15886 101 60 (13 up; 47 down) 21 (8 up; 13 down) 27 (17 up; 10 down)

BA46 (C = 7; S = 7; SMD = 12) 15655 622 140 (37 up; 103 down) 192 (148 up; 44 down) 470 (373 up; 97 down)

BA47 (C = 9; S = 7; SMD = 12) 15303 163 102 (48 up; 54 down) 29 (13 up; 16 down) 51 (29 up; 22 down)

Total 251206 4472

C = control, S = suicide, SMD = suicide with major depression, Amy = amygdala, Hippo = hippocampus, NAcc = nucleus accumbens. Information on Brodmann areas is
provided elsewhere93–94. The number of genes analyzed corresponds to the number of genes considered as ‘‘Present’’ by the detection algorithm (MAS 5.1) in at least
75% of subjects in at least one of the groups. The number of genes reported as significant is that obtained in an ANCOVA model which included substance abuse/
dependence as a covariate.
doi:10.1371/journal.pone.0006585.t002
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depression. For instance, in the hippocampus, all differentially

expressed GABAergic genes were clearly up-regulated in suicides

with major depression (GABARAPL1, GABARA4 and GABARB1)

and with low expression among suicides without history of depressive

disorders, suggesting a depression specific effect. Also seen in Figure 3,

a total of 10 GABA(A) receptor beta probe sets were differentially

expressed and were generally up-regulated among the depressed

suicides. The same was observed for the GABA(A) receptor–

associated protein like 1 (GABARAPL1) which was up-regulated in

the depressed suicide group in BA10, BA20, BA46 and hippocampus.

In summary, a striking number of probe sets corresponding to

GABA(A) receptors or GABA(A) receptor-associated binding protein

were altered between the three groups, with the majority being up-

regulated among the suicides with major depression and having lower

expression levels among the suicides without major depression or the

controls, suggesting their role in molecular processes that may be

more specific to the pathophysiology of major depressive disorder.

Glutamatergic genes. A total of 28 probe sets corresponding

to genes implicated in glutamatergic neurotransmission were

differentially expressed across the regions. A graphical

representation of the gene expression changes between the three

groups is shown in Figure 4. A good proportion of these probe sets

(7) corresponded to the Glutamate-ammonia ligase (glutamine

synthase) gene (GLUL) that codes for an enzyme implicated in

glutamate recycling. GLUL probe sets were found consistently

down-regulated among the depressed suicides in the prefrontal

cortex (BA44 BA45, BA46) and the amygdala (Figure 4). Also of

particular interest, 7 out of 28 probe sets (Figure 4) correspond to

one of four subtypes (AMPA1, AMPA2, AMPA3, AMPA4) of the

glutamate AMPA receptor that was differentially expressed in

Figure 1. Pie charts representing the distribution of the total number of differentially expressed genes in (A) prefrontal cortical
areas and in (B) other cortical and subcortical brain areas. The number of chips per group that passed quality control assessment is also
given.
doi:10.1371/journal.pone.0006585.g001
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several brain cortical (BA10, BA21, BA46) and subcortical areas

(hippocampus, nucleus accumbens, amygdala). A majority of the

glutamatergic related probe sets correspond to ionotropic NMDA

receptor subunits (GRINA, GRIN2A, GRINL1A) and AMPA

(GRIA3,GRIA4, GRIA1, GRIA2) receptors with the later being

consistently up-regulated among the suicides with major

depression versus the controls or the suicides without history of

major depression (Figure 4). Also noteworthy, the glutamate

receptor metabotropic 3 (GRM3) was consistently down-regulated

among the suicides with and without major depression in two

areas of the prefrontal cortex BA46 and BA47 and in two areas of

the parietal cortex BA38 and BA20 (Figure 4). In summary, we

observed a global up-regulation of AMPA receptors and a global

down-regulation of the GRM3 receptor and the glutamine

Figure 2. Clustered image map (CIM) of the hierarchical cluster analysis of the distribution pattern of ErmineJ calculated P-values of
the 20 top overrepresented ontologies across all the regions studied. Both ontological categories and the regions were clustered. The color
and intensity indicate level of significance: red spectrum colors indicate very highly significant gene ontologies (0.001), yellow colors indicate highly
significant gene ontologies (0.01) and white colors represent no significance.
doi:10.1371/journal.pone.0006585.g002

Table 3. The 568 unique genes identified in our database of differentially expressed genes were regrouped using DAVID
according to their function.

Category Term Count % P-value

Biological Process signal transduction 237 41.73% 2.57E-37

Biological Process intracellular signaling cascade 138 24.30% 2.80E-42

Biological Process cell organization and biogenesis 132 23.24% 1.38E-24

Biological Process protein localization 79 13.91% 2.03E-25

Biological Process protein transport 77 13.56% 8.29E-26

Biological Process establishment of protein localization 77 13.56% 6.87E-25

Biological Process transmission of nerve impulse 61 10.98% 6.73E-25

Biological Process small GTPase mediated signal transduction 59 10.39% 1.54E-29

Biological Process synaptic transmission 57 10.03% 2.50E-22

Biological Process vesicle-mediated transport 55 9.68% 3.12E-20

doi:10.1371/journal.pone.0006585.t003
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Table 4. Differentially expressed genes directly implicated in synaptic transmission as determined using DAVID (2006).

Name Symbol Cytoband Entrez Gene

29,39-cyclic nucleotide 39 phosphodiesterase CNP 17q21 1267

4-aminobutyrate aminotransferase ABAT 16p13.2 18

5-hydroxytryptamine (serotonin) receptor 2a HTR2A 13q14–q21 3356

adenylate cyclase activating polypeptide 1 (pituitary) receptor type i ADCYAP1R1 7p14 117

amphiphysin (stiff-man syndrome with breast cancer 128 kda autoantigen) AMPH 7p14–p13 273

apolipoprotein e TOMM40 19q13 10452

cocaine- and amphetamine-regulated transcript CART 5q13.2 9607

cortistatin APITD1 1p36.22 378708

discs, large (drosophila) homolog-associated protein 1 DLGAP1 18p11.3 9229

double c2-like domains, alpha DOC2A 16p11.2 8448

drebrin 1 DBN1 5q35.3 1627

dystrobrevin, alpha DTNA 18q12 1837

gaba(a) receptor-associated protein like 1 GABARAPL1 12p13.2 23710

gamma-aminobutyric acid (gaba) a receptor, alpha 1 GABRA1 5q34–q35 2554

gamma-aminobutyric acid (gaba) a receptor, alpha 4 GABRA4 4p12 2557

gamma-aminobutyric acid (gaba) a receptor, alpha 5 GABRA5 15q11.2–q12 2558

gamma-aminobutyric acid (gaba) a receptor, beta 1 GABRB1 4p12 2560

gamma-aminobutyric acid (gaba) a receptor, delta GABRD 1p|1p36.3 2563

gamma-aminobutyric acid (GABA) A receptor, gamma 1 GABRG1 4p12 2565

gamma-aminobutyric acid (gaba) a receptor, gamma 1 GRIA2 4q32–q33 2891

gamma-aminobutyric acid (gaba) a receptor, gamma 2 GABRG2 5q31.1–q33.1 2566

gamma-aminobutyric acid (gaba) b receptor, 2 GABBR2 9q22.1–q22.3 9568

gamma-aminobutyric acid (gaba) receptor, rho 1 GABRR1 6q14–q21|6q13–q16.3 2569

glutamate dehydrogenase 1 GLUD1 10q23.3 2746

glutamate receptor, ionotrophic, ampa 3 GRIA3 Xq25–q26 2892

glutamate receptor, ionotropic, ampa 1 GRIA1 5q33|5q31.1 2890

glutamate receptor, ionotropic, ampa 2 GRIA2 4q32–q33 2891

glutamate receptor, ionotropic, kainate 1 GRIK1 21q22.11 2897

glutamate receptor, ionotropic, n-methyl d-aspartate 2a GRIN2A 16p13.2 2903

glutamate receptor, metabotropic 3 GRM3 7q21.1–q21.2 2913

glutamate-ammonia ligase (glutamine synthetase) GLUL 1q31 2752

gtp cyclohydrolase 1 (dopa-responsive dystonia) GCH1 14q22.1–q22.2 2643

mitogen-activated protein kinase 1 MAPK1 22q11.2|22q11.21 5594

myelin basic protein MBP 18q23 4155

myelin oligodendrocyte glycoprotein MOG 6p22.1 4340

nad(p)h dehydrogenase, quinone 1 NQO1 16q22.1 1728

neuronal pentraxin ii NPTX2 7q21.3–q22.1 4885

neuropeptide y NPY 7p15.1 4852

pallidin homolog (mouse) PLDN 15q21.1 26258

peripheral myelin protein 22 PMP22 17p12–p11.2 5376

phosphatidylinositol 4-kinase, catalytic, alpha polypeptide PIK4CA 22q11.21 5297

piccolo (presynaptic cytomatrix protein) PCLO 7q11.23–q21.3 27445

potassium large conductance calcium-activated channel, subfamily m, beta member 4 KCNMB4 12q 27345

potassium voltage-gated channel, kqt-like subfamily, member 2 KCNQ2 20q13.3 3785

rab14, member ras oncogene family RAB14 9q32–q34.11 51552

s100 calcium binding protein, beta (neural) S100B 21q22.3 6285

sodium channel, voltage-gated, type x, alpha SCN10A 3p22–p21 6336

solute carrier family 1 (glial high affinity glutamate transporter), member 2 SLC1A2 11p13–p12 6506

solute carrier family 1 (glial high affinity glutamate transporter), member 3 SLC1A3 5p13 6507

solute carrier family 6 (neurotransmitter transporter, creatine), member 8 SLC6A8 Xq28 6535
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synthase (GLUL) genes expression in the suicide with major

depression group.

Validation of microarray gene expression results
The differential expression of GABAergic and glutamatergic

genes was further confirmed by means of semi-quantitative RT-

PCR in additional samples from the same individuals that were

immediately adjacent to those used for the microarray assays. We

investigated only the brain areas where differential expression was

observed in the microarray experiments (Table 5). Out of the 16

genes/regions tested, 15 showed the same expression direction

(up-/-down regulation) in comparisons between groups as those

observed in the microarray experiments, and 12 were also

significantly differentially expressed in the semi-quantitative RT-

PCR experiments (Table 5).

Controlling for potential confounding effect of alcohol
The possible effect of alcohol on gene expression was a potential

confounder of our results, considering that a comorbid diagnosis of

alcohol abuse/dependence was present in some of the subjects in

Name Symbol Cytoband Entrez Gene

solute carrier family 6 (neurotransmitter transporter, gaba), member 1 SLC6A1 3p25–p24 6529

synapsin ii SYN2 3p25 6854

synaptophysin-like 1 SYPL1 7q22.2 6856

synaptosomal-associated protein, 25kda SNAP25 20p12–p11.2 6616

synaptotagmin i SYT1 12cen–q21 6857

synaptotagmin v SYT5 19q|11p 6861

syntaphilin SNPH 20p13 9751

doi:10.1371/journal.pone.0006585.t004

Table 4. Cont.

Figure 3. Clustered image map (CIM) of the hierarchical cluster
analysis of the GABAergic differentially expressed subunit
genes across the 17 regions investigated. The color and intensity
indicate direction and level of change: blue spectrum colors indicate
down-regulated expression, while red spectrum colors indicate up-
regulated expression.
doi:10.1371/journal.pone.0006585.g003

Figure 4. Clustered image map (CIM) of the hierarchical cluster
analysis of the glutamatergic system differentially expressed
genes across the 17 regions investigated. The color and intensity
indicate direction and level of change: blue spectrum colors indicate
down-regulated expression, while red spectrum colors indicate.
doi:10.1371/journal.pone.0006585.g004
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the three groups. To exclude the potential confounding effect of

alcohol on our results, we first conducted analyses of covariance

(Table S1) investigating genes associated with substance use across

all the brain regions. None of the GABAergic or glutamatergic

genes differentially expressed in suicides with or without major

depression were associated to substance use.

We also investigated whether or not these GABAergic or

glutamatergic genes were associated with alcohol in an indepen-

dent gene expression dataset from the UCI Brain Bank. To this

end, we compared samples from the dorsolateral prefrontal cortex

of 13 alcohol abusers to samples from the same brain region of 21

normal controls using the Affymetrix HG-U133 Plus 2 micro-

arrays. Results are presented in Table S2 and suggest that none of

the GABAergic or glutamatergic genes found to be globally

differentially expressed in depression and suicide were significantly

differentially expressed in alcoholics.

Finally, we studied the long- (one month) and short-term (5

days) effects of alcohol on GABARD, GABRG2, GLS, GLUL,

GRIA1, GRIA3, GABARG1, GRM3, GABARAPL1, SLC6A1,

and GABRR1 gene expression by semi-quantitative RT-PCR in

rat prefrontal cortex. We found no significant differences for these

genes in either chronic or acute alcohol treatments (Table S3).

Discussion

In this study, gene expression was investigated using genome-

wide microarrays in 17 brain areas thought to be involved in the

neurobiology of suicide and major depression, comparing suicides

with and without major depression to psychiatrically normal

controls. This is, to our knowledge, the first large-scale brain

expression study aiming at identifying global brain alterations

associated with suicide and major depression. The extent of the

expression changes varied considerably between the diverse brain

areas investigated, with certain areas, such as those that comprise

the prefrontal cortex and hippocampus, accounting for the

majority of expression changes. This is consistent with what one

would expect according to neuroanatomical studies of depression

and suicide and is also consistent with previous studies looking at

discrete brain regions [4,57–63]. The functional analysis using

gene ontologies also revealed that an over-representation of genes

involved in cell communication processes were globally altered.

More specifically, among genes involved in synaptic transmission,

a striking number of GABAergic receptor subunit genes were

generally up-regulated among the suicides with major depression,

but showed lower expression levels among the 2 other groups. We

also observed for the suicide with major depression group a

general up-regulation of AMPA receptors subunit genes and a

global down-regulation of GRM3 receptors and glutamine

synthase (GLUL) gene expression. Our study suggests the presence

of consistent alterations of several genes coding for components of

the same pathways across different brain regions.

The HG-133AB chipset contains around 44,000 probe sets many

of which may not be expressed at biologically significant or

detectable levels. Accordingly, Jongeneel et al. estimated that

between 10 to 15 thousand transcripts are actually expressed in

several types of human cell lines [64]. For that reason and in order

to reduce the multiplicity problem, we used a combination of

filtering methods in order to include in our analysis only transcripts

that were actually expressed and reliably detectable. This approach

efficiently allows to significantly reduce the total number of analyzed

probe sets without notably decreasing the number of truly positive

genes [65]. This resulted in an average of around 15,000 probe sets

analyzed per region Second, in order to control for type I errors, we

also used a combination of stringent P-value thresholds (#0.01 both

at the ANOVA and post-hoc test), as well as a fold change of at least

1.3 in either direction. Most importantly, by focusing on results that

replicate across several different brain regions, which constitute

partially independent experiments, we are likely to have significantly

reduced the occurrence of type I errors in our study.

Table 5. Confirmation of the microarray results involving critical GABAergic and glutamatergic genes in major depression and
suicide using independent adjacent samples from the same subjects/areas by semi-quantitative RT-PCR (SemiQ RT-PCR).

SemiQ RT-PCR (Mean) Affymetrix (Mean)

Gene Region Control Suicide SMD P Control Suicide SMD P

GABARAPL1 BA46 135.35 102.88 171.73 0.13 197.566 181.244 261.768 0.002

GABARD BA45 70.96 49.53 69.86 0.04 265.784 190.645 273.365 0.002

GABARD BA46 196.79 92.43 109.35 0.04 405.741 300.856 443.493 0.003

GABARG1 BA21 64.17 85.35 61.89 0.13 262.739 215.787 170.116 0.002

GABARG1 BA46 35.92 46.04 31.30 0.02 120.571 174.447 107.812 0.000

GABRG2 BA46 52.95 36.15 48.91 0.04 416.956 267.694 418.698 0.007

GABRR1 BA44 195.05 376.23 138.60 0.01 23.6967 35.345 19.1808 0.007

GLS BA46 56.56 48.36 56.43 0.12 231.561 163.459 243.658 0.002

GLUL Amy 93.46 76.52 68.49 0.02 789.678 438.535 422.579 0.002

GLUL BA21 131.67 118.04 107.04 0.08 463.524 442.932 265.696 0.002

GLUL BA45 142.64 128.99 108.66 0.02 338.71 307.803 197.303 0.002

GLUL BA46 128.30 184.69 87.91 0.01 251.503 361.113 190.146 0.001

GRIA1 BA21 71.30 67.63 142.03 0.04 118.831 150.885 180.902 0.004

GRIA3 BA46 82.77 48.63 51.32 0.05 132.681 93.5443 100.471 0.006

GRM3 BA46 70.75 52.57 38.63 0.02 286.41 281.21 241.308 0.004

SLC6A1 BA4 150.61 156.09 140.69 0.58 648.13 648.05 478.61 0.002

Mean values per group are shown for the SemiQ RT-PCR experiment as well as for the MAS 5.1 normalized Affymetrix gene expression experiment.
doi:10.1371/journal.pone.0006585.t005
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The current approach led to the identification of 4,472

differentially expressed probe sets over the 17 brain regions

(Table 2). As expected, and in accordance with the neuroanatom-

ical and post-mortem biomarkers literature, three prefrontal cortex

areas, BA8,9, BA10, BA46, and the hippocampus, had the highest

number of differentially expressed probe sets, thus confirming the

implication of these regions in the pathophysiology of suicide and

major depression (Table 2 and Figure 1). These four areas have

been well characterized and have been previously shown to be

implicated in suicidal behaviors and depression in numerous post-

mortem studies [4,66–78]. In vivo, neuroimaging studies have also

pointed to alterations in the prefrontal cortex and in the

hippocampus in patients suffering from major depression

[29,59,61,79–81]. Our study provides on a genomic scale,

potential molecular targets that may account for those alterations

in the brains of suicide victims with and without major depression.

Functional analysis using gene ontologies [82] was performed

across the 17 regions using a new tool (ErmineJ) that efficiently

addresses many of the limitations and problems of the initial gene

ontology tools [83], by implementing more comprehensive

algorithms and the possibility of performing analyses in parallel.

This global functional ontological profiling revealed specific

ontological categories commonly overrepresented in all the regions

investigated in this study, and further investigation showed that an

important proportion of genes belonged to cell-communication

processes. Among these, a remarkable number of probe sets

corresponded to genes coding for various molecular units of the

GABAergic and glutamatergic neurotransmitter systems.

L-glutamic acid (glutamate) and GABA are respectively the

main excitatory and inhibitory neurotransmitters in the central

nervous system [84]. Growing evidence has supported alterations

in both of these neurotransmitter systems in major depression

[22,23,53–55] and suicide [17,19,20,55,56]. Sanacora et al. [21]

using a magnetic resonance spectroscopy protocol observed

elevated levels of glutamate and lower levels of GABA in the

occipital cortex of subjects diagnosed with major depression.

Furthermore, Hasler et al. [85] demonstrated that abnormal

reductions in glutamate/glutamine and GABA concentrations are

present in the prefrontal cortex of unmedicated depressed patients.

Our results are also in concordance with those of Choudary et al.

[18], who performed a gene expression study in the cingulate and

prefrontal cortex brain areas of suicides and depressed suicides

using one of the chips (HG-U133A) of the microarray set used in

our study. Interestingly, their results point to similar alterations in

glutamate recycling (glutamine synthase, GLUL), glutamate

receptors (GRIA1, GRIA3, GRIK1, GRM3) and GABA receptors

(GABARB3, GABRD, GABARG2) in depressed suicides versus

controls. Also, recently, Merali et al. [55] observed altered levels of

GABA(A) receptor subunits (a1, a3, a4 and d) in the BA10 of

depressed suicide victims versus non-depressed controls.

GRIA3, which was also confirmed to be differentially expressed

by SemiQ RT-PCR (Table 5), is of particular interest in suicide as

it was significantly down-regulated in the prefrontal cortex in both

suicide groups (BA46, Figure 4), with and without major

depression, suggesting an implication in suicide irrespective of

the presence of major depression. This result is particularly

important in the light of the recent observation by Laje et al. [86]

that genetic variation at the GRIA3 gene seems to be associated

with suicidal ideation during citalopram therapy and suggests that

expression changes in this gene may also confer susceptibility to

suicide and suicidal ideation in antidepressant treated patients.

Glia and astroglia in particular are responsible for the

uptake,via the glial glutamate transporter (EAAT2) and metabo-

lism and recycling, via glutamine synthase (GLUL) of glutamate

[87]. Glutamine synthase is responsible for the recycling of

glutamate by its conversion into glutamine, which is then released

by the astrocytes and taken up at the synaptic terminals where it

can be reconverted into glutamate or GABA [87]. Glutamine

synthase was down-regulated in several prefrontal and parietal

areas of brains of suicides with major depression, but not in

suicides without major depression suggesting a depression specific

dysregulation of glutamate recycling probably leading to altered

glutamatergic and/or GABAergic neurotransmission. At the same

time the majority of ionotropic glutamatergic receptors differen-

tially expressed were up-regulated in these brain regions in

depressed suicides, reinforcing the idea of a substantial alteration

of glutamatergic neurotransmission in this group. Given the

importance of some of these molecules in glial metabolism, and the

growing evidence pointing to astroglial alterations in major

depression [87], future studies should investigate cell specific

changes in gene expression by means of laser capture microdis-

section in the brains of depressed suicides.

This hypothesis, if true, is in agreement with the observation

that a single dose of Ketamine, an NMDA antagonist, is sufficient

to produce a rapid and long lasting antidepressant effect [88].

Glutamate seems to mediate stress-induced neuronal atrophy in

the hippocampus [89]. In addition, although not always consistent,

there are different lines of evidence, comprising peripheral studies

[90], postmortem brain studies [20], and in-vivo imaging studies

[91] reporting glutamatergic dysfunction in major depression.

Interestingly, glutamatergic neurotransmission is closely controlled

by intracellular levels of polyamines, spermine and spermidine

being specific modulators of NMDA and AMPA receptors activity

[92–97]. Polyamines, and more specifically SSAT, the rate

limiting enzyme in the catabolism of polyamines, were associated

with suicide and depression in a previous study by our group [16].

Polyamines modulate GABAergic and glutamatergic neurotrans-

mission, genes of those systems as well as SSAT were also found to

be altered in the present study. In light of these observations, it is

important to consider the polyamine-glutamatergic systems as a

possible target for future strategies for the treatment of major

depression.

Serotonergic and adrenergic dysfunction has been implicated in

suicide [5,70], yet we did not detect a significant representation of

genes coding for components of these neurotransmitter systems in

our differential expression analyses. This result is in accordance

with all other microarryay experiments performed to date using

suicide brains, where no serotonergic genes have been detected as

differentially expressed [16,38].

While our microarray experiment sampled multiple brain

regions making our analysis global in nature, although enriched

for frontal cortical regions due to the implication of these regions

in depression and suicide, not all differentially expressed

GABAergic and glutamatergic genes were differentially expressed

across all regions. In general, we observed a particular probe set as

differentially expressed across 2–3 regions, many of which did not

overlap with other probe sets identified as differentially expressed.

Still, the consistency of the dysregulation in the GABA-glutamate

gene systems was striking.

Even though possible limitations regarding pre- and post-

mortem factors, such as agonal period, alcohol abuse/dependence

and post mortem interval were experimentally controlled for in

this study, the conclusions presented here are to be taken with

caution and need to be confirmed in an independent and larger

sample. Our study design does not allow to clearly differentiating

the alterations solely related to suicide from those specific to major

depression. This would be possible to resolve only by including a

group of matching patients with major depression who did not die
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by suicide, but such a group would be too difficult to obtain due to

the demographic characteristics of suicide victims and depressed

patients. Nevertheless, our results are interesting as they shed light

into the molecular alterations simultaneously taking place in

several important brain regions of individuals with and without

major depressive disorder at the moment of their suicide. Another

limitation of this study is the choice of 1.3 as a fold-change cut-off.

While this allowed us to focus on more robust effects, it prevented

us from detecting more subtle changes in gene expression that may

be at play.

In conclusion, this is, to our knowledge, the first study

attempting to determine global brain expression changes taking

place in the brain of suicide victims with and without major

depression. We observed global changes in genes implicated in

synaptic transmission, and more specifically, in genes involved in

GABAergic (inhibitory) and glutamatergic (excitatory) neurotrans-

mission. Further studies are warranted in order to examine in

detail the cellular origin of the alterations observed in our analyses,

to validate the observed changes using complementary approaches

and to investigate possible genetic factors related to the observed

alterations.

Supporting Information

Table S1 Genes differentially expressed after an ANCOVA

analysis between the three groups with substance history or

presence in the toxicological screening as a covariate. The 17

regions were analyzed, only genes associated with substance use

are shown the significant genes at the P,0.01 level.

Found at: doi:10.1371/journal.pone.0006585.s001 (0.07 MB

DOC)

Table S2 The effect of substances on the expression of

glutamatergic and GABAergic genes.

Found at: doi:10.1371/journal.pone.0006585.s002 (0.04 MB

DOC)

Table S3 Q-RT-PCR results from acute (N = 10) and chronic

(N = 15) alcohol experiments in rats.

Found at: doi:10.1371/journal.pone.0006585.s003 (0.03 MB

DOC)

Table S4 Glutamatergic and gabaergic raw data

Found at: doi:10.1371/journal.pone.0006585.s004 (0.61 MB

XLS)
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