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Renewable energy can assist the management of the effects of population growth and
rapid economic development on the sustainability of animal husbandry. The primary
aim of renewable energy is to minimize the use of fossil fuels via the creation of
environmentally friendly energy products from depleted fossil fuels. Digesters that
treat swine manure are extensively used in treatment systems; and inclusion of swine
carcasses can increase the organic loading rate (OLR) thereby improving biogas yield
and productivity on farms. However, the characteristics of the components including
animal residues, proteins, lipids, remains of undigested feed items, antimicrobial
drug residues, pathogenic microorganisms and nutrient contents, are complex and
diverse. It is therefore necessary to manage the anaerobic process stability and
digestate purification for subsequent use as fertilizer. Efficient methane recovery from
residues rich in lipids is difficult because such residues are only slowly biodegradable.
Pretreatment can promote solubilization of lipids and accelerate anaerobic digestion,
and pretreatments can process the swine carcass before its introduction onto
biodigesters. This review presents an overview of the anaerobic digestion of swine
manure and carcasses. We analyze the characteristics of these residues, and we identify
strategies to enhance biogas yield and process stability. We consider energy potential,
co-digestion of swine manure and carcasses, physical, chemical, and biological
pretreatment of biomass, sanitary aspects of swine manure and co-digestates and their
recycling as fertilizers.

Keywords: swine chain, biogas, biohydrogen, purification, nutrient

INTRODUCTION

Meat is one of the most commonly consumed foods around the world, providing a good source of
proteins and essential healthy nutrients and minerals, such as iron, zinc, amino acids, and group
B vitamins (Wu et al., 2014). Meat consumption is linked to socio-economic factors, ethics and
cultural (Font-i-Furnols and Guerrero, 2014). Swine production is a major part of the commercial
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livestock industry. Estimated world production exceeded 100
million tons in 2017 (USDA, 2019). China is the largest producer
of swine meat (53.4 million tons in 2017) followed by the
European Union (23.6 million tons), the US (11.6 million tons),
and Brazil (3.7 million tons); these countries are thus responsible
for approximately 83% of total global production (USDA, 2019).

There is a wide diversity of swine production systems
throughout the world, and segregation is organized according
to individual countries’ characteristics (FAO, 2018). Anaerobic
digestion (AD) is a promising approach to residue management
and energy production. It involves three steps: the breakdown of
complex organic matter into soluble substances; the production
of volatile fatty acids (VFAs) and hydrogen; and the conversion of
VFAs and hydrogen to methane and CO2 (Wainaina et al., 2019).

Industrial swine production is characterized by intensive
animal concentration generating large amounts of waste
(47 L.HogBreeder

−1.d−1) and high energy demands. The waste
is urine and feces mixed with wash water and food leftovers,
pathogenic microorganisms, non-metabolized antibiotic drugs,
organic matter, and nutrient contents (Kunz et al., 2009;
Viancelli et al., 2012b). Several alternatives are available
for the treatment of wastewater with high organic matter
concentrations, including physiochemical treatment, aerobic
processes (nitrification/denitrification), composting, and AD
(Loyon, 2017). AD has become the most widely adopted due to
the reduced costs of implementation, operation and maintenance
(Deublein and Steinhauser, 2010).

In addition to the problem of the manure generated in the
swine production chain, there is emerging concern regarding
swine mortality. Swine inevitably die, and the carcasses are a
major waste by-product of farming; safe disposal is indispensable
to ensure environmental protection, as well as human and animal
health (Wu L. et al., 2017). Carcasses may contain pathogenic
microorganisms (viruses, bacteria and parasites), veterinary drug
residues, and other chemical compounds (Zhong et al., 2017).
Average swine mortality varies among major producers, and
according to rearing method. In China, the mortality losses are
7, 10, 5, 1, and 1% in the sow, neonatal, nursery, growing, and
finishing herds, respectively (Zhong et al., 2017). In the UK,
these rates are 5.4% for sows, 2.8% for the growing phase and
2.7% for the finishing phase (AHDB, 2017). In Brazil, rates are:
7, 3.2, 4, 5.7, and 7% in neonatal, nursery, finishing, wean-to-
finish and sow, respectively, similar to those of other countries
(ABCS, 2014). There are various disposal methods, and AD
is an emerging option that combines energy production and
environmental protection. Many studies show that carcasses can
be used to produce energy, and have a greater potential for
producing hydrogen and methane (Tápparo et al., 2018; He
et al., 2019) because of their high protein and lipid contents
(Zhang and Ji, 2015).

NUTRIENT AND ENERGY POTENTIAL
FROM SWINE CHAIN FARM RESIDUES

The methane production potential of swine manure depends on
several factors, including organic matter concentrations, manure

retention time inside barns and the growing phase (see Table 1;
Gopalan et al., 2013; do Amaral et al., 2016; de Mito et al.,
2018). The efficiency of biogas conversion into electric energy
is function of the quality of the generator and swine manure
characteristics, 1 m3 of swine manure in a finishing house unit
can generate between 13.7 and 22.01 kwh. In Brazil, reported
values are between 1.12 and 1.8 kwh per biogas meter cubic
(Amaral et al., 2019).

Such production of clean and renewable energy from swine
manure significantly contributes to environmental protection,
particularly with respect to the emission of methane, a
greenhouse gas (GHG), and to the reduction of the demand
for energy from fossil fuels. Cumulative emissions of GHGs
from swine and manure at swine facilities are approximately
4.87 kg CO2 equivalents per kg of carcass; this could be
reduced by up to 40% with improved manure management
(Philippe and Nicks, 2015).

Environmentally friendly production and exploitation of
methane requires maximum substrate utilization and minimum
residual methane to reduce methane emissions (GHGs) from
the digestate (Ruile et al., 2015). The type and composition
of substrate, hydraulic retention time (HRT), organic loading
rate (OLR) and process stability all contribute to outcome
(Hernández and Rodríguez, 2013). The microbiological
metabolic pathways may be classified into four successive steps:
hydrolysis, acidogenesis, acetogenesis, and methanogenesis. In
AD of swine manure, the methanogenesis stage is the most
sensitive step due to the high biodegradability of the methane
(Da Silva et al., 2015).

Digestates are mainly used for agricultural purposes: swine
manure is biomass with value as a biofertilizer (Veroneze et al.,
2019). Inadequate management can lead to the contamination
of water courses, groundwater, soil and air, and these problems
impede the sustainability and expansion of swine farming as
an economic activity (Kunz et al., 2009). The quality of the
digestate and its potential for agronomic use depends on several
factors: the composition and variability of manure used for
digestion (dependent on animal growing phase and nutrition
system); biodigester technology; segregation and nutrient losses
during substrate and/or digestate storage; efficiency of substrate
pretreatment systems (solid separation after biodigestion) and
digestate treatment; and the dilution of substrates and digestate
with water (da Nicoloso et al., 2019). The nutrient content of
swine manure is highly variable (Table 2), making laboratory
analysis essential for fertilizer characterization. The laboratory
results allow application of appropriate doses to fields, supplying
the nutrient demand of the crops while avoiding excessive
nutrient application and the consequent environmental impacts.

Tápparo et al. (2018) studied the biochemical methane
potential of swine carcasses and report 1076 ± 48
LNbiogas.kgVSadd

−1 with a CH4 concentration of approximately
56%. This value indicates a biogas yield five times higher
than that of swine manure. Considering one farm with 10,000
sows and mortality of 7%, the estimated potential of biogas
production of 93,000 m3

biogas year−1, or around 52,000 m3

CH4 year−1. Likewise, Kirby et al. (2018) used dilution with
water to digest swine carcasses with an OLR of 50 gTS L−1
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TABLE 1 | Biogas production per liter of swine manure obtained from various swine production processes.

Swine production
arrangements

Effluent production
(Lmanure.d−1)

Volatile solid
concentration

(kgVS.m−3)

Biogas yield
(Nm3.kgVS−1)

m3
biogas. m−3

manure Post-treatment
options*

Farrow to feeder 45.52 15.08 0.560 12.99 Nitrification and

Farrow to wean 59.46 12.82 0.765 15.09 desnitrification.

Nursery house 1.39 3.8 0.970 5.70 Annamox Process,

Finish house 10.62 21.20 0.474 12.23 Desanonification.

Farrow to finish 94.75 19.25 0.375 11.10

*For nutrients removal.

TABLE 2 | Nutrient contents in swine manure from various sources and swine carcass used as a substrate for anaerobic digestion.

Source Manure production Nutrient

Volume Unit N P K Unit

Feeder to finishing 1.64 m3.pig−1.y−1 8.0 4.3* 4.0** kg.pig−1.y−1

Nursery house 0.94 m3.pig−1.y−1 0.4 0.25* 0.35** kg.pig−1.y−1

Farrow to wean 8.32 m3.pig−1.y−1 25.7 18.0* 19.4** kg.hog−1.y−1

Farrow to finishing 17.2 m3.pig−1.y−1 85.7 49.6* 46.9** kg.hog−1.y−1

Swine carcass – – 3.1 0.61 0.3 kg. pig−1***

Adapted from da Nicoloso et al. (2019) and Rajagopal et al. (2014). *P2O5 form; **K2O form; ***considering one pig of 130 kg.

and 100 gTS L−1 in a batch reactor giving biogas yields of 970
LNbiogas.kgVSadd

−1 and 850 LNbiogas.kgVSadd
−1, respectively. The

acetic acid and propionic acid levels increased during the feeding
phase and decreased during the final of non-feeding phase
(approximately 30 days), but without significant inhibition of
biogas production. For the start-up of a reactor, Kirby et al. used
digestate taken from typical commercial mesophilic AD of food
waste; such acclimatization can contribute to buffer capacity and
stability of the process.

Mono-digestion methods are susceptible to the accumulation
of VFAs and/or unionized ammonia, resulting in toxicity for
methanogenic archaea and consequent reduction in methane
production (Béline et al., 2017). One approach to avoiding this
effect is co-digestion of two or more substrates. This offers
several advantages: increased loading rate and consequent biogas
production; improved buffer capacity and pH equilibration;
better nutritional balance; dilution of inhibitory compounds;
promotion of synergistic effects; and improved economy of
biogas plants (Jiang et al., 2019). Many studies involved the use of
various residues mixed with animal carcass, including sugar beet
pulp (Kirby et al., 2018), vinasse (Dai et al., 2015), and manure
(Tápparo et al., 2018).

CO-DIGESTION OF SWINE MANURE
AND CARCASSES TO INCREASE
BIOENERGY PRODUCTION

AD is a versatile technology widely used to treat organic
compounds in livestock production and for energy generation.
Many substrates have been studied as co-substrates to improve
biogas or hydrogen production from swine manure, including

lignocellulosic residues (Neshat et al., 2017), food waste (Ye
et al., 2013), microalgae (Wang et al., 2016), and animal carcasses
(Tápparo et al., 2018). Swine manure is a good substrate for co-
digestion process because of its alkalinity, good buffering capacity
and the absence of the need for inoculation for reactor star-up.

Massé et al. (2008) investigated the psychrophilic AcoD of
swine carcasses and swine manure in a sequence batch reactor
(SBR) operated at 25◦C. They found high values for biogas
production and no inhibition (20 and 40 kgcarcass m−3

manure
which are up to eight times commercial rates). Tápparo et al.
(2018) studied the BMP of swine carcass and manure co-digestion
in ratios of 3, 7.5, and 15 kgcarcassm−3

manure, and found biogas
production of 52, 95, and 119% higher, respectively, than from
swine manure alone. The methane yield increased 6% for each 1
Kgcarcass.m−3

manure−add; thus, co-digestion with carcass probably
had a synergistic effect. However, at carcass loading simulating
an emergency disease outbreak (117–467 kgcarcass.m−3

manure), an
accumulation of VFAs in the AD system resulting in inhibition
of biogas production. The greater swine carcass/manure ratio
had a larger effect than did ammonia toxicity. For ratios of 117,
223, and 467 kgcarcass.m−3

manure, they report methane yields
of 0.33 ± 0.03, 0.32 ± 0.05, and 0.24 ± 0.05 LCH4 g−1

CODfed,
respectively, and the methane compositions of 70% ± 2%,
68% ± 3%, and 66% + 7%, respectively (Rajagopal et al., 2014).
Clearly, AD of swine carcasses is possible, combining a method
to dispose of carcasses with increased biogas generation, but
the process and operating criteria must be adapted to ensure
complete residue degradation with gas production and material
purification (Tápparo et al., 2018). More studies are needed
to characterize anaerobic co-digestion with diverse ratios of
swine carcasses to manure, in various reactor configurations and
operational conditions (including HRT, temperature, and OLR).
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Inhibitors of Biogas and Biohydrogen
Production From Swine Chain Residues
Many factors influence AD, and some intermediates and final
compounds can play key roles in biogas production and inhibit
the microorganisms involved. Table 3 summarizes the most
prominent inhibitors and studies of swine manure and its co-
digestion with carcasses.

Ammonia Inhibition and Toxicity
Several authors describe the negative effects of high nitrogen
concentrations on AD. FA concentrations exceeding 1,000 mg
L−1 (6 g NH4–N L−1) in slaughterhouse waste digestion at 38◦C
and pH 8.1, are associated with ammonia inhibition (Lauterböck
et al., 2012). Hejnfelt and Angelidaki (2009) reported that, during
AD of separated or mixed swine by-products (meat and bone
flour, fat, blood, hair, meat, ribs) at mesophilic and thermophilic
temperature, high concentrations of ammonia (>7 g N dm−3)
inhibited biogas production processes. Studies of swine carcass
and manure co-digestion on the laboratory scale demonstrate an
increase around 10 mg L−1 of NH3–N for each kgcarcass added
per m−3

manure, indicating that potential inhibition depends on
the ratio used (Tápparo et al., 2019).

There is evidence that hydrogenotrophic methanogenic
microorganisms are more tolerant than cetoclastic methanogenic
species to for NH4Cl and urea nitrogen forms (Tian et al., 2018).
Consistent with this, Yang et al. (2018) reported the enrichment
of the hydrogenotrophic methanogenic Methanobacterium and
Methanoculleus with increasing concentrations of NH4

+-N,
whereas counts of the acetoclastic methanogenic Methanosaeta
were reduced at mesophilic temperatures.

Some studies investigated mitigation of the impact of high
ammonia concentrations. One common strategy is co-digestion,
where the feed mixture is further mixed with various nitrogen-
deficient substrates to adjust the C:N ratio and decrease the
nitrogen concentration below the inhibitory levels (Jiang et al.,
2019). Furthermore, good buffering capacity of added substrate
can mitigate the pH increase and contribute to lower ammonia
toxicity from urea (Tian et al., 2018). Other strategies to prevent
process failures include stripping, adaptation of the microbial
community, and bioaugmentation (Krakat et al., 2017).

Acid Accumulation
The balance between the production and consumption of
products produced by each AD step is determinant for successful
biogas production, especially as concerns VFAs (Choong et al.,
2016). During biogas production, there are two pathways to
VFAs generation. In the first, monosaccharides and proteins
are converted to short-chain acids including acetic, propionic,
or butyric acid by acetogenic microorganisms. In the second,
carbon dioxide and hydrogen are used as substrates for acetic
acid production by acetogenic microorganisms, including homo-
acetogenic bacteria – acetogenesis stages (Li et al., 2019). When
VFAs production outstrips consumption, production is inhibited
by decreasing pH. In a stable AD system, the concentration of
VFAs is about 50–250 mg/L, and higher VFAs levels inhibit the
system (Ren et al., 2018).

Co-inhibition by ammonia and VFAs has been described:
methanogenic microorganisms were first inhibited by ammonia,
resulting in increased VFA and hydrogen concentrations, and
consequently higher toxicity in all AD steps (Tian et al., 2018).
This led to a cycle in which there was VFAs accumulation,
pH decrease, and thus inhibition by methanogenic products
and accumulation of more VFAs. Common recommendations
to minimize such inhibition and restore biogas production in
commercial practice are to decrease ORL and to suspend feeding
the reactor until biogas and hydrogen production are stabilized
or, alternatively restarting the reactor. Both can cause significant
economic losses. Nguyen et al. (2019) studied micro-aeration
with alternatives to reduce VFAs concentrations and restore AD
processes. Providing defined amounts of O2 allowed facultative
heterotrophs rapidly (approximately 2 weeks) to consume excess
VFAs accumulated during unstable periods.

Effect of Antimicrobials and Their Persistence in
Digestates
Antibiotics are used in therapeutic or sub-therapeutic doses on
animal farms, including swine farms, to prevent infections and
treat disease (Yang et al., 2019). Spielmeyer (2018) reported that
was possible to recover from <5 to 90%, depending on the
antibiotic class, of the active substances in waste excreted by
the animals because these compounds may not be completely
metabolized. The most widely used antibiotics in animals include
tetracyclines and sulfonamides, which are frequently detected
in manure (Nurk et al., 2019). Antibiotics affect the complex
microbial communities in biogas plants, and may improve or
inhibit biogas production. Mustapha et al. (2016) observed that,
in the presence of chloramphenicol, methanogenesis activity
was lower, and biogas production was inhibited, whereas
antibiotics had little effect on the hydrolysis, acidogenesis, and
acetogenesis stages.

In batch assays of AD of swine manure, methane production
was reduced by 56, 60, and 62% at oxytetracycline and
chlortetracycline concentrations of 10, 50, and 100 mg L−1,
respectively, but by the end of the experiment, the final
concentrations of the antibiotics tended to be similar. Both
compounds have affinity with solids in suspension, and
consequently the fraction of antibiotics is lower in the
liquid phase in ADs (Álvarez et al., 2010). Steinmetz et al.
(2016), evaluated the persistence of tetracycline chlortetracycline,
metacycline, and oxytetracycline (1.3–809 mg/L) in batch
tests at mesophilic digestion (37◦C). After 35 days, antibiotic
concentrations had declined by between 46 and 98%. Nurk
et al. (2019) reported similar results investigating the impact
of the elimination of four common antibiotics (sulfadiazine,
sulfamethazine, tetracycline, and chlortetracycline); rates of
elimination were from 17 to 88%, with chlortetracycline showing
the highest rates. Steinmetz and Gressler (2019) consider that AD
is an important tool for eliminating antibiotics from livestock
wastes, and thereby mitigate the risks associated with the use
of drugs in concentrated animal feeding operations. Because
substantial amounts of the antibiotics administered can be
found in swine manure, there a significant putative effects on
both biogas production and the prevalence of antimicrobial
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TABLE 3 | A summary of studies of inhibition of anaerobic co-digestion of swine carcass and other residues.

Substrate Reactor
design

Ratio Organic loading
rate

Temp. (◦C) pH Free ammonia Volatile fatty acids
(g L−1)

References

Swine manure and
swine carcass

Sequential
batch

20 and 40
gcarcass.Lmanure

−1
3.2 g COD L−1

d−1
25 8.2 – No accumulation Massé et al., 2008

Swine manure and
swine carcass

Sequential
batch

117
gcarcass.Lmanure

−1
3.2 g COD L−1

d−1
25 7.95 302 ± 24 max 6 Rajagopal et al.,

2014
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gcarcass.Lmanure

−1
3.2 g COD L−1

d−1
25 7.97 323 ± 12 max 5

467
gcarcass.Lmanure

−1
3.2 g COD L−1

d−1
25 7.82 313 ± 29 max 4

Swine carcass Batch – 50 gTS L−1 35 8.02 – Increase during feed phase
(to 5.9), decrease after
30 days of non-feeding
phase (0.4)

Kirby et al., 2018

– 100 gTS L−1 7.99 –

Swine carcass and
sugar beet pulp

Batch 1:1 (TS base) 50 gTS L−1 35 7.87 – Increase during feed phase
(to 5.1), decrease after
30 days of non-feeding
phase (0.1)

100 gTS L−1 7.95 –

Swine carcass and
vinasse

– 1:1 (VS base) 6.8 kgVS.m−3 35 7.75 600 mg L−1

(no effect on
performance)

Accumulation of acids
(reduction of 75% in biogas
yield)

Dai et al., 2015
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resistance genes. Further work is needed to understand the
impact of additional swine carcasses in anaerobic digesters that
treat swine manure.

PRETREATMENTS OF MANURE AND
CARCASSES BIOMASS TO INCREASE
BIOGAS AND BIOHYDROGEN YIELD

Various pretreatments have been studied recently for their ability
to improve degradation of swine carcasses and manure and to
increase biogas and biohydrogen production (Table 4). Such
processes can improve the rate of hydrolysis in the digester,
reducing the HRT in the digester; biogas plants can therefore be
more compact (Bougrier et al., 2005; Carrere et al., 2016). Pretreat
of manure and carcasses allows improvements in sanitary quality,
reducing the pathogen load. Nevertheless, pretreatments can
have negative effects on AD, and in some cases, decrease biogas
production due to the formation of recalcitrant and inhibitory
compounds (Carrere et al., 2016; Venturin et al., 2019).

Mechanical Pretreatments: Grinding and
Sieving
Grinding and sieving are mechanical methods widely used before
pretreatment and AD, especially of carcasses, aiming to reduce
particle size (Kirby et al., 2018; He et al., 2019). The reduction
particle size increases the surface area of the substrate, allowing
greater contact with the substances used in pretreatment,
improving the hydrolysis rate (Gwyther et al., 2011). The
biomass that enters the bioreactor must be ground or milled;
otherwise, the bioreactor and the process may malfunction.
However, grinding and milling require a significantly more
energy than other types of pretreatment (Barakat et al., 2013;
Carrere et al., 2016).

Thermal Pretreatments
AD of untreated residue and carcasses is not permitted under
European Union legislation (1069/2009/CE) (Gwyther et al.,
2011). These biomasses are required to be minimally sanitized
(60 min, 70◦C) or sterilized (20 min, 133◦C, 3 bar) to ensure
the sanitary quality of the digestate. In addition to pathogen
inactivation and increased health safety, sanitization, and
sterilization act as a thermal pretreatment, with two main effects:
hydrolysis of organic matter present in the solid phase, including
fatty acids, proteins, and carbohydrates; and structural loosening
by pressure changes, leading to hemicellulose degradation and
lignin transformation facilitating hydrolysis of cellulose and
increasing the amount of biodegradable organic compounds in
the digester (Luste et al., 2012; Carrere et al., 2016; Wu J. et al.,
2017). Some of the carcass proteins are retained in the solids after
thermal pretreatment, possibly causing ammonium inhibition
in AD when proteins are decomposed. Furthermore, thermal
pretreatment is very limited in practice because of the high energy
consumption (Xu et al., 2018). The increase in biogas production
needs to compensate for the energy expenditure required to
pretreat the substrate if the system is to be economically viable.

Physical Pretreatments: Electrolysis and
Ultrasound
Electrolysis is used in pretreatments generating energy while
treating wastewater. This method is based on the action of
bacteria which oxidize organic matter such that free electrons
generated from the biomass are transferred to the anode, and
then, because of the charge difference, flow to the cathode. It
requires a low voltage current to be applied to the effluent
and then generates sufficient energy it become self-sustaining.
It is possible to significantly reduce the organic charge via the
exchange of electrons, and to obtain products of biotechnological
interest such as biohydrogen and biogas (Min et al., 2005; Logan
et al., 2007; Wagner et al., 2009).

Ultrasound is another effective pretreatment to improve
methane generation. Ultrasound acts by forming cavitation
bubbles in the liquid phase that collapse to a critical size,
producing substantial heat and pressure at the liquid-gas
interface, turbulence and shear in the medium (Bougrier
et al., 2005; Luste et al., 2012). Consequently, ultrasound
pretreatment solubilizes extracellular organic matter, increases
chemical demand for soluble oxygen, causes disintegration and
particle size reduction with consequent increased surface area;
the hydrolysis rate is thereby increased and HRT decreases
(Elbeshbishy et al., 2011).

Chemical Pretreatments: Ammonia and
Flocculation
Chemical pretreatment consists of the application of compounds
such as acids, bases, and oxidants to improve biomass
biodegradability and the production of biogas and biohydrogen.
Ammonia is used for alkaline hydrolysis treatment of carcasses
and swine manure. Although these are low-lignin feedstocks,
and ammonia selectively attacks lignin, preserving carbohydrates
that are precursors of the biogas (Gupta and Lee, 2010). The
hydrolysis associated with ammonia may be due to the breakage
of the bonds between lignin and hemicellulose by this alkaline
agent and the delignification of biomass via the cross of the
crystalline structure of cellulose (Jurado et al., 2013; Lymperatou
et al., 2017). The ammonia can be recovered and recycled
in the process or used for other purposes, including nitrogen
fertilizers, making the technique economically viable as well as
environmentally friendly (Lymperatou et al., 2017). Wang D.
et al. (2019), Wang L. et al. (2019) proposed an integral system,
including ammonia pre-treatment of residue with simultaneous
recovery; ammonia striping was used as method with an
efficiency as high as 99%, after ammonia crystallization, and
could be reused for residue pre-treatment.

Biological Pretreatments:
Microorganisms and Enzymes
The time required for hydrolysis is shorter following enzyme-
mediated biological pretreatment than for direct biological
hydrolysis by anaerobic bacteria during AD (Wang et al., 2015).
Because of the substantial amounts of proteins and lignocellulose
in swine manure, enzymes such as protease, cellulase, and
hemicellulase are used for hydrolysis and conversion of chemical
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TABLE 4 | Pretreatments and effects on carcasses and swine manure biomass.

Pretreatment Biomass Positive aspects Negative aspects Conditions Biogas and/or
hydrogen yield

References

Alkaline Manure Easy retrieval (high volatility), not
corrosive, low energy.

Implementation at a large scale, and
chemical application.

Aqueous ammonia 32% w/w
20◦C, 96 h.

244% increase in CH4

yield in 17 days of
digestion.

Lymperatou et al.,
2017

Carcasses No uncontrolled emission of gas,
nutrients or pathogens into the
environment. It is effective in
eliminating pathogens.

Effluent production with toxic
characteristics, high chemical and
biological oxygen demand.
Neutralization of digestate is necessary,
i.e., mixing with other substrate.

Potassium hydroxide 2–8 M
20◦C 20 days

600 mL CH4 g−1 VS in
42 days of digestion
with KOH 2M.

Arias et al., 2018

Thermal Manure Promote the solubilization of
cellulose and hemicellulose,
increase in the total concentration
of volatile fatty acids, and the
hydrolysis of protein

High energy consumption Continuously stirred tank
reactors 70 ± 1◦C, 1–4 days

281.6 mL CH4 g−1 VS
in 22 days of digestion,
with 3 days of
pretreatment

Wu J. et al., 2017

Carcasses Effective pathogen inactivation.
Decomposes organic matter in the
solid phase.

Proteins are difficult to decompose,
risking ammonium inhibition.

250 g carcasses 170◦C, 30 min 236 mL CH4 g−1 VS in
25 days

Xu et al., 2018

Enzymatic Manure High conversion of carbohydrate
and protein. Facilitates the
acidogenesis step.

High mineral content and salinity (13 g
L−1)

Stainless steel reactor 30–90◦C
Enzymes used: Delvolase;
Delvozyme L; Filtrase NL;
Bakezyme

36% increase in CH4

yield
Wang et al., 2015

Carcass Accelerate biomethane
fermentation reaction

Accumulation of organic acids results in
excessive acidification and slows the
methane production rate

pH 6.5–9.0 Enzyme
concentration (Porcine Trypsin)
0.5–2.5% 40◦C, 24 h

104.59 mL CH4 L−1 of
substrate in 23 days

He et al., 2019

Electrolysis cell Manure Electrolysis cell design is simple
and can achieve high biofuel rates.

A large percentage of electrons are not
successfully transferred to the current.
Promising for the production of
biohydrogen, but is not viable for biogas

Electrolysis cells: platinum
cathode and graphite fiber
anode, enriched with
exoelogenic bacteria. 16–184 h
30◦C. Current: 0.5 V.

14% increase in CH4

and 64% increase in H2

Wagner et al., 2009

Flocculation
and Sieving

Manure Remove the organic load and
nutrients and simple to operate.
Increases manure biodegradability.

Use of pretreatment chemical
compounds that may affect the later
stage of anaerobic digestion

Flocculation with commercial
polymer (Chemifloc CV/300),
and subsequent sieving
(0.25 mm).

75.4% increase in CH4 González-Fernández
et al., 2008; Wang D.
et al., 2019; Wang L.
et al., 2019

Grinding Carcass The digester needs to be emptied
less frequently. Reduces the
collection frequency and improves
final product biosafety.

Not effective for pathogen control and
features high power consumption.

13 mm and 4 mm double
grinding

53.7% increase in CH4 Kirby et al., 2018

Ultrasound Manure Increases solubilization of organic
matter, nitrogen and ammonia. It
promotes particle disintegration,
reduces bound protein and
increases soluble protein.

High energy, reduces the efficiency of
CH4 production, due to the formation
of inhibitors

Ultrasonic probe (500 W,
20 kHz) Sonication pulses: 2 on
2 s 30◦C

28% increase in CH4 Elbeshbishy et al.,
2011

Carcasses and
manure
(co-digestion)

Increases hydrolysis rate, methane
production and inoculum
methanogenic activity. Removal of
volatile solids.

Release of flocculating agents and
lignin compounds that decrease
hydrolysis rate

Ultrasonic processor (30 kHz)
22 ± 5◦C using specific energy
inputs of 1000 kJ/kgTS
109 days

340 m3 CH4 t−1 VS Luste et al., 2012
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oxygen demand (COD) to soluble forms. Coupling between
pretreatment steps and enzymatic filtration can result in a
less recalcitrant liquid, allowing increased AD efficiency (Wang
et al., 2015). The presence in manure of residual antibiotics
used during animal husbandry inhibits biogas production. Few
biological pretreatment studies address the degradation of these
compounds to increase the yield of biogas. The amounts of
residual antibiotics in manure can be reduced during AD,
but they cannot be completely eliminated (Yin et al., 2018).
Pretreatments of swine manure with microorganisms or enzymes
to increase biogas production are relatively scarce. However,
β-lactamase exposed on the cell surface of Escherichia coli can
eliminate β-lactam drug residues in dung solution in a short time
(1 h), promoting the growth of metagenomic microorganisms
during AD resulting in an up to 93.2% increase in methane
production (Liu et al., 2019a).

SANITARY SAFETY IN DISPOSAL OF
ANIMAL CARCASSES AND MANURE

The disposal of animal carcasses and manure requires attention,
because they can vehicle diseases. This issue thus involves
biosafety, public health, and environmental quality. Throughout
history, the most widely used disposal method has been burial
(carcasses) and spreading on soil (manure) because they are
cheap and effective. However, the pathogens present in these
materials must be contained or inactivated, to prevent the
percolation of hazardous materials to water sources and other
resources (Gwyther et al., 2011; Chowdhury et al., 2019). When
the animal carcass is degraded without treatment (natural
environment), pathogenic microorganisms can remain available
in the soil and leach from it for long periods of time
(Chowdhury et al., 2019).

Pretreatments of carcasses and manure biomasses can serve as
environmental control procedures, reducing the biomass volume
and its impact, allowing the reduction or even destruction
of infectious material. Pretreatments must also respect the
safety and integrity of the environment (Bot and Benites, 2005;
Chowdhury et al., 2019). Biofertilizer based on swine manure and
digestates (relative to other fertilizers, including chemicals, bio-
organic and biofertilizers) acts against Fusarium wilt disease in
bananas, probably due to reduction of Fusarium populations by
increasing other microorganism counts (Shen et al., 2015). Tao
et al. (2015). Analyses of microbial biomass, nitrogen, carbon,
colony forming units of bacteria and fungi over 2 years led to
the conclusion that all tested parameters were more favorable
for organic fertilizers than synthetic fertilizers (Tao et al., 2015).
Likewise, swine manure used as biofertilizer contributes to
decreasing greenhouse gas emissions and increasing grain yields,
illustrating how this strategy can diminish costs and ecological
impacts (Topp et al., 2009; Hu et al., 2013; Kang et al., 2016).

Swine manure is rich in some metal ions, especially copper
(Cu) and zinc (Zn) due to feed additives (Marcato et al., 2009;
Legros et al., 2010; Alburquerque et al., 2012). Although Cu is
an essential element for metabolic pathways and a component
of structural and enzymatic proteins, it inhibits plant growth by

modifying chromatin structure, photosynthetic and respiratory
processes, membrane permeability, and other phenomena,
probably via oxidative damage (Gratão et al., 2005; Yruela, 2005;
Pilon et al., 2006). Zn decreases carbon assimilation by decreasing
chlorophyll biosynthesis, and inhibits plant growth by causing
leaf chlorosis and reduced rooting capacity (Castiglione et al.,
2007; Chen et al., 2008; Dhir et al., 2008; Girotto et al., 2013).
Zn may compromise membrane permeability and, consequently,
the electron transport chain, and generate oxidative stress
by interacting with the plant antioxidant defense system (de
Magalhães et al., 2004; Gratão et al., 2005). Land disposal of swine
digestate can lead to accumulation of metals, and in particular
manganese (Mn), because Mn concentrations in digestates can
be as high as 50–55 ppm, and concentrations as low as 1 ppm
can be toxic for some crops (Bischofsberger et al., 2005). Mn
is an important component of enzymes, for example the Mn-
cluster of the oxygen-producing complex in photosystem II,
and in manganese superoxide dismutase (Mn-SOD), essential
for plant development (Lidon et al., 2004; Chen et al., 2015).
However, excess Mn can compromise important structures and
inhibit photosynthetic efficiency (Millaleo et al., 2013). It can lead
to accumulation in vegetable products, a concern because of its
effects on human health, mainly because of its capacity to cross
the blood-brain barrier (Martinez-Finley et al., 2013).

Because of the repercussions for sustainability and health
safety, an overall and multifaceted “One Health” strategy should
be implemented to comply with the needs of environmental,
human and animal health. This became feasible in the late
1990s through a formalized alliance between the World Health
Organization (WHO), the FAO and the World Organization for
Animal Health (OIE) (Nguyen-Viet et al., 2015). Animal manure
and animal carcasses can carry pathogens that endanger humans,
animals and the environment. Untreated or insufficiently treated
animal manure may cause pathogens spread and foster infectious
disease outbreaks (Wei et al., 2010; Elving et al., 2014).
When pathogens are carried away by rainfall or irrigation,
contamination may reach the water supplies or the food chain,
allowing these microorganisms to cause disease far from the
site of contamination (Elving et al., 2014). Few decontamination
treatments currently applied to animal manure inactivate all
types of pathogens. Most decontamination procedures, and
the tests applied, are effective only against bacteria; while
helminth eggs, protozoa cysts/oocysts, and enteric viruses
are very resistant to environmental stresses often used in
decontamination, such as increased temperature, pH variations
and ultraviolet light.

Table 5 describes relevant examples of pathogens present
in swine manure and the associated diseases, environmental
survival and inactivation/treatment systems. A combination
of factors such as temperature, pH, humidity, carbon
content, nutrient availability, and antagonistic behavior
can be adequate for animal manure treatment and sanitary
improvement (Sidhu, 2001). Various methods are commonly
used for microbiological risk reduction, and alkalizing
chemicals and biological treatments are the most popular.
Indeed, biological treatments are the most frequently
employed, and in particular composting and AD are used
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TABLE 5 | Main pathogens present in swine manure, their associated diseases, environmental survival, and inactivation/treatment systems.

Pathogens Main disease Environmental matrices Treatment system References

Bacteria Salmonella spp. Diarrhea, systemic disease
and pneumonia in humans
and animals (zoonotic)

Swine, bovine and poultry
feces and manure

Anaerobic biodigester Fongaro et al., 2014

Methicillin-resistant
Staphylococcus aureus

Swelling, warmth (zoonotic) Swine, bovine and poultry
feces and manure

Photochemical eradication by
blue light activation of riboflavin

Slifierz et al., 2015

Listeria monocytogenes Listeriosis, encephalitis,
abortions (zoonotic)

Swine, bovine and poultry
feces and manure

_ Broes et al., 2019

Viruses Rotavirus-A (RVA) Diarrhea (zoonotic) Swine and bovine manure Membrane bioreactor
Ultrafiltration with
coagulation-sedimentation
Ultraviolet radiation (UV)

Estes and Kapikian,
2007; Hmaied et al.,
2015

Porcine Circovirus type
2 (PCV2)

Multisystemic wasting
syndrome

Swine manure Aerobic tank; UASB Chae, 2005; Viancelli
et al., 2012a,b

Porcine parvovirus
(PPV)

Infertility and reproductive
failure (not zoonotic)

Swine slurry Peracetic acid 0.2% Moist heat
90◦C

Mészáros et al., 2017

Teschoviruses (TV) Encephalomyelitis Bovine and swine manure – Jimenez-Clavero et al.,
2003; Haack et al.,
2015

Classical swine fever
virus (CSFV)

Hemorrhagic infection Swine slurry Heat inactivation at 61◦C Turner et al., 2000;
Becher and Thiel, 2001

Parasites Ascaris suum Diarrhea or gastroenteritis Livestock waste Ammonia and nitrogen Maruyama et al., 1996;
Vinnerås et al., 2003;
WHO, 2006

Cryptosporidium
parvum and Giardia
lamblia

Diarrhea or gastroenteritis Livestock waste Free ammonia Anaerobic
digestion

Kinyua et al., 2016

to reduce pathogenic loads and to generate and store biogas.
Anaerobic digesters are appropriate for pre-clarified effluents
(Kunz et al., 2009).

Some pretreatment methods have potential for the control
of pathogens in animal carcass biomass that is destined for
subsequent use in anaerobic digesters for biogas production.
Positive effects can be found for alkaline hydrolysis, with which
it is possible to eliminate pathogens completely, including
the agents of transmissible spongiform encephalopathy.
The mechanism may involve the action of the alkaline
agent and warming that break microbial cell walls. In
addition, this procedure does not produce greenhouse gas
emissions (Nutsch and Spire, 2004). Thermal treatment
efficiently controls a wide range of pathogens; Enterococcus
faecalis, Salmonella Senftenberg, Parvovirus, helminth eggs
and other pathogens can be eliminated by heating (Liu
et al., 2019b). Finally, emerging non-thermal technologies
can contribute to pathogen control: pulsed electric fields
(PEF), microwaves, pressurization, ultrasound and chemical
treatments. PEF considerably reduced Enterococcus faecalis
and E. coli counts (by 0.5 up to 3.5 log10) in animal waste
(Liu et al., 2019b,c).

Technic-Economic Advantages
From an economical perspective, swine manure treatment system
can represent a significant portion of the investment on a
swine production facility, but can also generate an added value

by providing farm revenues through its by-products, such as
carbon credits, fertilizer and biogas; estimations can range
from an internal rate return (IRR) 6.4–28.4% per year (Kunz
et al., 2009). It can depend on the project’s objectives and
scale, but matches with this technology characteristic, since
the focus is high scale CAFOs, where are limited crop areas
for manure disposal. The main advantages associated with
the biogas treatment is to increase the supply of alternative
sources of electric energy and the effective treatment of waste
produced by farms (Freitas et al., 2019). In a study analyzing
the life cycle assessment of swine production of four manure
management systems, the authors concluded that that the use f
a biodigester for energy purposes shows the best environmental
performance for almost all the environmental impacts, mainly
due to the biogas recovery and the potential of energy saves
(Cherubini et al., 2015). Consequently, the implementation of
efficient treatment systems can promote social benefits due to a
protection of animal and human health, while also can reduce
environmental problems such as excessive waste disposal in the
soil, contamination of groundwater and eutrophication of water
bodies (Freitas et al., 2019).

FINAL CONSIDERATIONS

The swine production chain is of enormous importance to
nutrition worldwide, but has numerous associated issues,
including those relating to protein production, food demands,
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energy needs and balance in humans, animal health, and
environmental concerns. Residues from this chain can be treated
and used for biofuel purposes. Co-digestion of swine manure and
carcass biomass generates biogas and bio-hydrogen; the resulting
digestate is rich in nutrients and is valuable for use in farming
and nutritional recycling. Thus, appropriate management would
make a large contribution toward sustainability.
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