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Androgen and Androgen Receptors
as Regulators of Monocyte and
Macrophage Biology in the Healthy
and Diseased Lung
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Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States

Androgens, the predominant male sex hormones, drive the development and

maintenance of male characteristics by binding to androgen receptor (AR). As androgens

are systemically distributed throughout the whole organism, they affect many tissues and

cell types in addition to those in male sexual organs. It is now clear that the immune

system is a target of androgen action. In the lungs, many immune cells express ARs and

are responsive to androgens. In this review, we describe the effects of androgens and ARs

on lung myeloid immune cells—monocytes and macrophages—as they relate to health

and disease. In particular, we highlight the effect of androgens on lung diseases, such as

asthma, chronic obstructive pulmonary disease and lung fibrosis. We also discuss the

therapeutic use of androgens and how circulating androgens correlate with lung disease.

In addition to human studies, we also discuss howmousemodels have helped to uncover

the effect of androgens on monocytes and macrophages in lung disease. Although the

role of estrogen and other female hormones has been broadly analyzed in the literature,

we focus on the new perspectives of androgens as modulators of the immune system

that target myeloid cells during lung inflammation.
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INTRODUCTION

The immune system is essential for maintaining homeostasis within tissues and organs and
protecting them against threats, such as harmful pathogens or cancerous transformation (1). It
comprises both innate and adaptive components. The innate immune system is made up of the
innate lymphoid (innate lymphoid cells [ILCs], natural killer cells [NKs], and lymphoid tissue
inducers [LTi]) and innate myeloid subsets (2, 3). The innate immune system consists of a network
of immune cells and molecules that provide rapid, first-line defense against pathogens. In contrast,
the adaptive immune response, made up of B and T lymphocytes (4), takes days or even weeks to
become established (5). Innate immune cells express pattern recognition receptors that recognize
unique and conserved pathogen-associated molecular patterns such as lipopolysaccharide (LPS),
viral ssRNA, and fungal β-glucan (6). B and T cells have evolved to recognize a finer repertoire
of self- and nonself-antigens that facilitate pathogen-specific actions, immunologic memory
generation, and host immune homeostasis regulation (4). To accomplish this, the adaptive
immune response involves a tightly regulated interplay between T and B lymphocytes and
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antigen-presenting cells of the myeloid lineage, such as dendritic
cells (DCs), monocytes, and macrophages (4). Myeloid cells arise
from the bone marrow. The type and magnitude of the immune
response is influenced by biological sex and age (7), and therefore
differs between males and females. Sex differences in the function
of the immune system arise from both genetic (chromosomal)
sex differences and differences mediated by the action of male
and female sex hormones. Because the concentration of sex
hormones changes over the lifespan and throughout the course
of the menstrual cycle in women, the function of the immune
system also changes during different stages of life. Innate myeloid
immune cells, like other cell types, express sex hormone receptors
and are responsive to sex hormones (8).

Sex hormones are synthesized from cholesterol through a
defined enzymatic cascade, predominately in the gonads and the
adrenal glands (9). Sex hormones are also produced in other
tissues, including the brain, placenta, mammary glands, liver, and
adipose tissue (9–11). In addition to driving sexual development
of egg and sperm production, sex hormones are responsible
for the development of male and female secondary sexual
characteristics, like breast development and growth of facial hair,
that occur during puberty (12). Androgens include testosterone,
dihydrotestosterone (DHT), androstenedione, androstenediol,
and dehydroepiandrosterone (DHEA), with DHT being the most
potent (13). The concentration of androgens in circulation is
about seven-fold higher in adult men than in adult women
(14, 15). Estradiol and progesterone are the predominant
female sex hormones (16) synthesized by the ovaries and
adrenal glands. Both male and female sex hormones are bound
to the plasma proteins, albumin and sex hormone binding
globulin (SHBG), and only a small percentage exists as free
hormone (1–2%). Thus, the bioavailability of sex hormones is
regulated by their biosynthesis and also the amount of albumin
and SHBG.

Importantly, sex hormones mediate not only anatomic
differences between women and men but also direct sex
differences in immune responses, leading to different risks for
immunologic diseases (17). Overall, women have a greater
risk for autoimmune diseases (such as systemic sclerosis and
systemic lupus erythematosus) (18), whereas men are more
likely to die of infectious and parasitic diseases (19). Moreover,
men have a greater risk of non-reproductive cancers (20–22).
Both gender and sex are important mediators of these and
other health and disease differences observed between men and
women. While gender refers to the array of socially constructed
roles, attitudes, personality traits, and behaviors, sex represents
a biological characteristic of an individual (23), including
the hormonal milieu and chromosome complement (22). In
general, estrogens are considered to have proinflammatory
properties and androgens are thought to have anti-inflammatory
properties (24). In the United States (25) and worldwide
(26), relevant evidence highlights important epidemiologic sex
differences in incidence, susceptibility, and severity of a number
of diseases that affect the respiratory tract. In this review,
we will focus on how male sex hormones, the androgens,
modulate the response of myeloid cells in the lung and how

this modulation impacts the outcome of different diseases of
the lung.

SEX DIFFERENCES IN HUMAN LUNG AND
LUNG DISEASES

Biological sex mediates differences in the incidence and
pathophysiology of lung diseases. These differences arise from
sex differences in the structure and function of the lung itself,
and also in the immune cells that populate the lung and are
recruited to it during inflammation. Before birth, the female lung
has several structural advantages over the male lung. Surfactant
is produced earlier, and, although the female lung is smaller, it
has more alveoli per unit area. Neonatal females have higher
expiratory flow rates than do male neonates when corrected for
size. Thus, male sex is a major risk factor for the development
of respiratory distress syndrome, bronchopulmonary dysplasia in
neonates (27–30), and asthma in childhood (31, 32).

In addition to the contribution of structural differences of
the lung between the sexes, sex differences in lung function and
lung diseases are also dependent on the action of sex hormones.
We have summarized some broad concepts that define how
testosterone and estrogen affect lung macrophage function
and how this may contribute to the outcome of particular
lung diseases in Figure 1. As testosterone rises after puberty,
the immunosuppressive effects of this hormone on protective
immune responses to infectious diseases in males can worsen
pulmonary disease. This would be exemplified by tuberculosis
or influenza. Some of these effects are a result of androgen
effects on critical inflammatory macrophage functions although
the effects on the adaptive immune system also have a significant
contribution to the overall outcome. Thus, testosterone appears
to play a key immunoregulatory role in lung macrophages.
Testosterone’s immunoregulatory properties also appear to be
dependent on the amount of cellular expression of AR and
on the concentration of the hormone. Low concentrations of
testosterone have been noted in patients with asthma, COPD, and
tuberculosis. Low testosterone may also be linked to insufficient
control of tissue-damaging inflammatory responses seen in
COPD and pulmonary fibrosis. Estrogen tends to promote
wound healing responses in macrophages. Dysregulation of
wound healing responses and overactive tissue remodeling
macrophages in the lung could be broadly used to describe the
Th2 response in allergic asthma, which is worse in women.
Cancer could also be considered an aberrant wound healing
response driven by M2-like tumor associated macrophages. We
have highlighted here how sex hormones contribute to changes
in lung macrophage function that contribute to lung disease.
However, it should be pointed out that not every sex difference
in lung disease is due to direct effects on macrophages but on the
broader coordinated immune response as a whole.

Asthma
Before puberty, the structural differences in the lung, as well
as gender differences, likely account for the higher incidence of
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FIGURE 1 | Sex differences in lung diseases discussed in this Review and how they may be connected to the effects of androgens (and estrogens) on inflammatory

macrophages in the lung.

asthma in boys than in girls. With the onset of puberty, male and
female sex hormones and their effects on the structural cells of
the lung and on the immune system contribute to the incidence
of asthma (33, 34). The incidence and severity of asthma are
greater in adult women than in adult men (35, 36) and greater
in female than in male mice (37, 38). Female sex hormones, such
as estrogen, appear to worsen asthma, although a straightforward
correlation between amount of female sex hormone and asthma
symptoms has not been concluded. Androgens have multiple
immunoregulatory and bronchodilatory functions and may
contribute to, or be biomarkers for, better lung function in
men (39). Accordingly, serum testosterone is low in men with
moderate to severe asthma (39–41). In one study, each 25 ng/dL
increase in serum testosterone correlated with a 3% (95% CI,
1%-4%; P = 0.002) decrease in the likelihood of having asthma
(42). On the other hand, high concentrations of testosterone and
cyclic AMP in sputum of asthmatic women during the luteal
phase of the menstrual cycle were thought to play a role in
premenstrual exacerbations (43). The idea that sex hormones
may be a causal factor in asthma was significantly strengthened
by a recent study of 7,615 adults that quantified serum sex
hormones and asthma outcomes (44). That study showed that
low testosterone in both women and men was associated with an
increased incidence of asthma. The other interesting finding was
that higher testosterone was protective against asthma in obese
women. Obesity is a risk factor for asthma (45–47). Therefore,
how high body mass index (BMI) and circulating sex hormones
together affect asthma requires further investigation.

Another androgen, dehydroepiandrosterone (DHEA), also
known as androstenolone, is an endogenous steroid hormone
and one of the most abundant circulating steroids in humans.
It is a precursor for the synthesis of both testosterone and
estrogen. DHEA is sulfated at the C3β position into DHEA-
S by the action of the sulfotransferase enzymes SULT2A1
and SULT1E1 in the adrenal glands. The amount of DHEA-
S in the circulation is ∼250–300 times those of DHEA.
DHEA became of interest to the asthma field because women

with severe asthma had very low concentrations of DHEA-S
(48) and DHEA-S concentration correlated with lung function
(33). Interestingly, DHEA-S is suppressed by oral or inhaled
glucocorticoids, the mainstay therapy for asthma (49). Human
DHEA peaks at around age 20 and then follows an age-dependent
decline until they reach prepubertal concentrations. Reduced
secretion of DHEA with age has been related to a number
of age-associated conditions. Replacement of DHEA has been
considered as a possible therapeutic that could activate protective
responses in an aging immune system. DHEA is known to
downregulate Th2-inflammatory cytokines while upregulating
IL-2 synthesis (50, 51) in concanavalin A-stimulated peripheral
blood mononuclear cells from adult males with atopic dermatitis
(52, 53). Thus, it was hypothesized that it would be a useful
treatment for atopic diseases including asthma and the results of
the clinical trials for DHEA in asthma patients show promise.
The results are discussed in a later section titled “Effects of
androgen exposure on monocytes, macrophages in humans with
lung disease”.

COPD
Sex differences also have been reported in chronic obstructive
pulmonary disease (COPD), a heterogeneous, chronic, and
progressive respiratory disorder that includes chronic bronchitis
and emphysema (54). Chronic exposure of the airways to insults,
such as cigarette smoke, leads to epithelial cell injury, destruction
of pulmonary capillary vasculature, acceleration of epithelial cell
senescence, and airway remodeling. The loss of lung compliance
ultimately leads to COPD (55, 56). COPDwas previously thought
to affect mostly elderly men, primarily because of the higher
prevalence of smoking in men. However, as smoking rates
increased in women, the number of COPD cases in women
exceeded that of men (57). These differences are not only based
on gender, as women develop more severe COPD with early-
onset disease (<60 years) and have greater susceptibility to
COPD with lower tobacco exposure (58). Moreover, increasing
age in female smokers leads to a faster annual decline in
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forced expiratory volume in the first second when compared to
that of male smokers, even when they smoke fewer cigarettes
(59). Similarly, pulmonary fibrosis is another lung disease that
manifests sex differences (60), with men being more affected
than women (61, 62). It is characterized by destruction of the
pulmonary parenchyma and deposition of extracellular matrix
with alterations in phenotype of both fibroblasts and alveolar
epithelial cells (63).

Influenza
The lungs are also the target of respiratory viruses such as
influenza A (“flu”), respiratory syncytial virus, and coronaviruses,
such as severe acute respiratory syndrome and the Middle
East respiratory syndrome. The viruses infect the airway
epithelial cells and cause damage to the epithelial barrier
by themselves or as a result of the immune response to
the viral infection. Sex differences have been noted in the
immune response to influenza A virus and to the influenza
vaccine. In general, women have a more robust protective
immune response to influenza virus and vaccine than do men.
Although this elevated response is helpful in clearing virus,
women of reproductive age also experience higher mortality
and hospitalizations (64–68), possibly from collateral tissue
damage to the lungs. The vigorous immune response in women
also means that women experience more adverse events after
vaccination (69). Indeed, a systems biology approach identified
that high testosterone was correlated with a blunted response
to the flu vaccine in men (24). As testosterone wanes in elderly
men, mortality increases (70). Since the male immune response
to the virus is also less robust, the incidence of seasonal
flu is generally higher in men than in women in developed
countries, according to the World Health Organization (71).
It is not yet known how fluctuations in sex hormones across
the menstrual cycle and lifespan affect the immune system’s
response to the influenza virus in humans. Mouse studies
have revealed that estrogen is protective at high, but not
low, concentrations (72, 73). On the other hand, testosterone
replacement in gonadectomized or aged male mice enhanced
survival rates (74). Despite these findings in mouse models,
studies examining the effect of sex hormones on cellular and
molecular mechanisms in human immune cells during influenza
infection are lacking.

Tuberculosis
Like influenza infection, tuberculosis (TB), a lung disease caused
by Mycobacterium tuberculosis, exhibits notable sex differences
in the number of cases worldwide, with men being almost
twice as frequently affected than women (75, 76). Both sex
and gender differences impact the incidence of TB. Although
TB affects less women than men in adulthood (75), women
in their economically active years (15–59 years old) have a
higher TB incidence compared to women in other age groups
(77). This indicates that factors associated with gender, such as
exposure to the bacteria, are important in this disease. However,
because male predominance does not occur in children, this
suggests that biological factors such as male sex hormones also
play a significant role (75). This is supported by a study of

medically castrated men who experienced a significantly smaller
proportion of death from TB, 8.1% compared to 20.6% in intact
men (78). Understanding how androgens lead to the greater
susceptibility of men to TB is critical, as TB is still one of
the leading fatal infectious diseases worldwide and may also
may favor the development of other diseases, such as lung
cancer (79).

Lung Cancer
Lung cancer is a very complex disease that depends on a
number of variants such as sex, gender, race, and socioeconomic
status (80). The development of lung cancer is also related to
environmental factors, such as pollution due to industrialization
and urbanization (81). An additional gender-associated risk
factor, significantly linked to developing lung cancer, is cigarette
smoking (80). Historically, more men develop lung cancer and
suffer lung cancer-associated deaths compared to women (80).
However, the incidence of lung cancer has changed notably in
both women and men. In men, lung cancer incidence started
to increase in the 1920s and started to decrease in the early
1990s, while in women, the mortality rates and incidence began
to rise in the 1960s (80). Changes in smoking habits in the last
several decades with a rise in the number of women who smoke
correlate with an increase in the incidence of lung cancer in this
demographic group (80). Smoking is definitely a key factor in
the development of lung cancer; however, recent studies show
a higher incidence of lung cancer in young women compared
to young men (82, 83), even when the prevalence of cigarette
smoking among young women has approached but not exceeded
that among men (84). This suggests that the higher incidence
of lung cancer in women is not explained simply by gender
differences in smoking habits: a deeper analysis of differences
mediated by sex, such as greater sensitivity to tobacco smoke in
women is warranted (85, 86).

Furthermore, men and women develop different specific
types of lung cancer. Malignant mesothelioma is more common
in men, while women develop more adenocarcinoma (87),
particularly non-small cell lung cancer (NSCLC) (88). Women
have a superior survival rate for lung cancer compared to
men (89). Tumor-associated macrophages are critical in tumor
progression yet how androgens influence macrophage behavior
in lung cancer and in responses to treatment must be addressed
more deeply to develop better therapies and increase survival
rates in men.

THE MYELOID IMMUNE SYSTEM IN LUNG
HEALTH AND DISEASE

Alveolar Macrophages
The lungs are a primary interface with the external environment.
The delicate structures needed for gas exchange make them
susceptible to damage from invading pathogens and toxic
molecules. Some insults to the lung can lead to the development
of chronic conditions such as allergic asthma. As a protective
mechanism, alveolar macrophages clear the air space of
infectious, toxic, or allergenic particles to maintain homeostasis
in the alveoli. Thus, alveolar macrophages have a dual
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function as inflammatory cells, phagocytosing and killing
inhaled bacteria or viruses, and also as controllers of the
inflammatory immune response, minimizing alveolar damage.
Resident alveolar macrophages are seeded embryonically from
yolk sac and fetal liver monocytes (90–92). In asthma and
other lung diseases, recruited alveolar macrophages derived from
blood monocytes can turn into pathogenic cells, worsening
the condition (93, 94). Mouse alveolar macrophages are
characterized by high surface expression of Siglec F and produce
TGFβ. TGFβ both supports AM development (95) and their
maintenance of immune homeostasis by induction of Tregs and
suppression of B and T cell proliferation. Another important
function of AM is the clearance of surfactant. AM frommale and
female mice respond differently to surfactant protein A (SP-A)
(96, 97). SP-A acts as an opsonin and is important in clearance
of pathogens. Sex differences in AM responses to surfactant
could affect bacterial clearance and regulate the production of
proinflammatory mediators. The molecular mechanisms that
mediate these differences and how sex hormones change this
important AM function is an open question.

In the human lung, there appears to be more diversity in
the subtypes of lung macrophages compared to mice. The main
determinant of the frequency of subtypes of macrophages in
humans appears to be their anatomical location within the
lung. AM are the predominant immune cells in the lung
airways (bronchi and bronchioalveolar space). Flow cytometric
panels have employed HLA-DR, CD163, CD169, and CD206
to differentiate between AM, IM and monocytes. Human AM
were identified as large, highly autofluorescent CD14- CD16+
cells that also express CD206, CD169, and MARCO (98, 99).
There appear to be two populations of AM distinguished by
either high or low expression of CD163. More recent approaches
to characterize the macrophage populations in the lung
involve single-cell transcriptomic analysis (100, 101). Although
macrophages show a large variation in the transcriptional
phenotype, expression of MARCO, CCL18, APOC1, APOE,
PPARG, and MRC1 was found in macrophages from healthy
donors (100, 101), while CHI3L1, MARCKS, IL1RN, PLA2G7,
MMP9, and SPP1 were highly expressed in macrophages from
pulmonary fibrosis patients (101). Thus, a second contributor to
diversity is likely the activation state of the cells. There are no
data that describe sex differences in human AM responses and
the effect of sex hormones on these cells. From our mouse and
human MDM studies, we would predict that androgens augment
the immune homeostatic functions of these cells in the male
lung. Further work is still needed to standardize characterization
of the different subpopulations of human lung macrophage
populations and their role in maintaining healthy lung function
and in disease.

Interstitial Macrophages
Interstitial macrophages (IMs), are another macrophage
population found in the lung. They are a minor population
of monocyte-derived macrophages (102), which comprise
30–40% of lung macrophages (103) and are localized in the lung
parenchyma (104). IMs contribute to maintaining homeostasis
through the spontaneous release of IL-10, a cytokine that

dampens inflammation (105). IMs can prevent the development
of aberrant type 2 allergic responses triggered by inhaled
allergens (104) and have been related to reduction of asthma
(106, 107). Different subpopulations of IMs have been found
in the lung; however, their characterization has not arrived at a
consensus due to difficulties in their identification and isolation.
In the mouse lung, different subpopulations of IMs have been
described based on the expression of surface markers. One report
described three different subpopulations of IMs based on the
differential expression of proinflammatory cytokines, chemokine
ligands, MHC-II, CD11c, CD206, and Lyve-1 (108); other group
identified two subpopulations, based on similar markers but
including CX3CR1 (109). Moreover, IMs subpopulations can
be also described based on the different anatomic locations
these cells populate inside the mouse lung parenchyma (110).
Further work is needed to better characterize and define the
different IM populations, as the different subtypes may have
different functions during the inflammatory process. Smaller
in size than their AM counterparts, human IMs express more
of the monocytic marker CD14 than AM, perhaps suggesting
their monocytic origin, and have lower expression of CD169
than human AM. The responses of IM to androgen will depend
on their expression of AR which has not been measured. This
will be a challenge due to difficulties in clearly identifying this
population (and its subpopulations) from the monocytic, AM
and other myeloid populations in the lung.

Monocytes
Monocytes are produced in the bone marrow along with a
number of other myeloid cells. Myeloid cells originate from
common pluripotent hematopoietic stem cells and represent
the major subset of white cells in circulation (111). These cells
comprise basophils, neutrophils, eosinophils, DCs, monocytes,
and macrophages, among others (112). Monocytes are released
into circulation, then blood monocytes are recruited into
inflamed tissue and can mature into macrophages or dendritic
cells. There are two main subsets of mouse monocytes,
“classical” or Ly6Chigh monocytes that originate directly from
Ly6C+ precursors, and “non-classical” or Ly6Clow monocytes
that derive from Ly6Chigh monocytes (113). The origin of
Ly6C low monocytes was demonstrated by Sunderkotter,
et al. by tracking the maturation of DiI-labeled Ly-6Chigh

monocytes into DiI-labeled Ly6Clow monocytes (114). This
process depends on the transcription factor Nr4a1, which
regulates the development and survival of Ly6Clow monocytes
(113). These two monocyte subsets mirror the human CD14+

classical and CD16+ non-classical monocyte populations,
respectively (115). Ly6Chigh monocytes highly express the
chemokine receptor CC-chemokine receptor 2 (CCR2), whereas
Ly6Clow monocytes highly express CX3CR1 (116). Importantly,
CCR2 expression is required for Ly6C+ monocyte egress from
the bone marrow into the circulation and entry into non-
inflamed and inflamed tissues (117–119) from the blood (120).
As monocytes migrate into tissue, they mature into macrophages
developing unique, tissue-dependent morphology and functions
(121). They lose expression of Ly6C and gain expression of
MHC class II, becoming more efficient antigen-presenting cells
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(122). Some authors have proposed the concept of “tissue
monocytes,” which are monocytes that can enter non-lymphoid
organs without obligatory differentiation into macrophages.
Therefore, monocytes are much more than simply precursors
for macrophages.

In human lungs, monocytes, which can be both beneficial
and pathogenic in a variety of pulmonary diseases (123), are
present at steady state (124). Multiple-color cytometric analysis
on cells obtained from different anatomical locations of the lung
of healthy subjects (non-smokers with normal lung function and
absence of disease or infection) revealed that while intermediate
monocytes (CD14+CD16+) are more frequent in the airways,
classical monocytes (CD14+CD16−) are more frequent in blood
(124). Moreover, the different monocyte subsets produced TNF-
α to different degrees upon stimulation with TLR ligands (3,4,
and 7/8). Thus, the anatomic location where samples are obtained
should be considered and reported when working with human
bronchoscopies, as this may alter the type and abundance of
monocytes and macrophages found. Accurate identification of
monocytes in the lung compartments in humans has been a
challenge because monocytic “contamination” from the blood
vessels (125, 126). Overcoming this challenge, Desch et al.
performed a flow cytometric phenotyping study and identified
two additional lung monocyte populations by analyzing lungs
obtained from donors who died of non-pulmonary causes
(127). CD14+ CD206− CD1c− CD1a− intravascular monocytes
were similar to CD14+ blood monocytes and CD14+ CD206+

CD1c− CD1a− monocytes were described as tissue “monocytes.”
These studies highlight that we are just at the beginning
of understanding the complexity of lung monocyte subtypes
and their functions depending on the inflammatory state of
the lung.

Other myeloid populations, like DCs, occupy the lung
parenchyma at steady state, and their relative numbers change
during inflammation. We refer readers to previous excellent
reviews in this journal that cover the importance of DCs in
immune responses in the lung and how they are affected
by sex differences. Therefore, we will not discuss DCs here
(2, 128–132).

Macrophage Activation
Polarization is a very important effector characteristic observed
in monocytes and macrophages. Polarization refers to the change
in phenotype and function of monocytes and macrophages
as they are exposed to different inflammatory milieus or
factors in the tissue microenvironment. To understand the
effects of the differing inflammatory or tissue environments on
monocyte-macrophage phenotype and function, researchers
have used cytokines and other factors in vitro to mimic different
inflammatory and tissue microenvironments. Monocytes
and macrophages stimulated with interferon-γ, LPS, TNFα,
interleukin (IL)-12, and granulocyte-macrophage colony-
stimulating factor promote a pro-inflammatory macrophage
phenotype denoted as M1 polarization. The activation state was
also known as “classical” activation. M1-polarized macrophages
mediate immunity to intracellular infections, such as viruses and

bacteria, and they are generally considered tumoricidal (133–
136). M1 macrophages accomplish these functions by inducing
production of nitric oxide, reactive nitrogen intermediates,
reactive oxygen species, and hydrogen peroxide (137–139). In
contrast, activation of macrophages with IL-4 or IL-13, as in
extracellular parasitic infections and allergic reactions, leads
to M2 polarization or “alternative” activation of macrophages
(140). M2 macrophages produce inflammatory mediators
and chemokines, such as chitinase-like proteins (141), IL-13
(142), CCL17, CCL18, CCL22, and CCL24, which activate
Th2 cells and promote eosinophil infiltration into the lungs
(143, 144).

In allergic asthma, a Th2-inflammatory response to inhaled
allergens drives lung macrophages toward an M2 phenotype.
Increased number and percent of M2 macrophages have
been correlated with asthma severity and a decline in lung
function in humans and mouse models (145–147). Similarly,
M2 macrophages are the predominant subset seen in pulmonary
fibrosis and are responsible for fibrogenesis (148). During COPD,
the number of macrophages in airways, lung parenchyma,
bronchoalveolar lavage fluid, and sputum increases (149, 150).
This increase may occur as a result of enhanced monocyte
recruitment from circulation in response to chemokines such
as CCL2 and CXC-chemokine ligand-1, which are increased in
the sputum and bronchoalveolar lavage fluid of patients with
COPD (151). Unlike in allergic asthma and pulmonary fibrosis,
macrophages in COPD are polarized toward an M1 profile (152).
In addition to affecting men and women differently, another
commonality of COPD is that macrophages both in the alveolar
space and in lung tissue present an altered activation phenotype.
Different concentrations of cytokines (TNF-α, IL-1β, IL-6, IL-
10, IL-12) and chemokines (CCL2, CCL5, CCL7, CCL13, CCL22,
IL-8, CXCL9, and CXCL10) are found comparing smokers to
healthy subjects (153–161). Thus the external provoking stimulus
uniquely shapes macrophage phenotype and function.

While the M1/M2 designations are useful for in vitro studies
with stimulation with defined cytokines, the in vivo phenotype
of macrophages exists on a spectrum somewhere in between
these two well-defined opposing phenotypes or does not fit
the paradigm at all. For example, M1 and M2 markers can
exist simultaneously within the same cell in some cases (162–
164). The key factors dictating the macrophage phenotype
or activation state are the stage of the immune response
and the soluble factors and interactions in a particular tissue
microenvironment. For example, the lung environment is rich
in GM-CSF, TGFβ, and PPARγ and is critical for development
of mature AMs after birth in both mice (90, 91, 165–169)
and humans (170–175). Furthermore, interactions between
CD200 on type II alveolar epithelial cells and CD200R on the
surface of the AM deliver regulatory signals to the AM to
prevent proinflammatory signaling and macrophage activation
(176). Thus, macrophage nomenclature has evolved as our
understanding of the phenotypes and functions of different
types of tissue resident macrophages, recruited monocytes and
monocyte-derived macrophages advances. In-depth studies of
the effects of androgens and other sex hormones on tissue
macrophage plasticity and phenotype have yet to be carried out.
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MECHANISMS OF ANDROGEN SEX
STEROID ACTION

Because androgens are lipophilic steroid hormones, they can
easily diffuse across cell membranes without the need for
receptor-mediated import (8). Androgens in circulation are
found mostly bound to sex hormone-binding globulin and
albumin (8). Free (unbound) steroid sex hormones can signal
through two different mechanisms: the classical AR, located
in the intracellular compartment, and the membrane, or non-
classical, AR (8). Androgen binding to classical and non-
classical ARs mediates genomic and non-genomic androgen
effects, respectively (177). Upon androgen binding, the classical
AR undergoes a conformational change and dissociates from
heat-shock and other chaperone proteins. An androgen–AR
complex is formed that translocates to the nucleus, dimerizes,
and binds to androgen responsive elements that modulate the
transcription of target genes (178). Importantly, it has been
reported that the androgen–AR complex can also mediate non-
genomic changes (179) by causing calcium flux and by activating
second messenger pathways including ERK, AKT, and MAPK,
at least in cell lines (179–181). Whereas, genomic modulation
may need hours or days (182), non-genomic modulation can
occur within seconds to minutes after androgen exposure, does
not involve the complex binding to DNA, and therefore does
not affect transcription of target genes (177). DHEA has no
known unique receptor and is not a direct AR agonist. It
affects immune function but, because it can interact with other
sex hormones, it has been difficult to establish its mechanisms
of action.

Most studies of androgen–AR complex-mediated gene
expression have been carried out in the context of male
reproductive tissue in prostate cancer (PCa) (183–185). As
previously discussed, immune cells are responsive to sex
hormones, and almost all immune cells express sex hormone
receptors (8). Mouse monocytes, macrophages (186), and DCs
(187) express both classical and non-classical ARs although
the vast majority studies do not specifically dissect the role of
the two types of AR on the outcomes being measured in the
study. Because recent literature has described how sex steroids
modulate the functions of DCs (2, 128, 129), we will not
discuss it here. We will focus on the importance of androgen–
AR regulation of monocyte and macrophage function and
how androgen–ARs modulate monocytes and macrophages in
lung diseases.

ANDROGEN RECEPTOR EXPRESSION

Androgen Receptor Expression in Mouse
and Human Monocytes and Macrophages
Androgen receptor expression in mouse and human monocytes
and macrophages is summarized in Table 1. In general, the
expression of the mRNA and protein for classical AR has been
assessed, often by non-quantitative means, and non-classical ARs
have not been measured.

EFFECTS OF ANDROGEN EXPOSURE ON
MONOCYTES, MACROPHAGES IN VITRO

We have summarized the outcomes of many studies on mouse
and human monocyte-macrophages responses in the presence
of androgens in Figure 2. In general, monocyte-macrophage
exposure to androgen results in a reduction of pro-inflammatory
responses (boxed and shaded in green). It is possible that
the reduction in inflammation by androgen may be due
to AR suppression of estrogen/ERα-driven pro-inflammatory
responses. AR was demonstrated to inhibit ERα activity by
binding EREs in breast cancer cells (201). Whether this indirect
mechanism accounts for the broad immunosuppressive effects
of androgens in normal untransformed immune cells is not
known. In keeping with reduced pro-inflammatory responses,
we found that androgen enhanced IL-4-induced M2 polarization
of bone marrow derived and alveolar macrophages in vitro
and macrophage-specific deficiency of AR diminished M2
polarization of lung macrophages in vivo (188). In some cases,
however, inflammatory responses are increased by androgens
(boxed and shaded in red). The different responses may be
due to different types of tissue macrophages or experimental
system. Monocyte-macrophage responses are dependent on the
concentration of the hormone, expression of AR, and upon
the inducing stimuli to which the macrophage is exposed. The
majority of in vitro studies examining the effects of androgens
on monocytes and macrophages have not clearly acknowledged
or separated the effect of androgen on membrane ARs and non-
classical AR signaling from that of classical ARs. Therefore, we
have to assume that the studies described in the section below
are a result of classical AR activity unless explicitly investigated
or stated. Determining how non-classical AR signaling and
androgen-independent activation of AR affects monocyte and
macrophage function is a gap in our knowledge that must be
addressed in future studies.

Effects of Androgen Exposure on Mouse
Monocytes and Macrophages in vitro
Androgens modulate the expression of proinflammatory
molecules such as TNFα in mouse monocytes and macrophages.
In 2009, Lai et al. (192) demonstrated that LPS-induced
production of TNFα was decreased in BMM lacking classic
ARs. Moreover, they found that AR, in the presence of
DHT, induced TNF-α promoter activity (192). On the
other hand, several reports have suggested the contrary.
In one study that used splenic macrophages from midline
laparotomy trauma-hemorrhaged mice, DHT suppressed
TNF-α production from LPS-stimulated cells (202). This effect
was also observed in the mouse macrophage cell line J774
(203), in which testosterone inhibited TNF-α production.
In addition, testosterone also decreased expression of the
proinflammatory molecule nitric oxide in response to LPS
in the mouse macrophage cell lines RAW 264.7 (204)
and J774 (203), but it enhanced the expression of IL-10 in
the latter.
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TABLE 1 | Androgen receptor expression in mouse and human monocytes and macrophages.

Species Cell type Tissue Classical AR Non-classical

AR

Quantification

method used

Sex

differences

References

Mouse Macrophage Bone-marrow

derived

X X Flow cytometry

Confocal laser

scanning microscopy

M>F (188)

(189)

Mouse Macrophage Alveolar X Flow cytometry (188)

Mouse Macrophage Liver X M>F (190)

Mouse Macrophage Adipose tissue X PCR (KO mouse) (191)

Mouse Macrophage Skin X PCR (KO mouse)

Immunocytochemistry

(192)

(186)

Mouse Macrophage RAW

264.7 Cell line

Abelson murine

leukemia

virus-induced

tumor; ascites

X RT-PCR and western

blot

(193)

Mouse Macrophage Peritoneal cavity X RT-PCR and Western

Blot

Protein binding

assay

(193)

(194)

Mouse Macrophage Cell

line IC-21

Peritoneal

cavity

X Confocal Laser

Scanning Microscopy

Flow cytometry

(195)

Human Monocyte derived

macrophages

Peripheral blood X

X

Semi-quantitative PCR

Western Blot

M>F (196)

(197)

Human Monocytic cell line,

THP-1 (male)

Peripheral blood X

X

X

Western blot

RT-PCR

(198, 199)

(193)

Human Monocyte Peripheral blood X RT-PCR (193)

Human Macrophage Synovial tissue X Immunohistochemistry;

RT-PCR

(200)

Other molecules important in monocyte-macrophage
functions are also affected by androgens. For example, the
expression of CCR2 was enhanced in mouse monocytes
by androgens and thereby enhanced chemotaxis (192).
However, suppressing AR with siRNA in prostate cells increased
macrophage recruitment via CCL2 upregulation, which might
promote prostate cancer (205). Phagocytosis was increased
by testosterone in rat peritoneal macrophages at 10−12 M but
not at concentrations lower or higher than 10−12 M (206).
Cytotoxicity of RAW macrophages to the mouse prostate cancer
cell line, TRAMP C2, was enhanced by DHT alone (193). This
was attributed to enhanced expression of the M1 polarization
markers, TRAIL and TNF-α, in the macrophages. Testosterone
(100, 200, and 400 nM) induced apoptosis in mouse BMM
through Fas-FasL (207) and activation of caspase 3, 8 and poly
(ADP-ribose) polymerase (208).

In terms of M2 polarization of macrophages, we showed
recently that in vitro exposure of BMM to DHT prior to IL-
4 stimulation enhanced Chi3l3 and Arg1 gene expression, as
well as production of YM1 (188). Androgen amplified the M2
phenotype by increasing IL-4-mediated M2 polarization. Our
results were similar to those found in response to IL-4 in the
RAW cell line (209). This enhancedM2macrophage polarization
correlated with decreased TLR4 expression and sensitivity to
a TLR4-specific ligand observed in testosterone-treated RAW
cells (210).

Taken together, these observations suggest that androgens and
ARs can either promote or suppress inflammatory properties of
mouse macrophages, depending on the external environmental
conditions, AR expression, and concentration of hormone.
Overall, androgens are more likely to reduce polarization of M1
macrophages. This could represent an important mechanism by
which inflammatory pathways are downregulated in males. The
opposite effects seen in different inflammatory contexts highlight
the need for a deeper and broader study of the androgen/AR-
mediated modulation of monocytes and macrophages, as these
cells participate in both the initial and late phases of immune
responses in a variety of diseases. Most of the studies analyzing
the role of AR have focused on prostate cancer, primarily in
transformed cell lines (211–213) but macrophages are vital in
cancer development and metastasis (205). Furthermore, it is
important to consider that opposing effects could result from
differential activation of either classical or non-classical (AR-
independent) effects (195, 214) which have been rarely studied
to date.

Effects of Androgen Exposure on Human
Monocytes and Macrophages in vitro
Androgens affect a number of key monocyte and macrophage
functions. Studies of androgen receptor function in human
monocytes and macrophages have focused primarily on the roles
of male sex and sex hormones in promoting atherosclerotic foam
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FIGURE 2 | The effects of androgens on mouse and human monocytes and macrophages in vitro. The consequences of androgen exposure of monocytes and

macrophages are shown. Green boxes indicate that the effect is to dampen proinflammatory responses or be considered immunosuppressive. The red boxes indicate

a response that would increase inflammation. CCR2, C-C chemokine receptor type 2; DHT, dihydroxytestosterone; DHEA, dihydroepiandrosterone; PCa, prostate

cancer; PGE2, prostaglandin E2; ROS, reactive oxygen species.

cell formation (196) and inhibiting cutaneous wound healing
(186, 215). Foam cells are a type of macrophage localized in
the blood vessel walls where they engorge cholesterol (216).
Foam cells exhibit enhanced inflammatory cytokine secretion
and cause atheroma, contributing to cardiovascular disease (216,
217). The effect of androgen on monocytes and macrophages in
other immune-mediated human diseases where monocytes and
macrophages play a role has been neglected.

The degree of AR expression in monocytes and macrophages
is likely the primary determinant of responsiveness, although
most studies examining responses to androgens do not quantify
AR expression (see Table 1). The expression or action of
androgens on non-classical ARs in human monocytes and
macrophages has yet to be examined carefully. Most studies
assume that the outcomes that are measured are a result of the
activity of classical AR. Sex differences in AR content may also
play a role in responsiveness. This fact highlights the importance
of considering the sex of cells in all in vitro studies to accurately
assess how sex hormones affect the responses of monocytes
and macrophages.

Apoptosis, Survival, Proliferation, and Differentiation
Apoptosis was significantly greater in human THP-1 cells
cultured for 7 days with 10 nM testosterone than in control

cells or cells treated with estradiol (E2), owing to a reduction
in proliferating cell nuclear antigen, induction of poly-ADP
ribose polymerase-cleaved, an increase in IκB-α, and a decrease
in phosphorylated IκB-α (218). E2, in contrast, promoted cell
survival. Other studies noted concentration- and time-dependent
regulation of apoptosis in THP-1 cells, with an increase in the
proto-oncogene Bax and Fas (219). Androgen exposure inhibited
proliferation of the human monoblastic leukemia cell line U937,
depending on the concentration and time of exposure (220). Cell
cycle arrest occurred at the G2/M phase, although another study
measured no effect of testosterone on PMA-differentiated U937
cells (221). How testosterone regulates apoptosis and survival
of untransformed primary human monocytes and MDMs has
not been well-studied. Toxicity was observed when monocytes
were differentiated into macrophages over 8 days in the presence
of 0.1 mg/mL androgen, but not at lower concentrations of the
hormone (222). Testosterone reduced the viability of monocytes
from a healthy control and a patient with systemic lupus
erythematosus in a concentration-dependent fashion (223, 224).
These two studies highlight the importance of concentration in
studies of sex hormones. An additional example is the finding
that E2 enhances TNF-α secretion from antigen-stimulated
T-cells at low concentrations and inhibits secretion at high
concentrations (225). IL-1β-induced NF-κB activation is also
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inhibited at high but not at low E2 concentrations (226). Hence,
it is important to carry out in vitro studies of sex hormone
responses over a wide range of physiologic concentrations of
sex hormones.

Cytokine Secretion/Reactive Oxygen

Species/Inflammation
In general, androgens have a suppressive effect on
proinflammatory cytokine expression in monocytes and
MDMs. This finding is consistent with the idea that the immune
system of females produces cytokines in response to pathogens
and insults more robustly than that of males. Monocyte or MDM
expression of TNF-α, IL-1β, IL-6, and IL-8 is reduced in the
presence of testosterone (227–229). Many studies in this field
have relied on human cell lines, such as THP-1 and U937, with
or without PMA-induced differentiation into macrophages,
and differentiated HL-60 cells, although primary monocytes
and MDMs have been used in a few cases (224, 230). Another
immunoregulatory function of testosterone is the upregulation
and secretion of C1 inhibitor (C1INH) from monocytes (231).
C1INH is a 105 kDa plasma protein whose main function is
inhibition of the complement system to prevent spontaneous
activation. Thus, testosterone keeps complement activation
in check. Another mechanism by which testosterone limits
inflammation is by decreasing the generation of reactive oxygen
species generation from differentiated HL-60 cells. Interestingly,
the production of reactive oxygen species in response to
zymosan, but not LPS, was inhibited by testosterone (228).

In terms of allergic immune responses, metabolism of
arachidonic acid into inflammatory leukotrienes (LTs) via the
5-lipoxygenase (5-LO) pathway is sex-dependent in human
monocytes. Pergola et al. (232) reported that primary human
peripheral blood monocytes from women synthesize more 5-
LO product than do the same cells from men. 5α-DHT (10 nM)
suppressed LT synthesis in female cells to the levels observed in
males. ERK activation by androgens reduced phospholipase D
activity in monocytes and impaired 5-LO product formation by
reducing active diacylglycerides. The other branch of arachidonic
acid metabolism is the cyclooxygenase (COX) pathway, which
generates prostaglandins. Prostaglandin E2 (PGE2), one of
the most abundant COX products produced by the airway
epithelium and smooth muscle (233, 234), can either stimulate
or suppress immune cell function. Testosterone reduced PGE2
production in monocytes obtained from heparinized peripheral
blood of healthy adults and incubated for 24 h with LPS (235).

A few studies have examined the effect of DHEA on
human monocytes and macrophages. In the presence of LPS,
DHEA induced IL-6 and TNF-α production by primary human
monocytes and IL-8 and TNF-α production by THP-1 cells
(236). In these experiments, DHEA counteracted the effects of
cortisol and the glucocorticoid receptor on LPS-induced IL-6
and TNF-α by inducing expression of the scaffolding protein
RACK1 (Receptor for Activated C Kinase 1) in THP-1 cells
and primary human monocytes (237). RACK1 is involved in
multiple signal transduction cascades, including the MAPK,
protein kinase C, and Src signaling pathways. RACK1 shuttles
proteins around the cell, anchors proteins at particular locations,

and is involved in cell migration (238). In contrast, DHEA
added to alveolar macrophages lavaged from 11 non-smoking
asbestos workers significantly reduced superoxide anion release
in vitro (239), consistent with its role in dampening Th2-
inflammation (240). Therefore, the effect of DHEA onmonocytes
and macrophages may be stimulus-dependent and needs more
in-depth investigation.

Foam Cell Formation/Lipid Handling/Atherosclerosis
The formation of foam cells (lipid-filled macrophages) is
generally associated with the pathogenesis of cardiovascular
diseases, such as atherosclerosis. However, foam cells are also
found in patients with silicosis (241) and other fibrotic lung
diseases (242) and in tuberculosis. Alveolar macrophages take up
extracellular and intracellular lipids in response to inhaled silica,
vaping products (243), and Mycobacterium tuberculosis (244).
Furthermore, the metabolism of fatty acids by macrophages by
β-oxidation for sustained energy production is a key feature of
the functional phenotype of macrophages with a pro-resolving,
tissue reparative (M2) phenotype. Therefore, we have included
how androgens modulate foam cell formation and lipid handling
in macrophages as part of this discussion.

Macrophages from men and those exposed to testosterone
favor the processes of lipid handling and foam cell formation,
supporting evidence that atherosclerosis is a male-dominant
disease when age is taken into account (245). Atherosclerotic
plaques composed of a number of different immune cells form
in blood vessel walls. In advanced stages of atherosclerosis,
macrophages in plaques take up oxidized low-density lipoprotein
(LDL), creating foam cells. Eventually, cholesterol crystals
accumulate, trigger inflammation and plaque rupture. The
role of sex in the inflammatory events of atherosclerosis
has been reviewed elsewhere (246). In vitro studies have
sought to ascertain how testosterone promotes these processes
by utilizing primary MDMs. In MDMs from healthy men,
androgen treatment was shown to upregulate genes involved
with lipoprotein processing, transporter proteins, cell-surface
adhesion, and other pathways, but none of these genes were
upregulated in female macrophages (247). The marked sex
specificity of androgen effects on human macrophage gene
expression is most likely related to sex differences in MDM AR
expression. Similarly, treatment of MDMs with modified and
native LDL led to changes in expression of mRNAs involved in
homeostatic regulation of lipidmetabolism, depending on the sex
of macrophage donors (248).

Functionally, androgen-treated MDMs from men but
not women accumulate cholesteryl esters (196). Male
macrophages exhibit increased rates of lysosomal acetylated
LDL degradation and upregulated expression of scavenger
receptor class B type I (249), increasing high-density lipoprotein
(3)-induced cholesterol efflux. The expression of AR in
monocytes/macrophages also upregulates lectin-type oxidized
LDL receptor 1 molecules that are involved in foam cell
formation (198). However, Corcoran et al. (250) observed no
effect of testosterone on cholesterol content or efflux from
MDMs of healthy male and postmenopausal female donors
(age 50–70 years). Because their study used healthy donors, it
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is possible that the absence of other health-related factors, such
as smoking, poor health, and genetic risk factors for coronary
heart disease in the healthy blood donors may have produced
these results.

Migration, Phagocytosis, and Cytotoxicity
Chemotaxis of THP-1 cells was diminished when androgen
receptor was knocked down by siRNA suggesting a role for AR in
migration of monocytes (198). The authors identified TNF-α as a
key AR-regulated molecule important in monocyte migration. In
contrast, a handful of studies have tested the effect of testosterone
on primary human monocyte phagocytosis and migration, but
no effect was found (222, 251–253). Testosterone did not change
the cytotoxic capacity of monocytes frommale donors (age range
18–40 years) to lyse red cells sensitized with IgG antibodies (254).

EFFECTS OF ANDROGEN EXPOSURE ON
MONOCYTES AND MACROPHAGES IN
MOUSE MODELS OF LUNG DISEASE

Most studies that have used mouse models to investigate sex
differences in lung diseases have focused on the role of estrogen
and estrogen receptors (255–257). The importance of androgen
and ARs in lung disease has been poorly studied. Earlier
studies were directed at modulating monocyte and macrophage
functions unconnected to AR function, as 15 years ago it was
believed that mouse macrophages did not express classical ARs
(189). Nevertheless, recent studies have examined sex differences
in mouse models of allergic asthma, COPD, and influenza.

We and others have reported sex differences in mouse models
of allergic lung inflammation (37, 38, 188, 255). Some of the
observed differences have been clearly attributed to the effect
of androgens. We showed that DHT reconstitution of castrated
male mice reduced overall lung inflammation (188). A reduction
of total serum IgE and total immune cell recruitment to the
lungs, specifically eosinophils, revealed the regulatory effect
of androgens on several cell types. However, the unexpected
enhancement of the production of the canonical M2 macrophage
marker involved in eosinophil recruitment (258, 259), YM1, by
DHT in alveolar macrophages (188) showed that androgens have
a regulatory or an activating effect depending on the cell type.
We demonstrated that deletion of classical ARs on monocytes
and macrophages (ARfloxLysMCre mice) resulted in reduced
inflammation (less eosinophil recruitment to the alveolar space),
along with less mucus production and lung cell infiltrate,
despite no differences in serum testosterone level between AR-
sufficient and ARfloxLysMCre mice (188). This finding indicates
the importance of androgens as modulators of M2 macrophage
polarization and the critical role of these cells in allergic lung
inflammation. Other recent studies have shown that testosterone
has an anti-inflammatory role in a mouse model of allergic lung
inflammation induced by house dust mite but focused on other
cell types in lung, such as Th2 (260) and ILC2 cells (261, 262).
Similarly, high concentrations of androgens in circulation have
been related to a decrease in the expression of TNFα and other
proinflammatory cytokines, such as IL-6 and IL-1β, in rodent

macrophage cell models and in human monocytes (203, 223,
224, 230, 263). How androgen and ARs impact functions on IMs
still needs to be studied. At the time this review was written,
no reports on AR expression in IMs were found. However,
we hypothesize that as IMs are derived from blood monocytes
(102), but once in the tissue they develop an intermediate size
and phenotype between monocytes and AM (103, 264), their
expression of AR could be somewhere in between. Therefore,
androgen and ARs could regulate the functions and activation of
these cells. This requires further study, as IMs are a constitutive
macrophage population in the lung, and may play a role
mediating sex differences in lung diseases.

Mouse models have also shown that sex differences affect
COPD. In 2016, Tam et al. (265) reported that smoke-
induced COPD is characterized by small airway remodeling in
female but not male mice and that ovariectomy before smoke
exposure ameliorates the disease. Another study focusing on α-1
antitrypsin deficiency, the leading genetic cause of emphysema,
also uncovered a higher susceptibility of female mice for this
condition (266). However, these studies did not determine
if androgens mediate resistance to COPD, or if the key to
the observed sex differences is ovarian sex hormones. Thus,
the role that androgens play in COPD and COPD models
remains unclear.

Mouse studies that have focused on sex differences in
influenza showed that at moderate influenza virus A (IAV) loads,
morbidity, mortality, and the associated inflammatory response
is greater in female than in male mice, but that mortality is
similar at higher loads (72, 267, 268). The role of sex hormones
was well-addressed in these studies. High levels of estrogen
in estrogen-reconstituted female mice protected against lethal
IAV doses (72), whereas the lower estrogen levels in intact
females were associated with greater inflammatory responses and
increased morbidity after infection. Similar observations were
made after progesterone replacement (269). In males, a decrease
in androgen levels after castration increased morbidity and
pathology upon IAV infection, but replacement of testosterone or
DHT reduced morbidity, mortality, and inflammation (72, 74).
These findings suggest that although estrogen may be protective
or detrimental, depending on concentration, androgens may
suppress inflammation in a broader way.

Gonadectomy studies in mice have been used to uncover the
role of androgens in TB. Similar to observations in castratedmen,
castrated male mice that displayed greater pro-inflammatory
responses in the lung (more TNF-α, IFN γ, IL-12, iNOS, and
IL-17) than intact males. IFN-γ-activated macrophages (M1
macrophages) control of TB infection in both human and mouse
(270). Ovary removal in females did not impact susceptibility
to TB (271), suggesting that testosterone is responsible for male
susceptibility to TB. We previously reported that DHT enhances
M2 macrophage polarization through AR (188). Therefore, we
speculate that the greater male susceptibility to TB could be at
least in part mediated by enhanced M2 responses that are poorly
protective and decrease protective proinflammatory macrophage
responses. Formal studies to address this idea as well as how
androgen effects on other key immune cell players in TB
are needed.
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How androgens affect monocyte and macrophage biology
in lung cancer models in mice has not been well-studied.
Monocytes and macrophages are important cellular players in
tumorigenesis. Tumor-associated macrophages (TAMs) can be
classified into two phenotypes that are either pro-inflammatory
and tumoricidal (M1-like) or promote tumor growth and
suppress anti-tumor immune responses (M2-like) (272–274). As
mentioned previously, sex hormones augment M2 macrophage
polarization, thus, play an important role in lung carcinogenesis.
The greater overall incidence of lung cancer in men could be
explained by an enhanced M2 polarization by androgens (188).
On the other hand, estrogen has been shown to induce tumor
angiogenesis (275). Estrogen signaling though the cAMP, MAPK,
and AKT pathways with the consequent phosphorylation of ERK
and EGFR signaling, along with the enhanced expression of c-
myc and cyclin D, results in NSCLC cell proliferation (276).
Mouse models must therefore address the role of androgens on
monocytes and macrophage function in the establishment and
progression of lung cancer in male and female animals.

EFFECTS OF ANDROGEN EXPOSURE ON
MONOCYTES, MACROPHAGES IN
HUMANS WITH LUNG DISEASE

Few studies have examined the effect of sex hormones on
peripheral blood monocytes and lung macrophages from men
and women with asthma or the other lung diseases we have
discussed here. In women with asthma, dominance of M2
macrophages in airways and lung tissue has been documented
(277) and a connection between female sex and female sex
hormones surmised. There is a paucity of literature regarding
how introducing or depleting exogenous sex hormones (such as
in female-to-male transgender individuals receiving testosterone
supplementation or women with estrogen blockade) affects the
function of blood monocytes and lung macrophages in men and
women with asthma. Most studies correlate concentrations of sex
hormones with either inflammatory markers, such as cytokines
or chemokines in serum and other fluids, or with lung function
measurements. We will summarize below the small number of
studies in which androgen concentrations were manipulated in
humans and the effects on monocyte or macrophage function.

Testosterone Replacement in Men
Hypogonadism in men refers to a deficiency in testosterone
production from the testes that results from testicular,
hypothalamic, or pituitary abnormalities. Klinefelter’s syndrome
in men, which is a result of additional X-chromosomes (e.g.,
XXY), is themost common cause of hypogonadism. Testosterone
replacement therapy is the primary treatment option to restore
physiologic testosterone levels, typically in the range of 300 to
800 ng/dL. In general, exogenously administered testosterone has
a suppressive effect on the proinflammatory immune response
from monocytes. For example, spontaneous production of
proinflammatory cytokines (IL-1β, IL-6, and TNFα) ex vivo
was reduced or completely absent in the monocytes and DCs
from men with type-2 diabetes who had partial androgen

deficiency and were treated for 12 months with testosterone
replacement. This suppression was maintained for 3 more
months after testosterone withdrawal (278). Testosterone
replacement therapy also is associated with a reduction or
complete abrogation of spontaneous ex vivo production of
inflammatory cytokines by antigen-presenting cells (279). On
the other hand, the circulating monocytes from hypogonadal
men treated with testosterone replacement therapy exhibited
significantly upregulated expression of CD107b at baseline
compared to monocytes from healthy controls. This was also
seen after stimulation with CpG oligodeoxynucleotides to mimic
bacterial DNA exposure (280). Membrane expression of CD107b,
also known as lysosome-associated membrane protein (LAMP)2,
is indicative of release of lysosome and/or phagolysosome
contents into the extracellular medium, a mechanism that may
be involved in killing and/or digesting target cells. These data
suggest that testosterone increases the inflammatory function of
these cells, an effect that would contrast with its typical role as
an immunosuppressant.

The immune system of individuals with Klinefelter’s
syndrome provides unique insight into the genetic contribution
of the X-chromosome and that of diminished testosterone
to sex differences in different diseases. Men with Klinefelter’s
syndrome have an increased risk of developing autoimmune
diseases, particularly those that are typically female-dominant,
such as rheumatoid arthritis and systemic lupus erythematosus
(281). As might be predicted due to the negative effect of
lower concentration of testosterone on lung function, men
with Klinefelter’s syndrome are more likely to be diagnosed
with pulmonary diseases, such as COPD and pneumonia (282).
Asthma is also reported in these individuals (283–285) and it
was successfully controlled with long-acting β-agonists and oral
testosterone replacement in one case report (283). At the cellular
level, however, cytokine production in stimulated whole blood
from Klinefelter’s men was similar to that of women (286). These
data suggest that the effect of the additional X-chromosome
was more dominant than the reduction in circulating androgen
in Klinefelter’s men. In the same study, however, purified
monocytes showed the opposite response: cytokine production
from the monocytes of healthy and Klinefelter’s men was similar
and less robust than that from the monocytes of women. This
observation led to the opposite conclusion—that androgen plays
a more important role in monocyte cytokine production than
does chromosomal complement.

Androgen Excess in Women With
Polycystic Ovarian Syndrome (PCOS)
PCOS is a disease characterized by hyperandrogenism,
amenorrhea, and polycystic ovaries. The cystic follicles—
ovarian theca cells—produce testosterone that causes
significant elevations in serum concentrations of testosterone,
androstenedione, DHEA, and DHEA-S. In women with
PCOS, serum testosterone is in the range of 45–150 ng/dL
(2–5 nmol/L) (287), compared with a range of 20–60 ng/dL
in healthy, ovulatory women (288). This endocrinopathy is
associated with metabolic disorders, such as dyslipidemia,
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insulin resistance, metabolic syndrome, and cardiovascular
complications. Immune function is impaired in women with
PCOS, leading to increased secretion of autoantibodies and
increased risk of type 1 diabetes, asthma, and thyroid disease
(289). Because androgens downregulate the inflammatory
responses that contribute to asthma, one might hypothesize that
women with PCOS would have less asthma. However, Htet al.
(290) found that asthma prevalence was 15.2% in women with
PCOS compared to only 10.6% in women without PCOS (P =

0.004). Women both with and without PCOS who had asthma
tended to have a higher BMI than those without asthma (290).
After multivariable analysis, the authors concluded that both
PCOS and high BMI were independently associated with asthma
(291). It is therefore possible that testosterone contributes to the
chronic inflammatory state that accompanies high BMI and that
the metabolic dysfunction overpowers the protective effects of
testosterone on asthma development. Few cellular and molecular
studies have endeavored to uncover mechanisms that explain the
association between asthma and PCOS.

At the cellular level, circulating monocytes from women
with PCOS expressed the receptor for advanced glycation end-
products (RAGE) more strongly than monocytes from healthy
control women (292). AGEs are involved in the pathogenesis
of a number of chronic lung diseases, ranging from cystic
fibrosis to asthma. RAGE can also bind other alarmins, such as
the S100A8/A9 heterodimer (calprotectin) or the high-mobility
group box (HMGB)1 protein. Both of these ligands have been
implicated in the pathogenesis of allergic asthma (291, 293),
as they induce cell proliferation or apoptosis, inflammation,
collagen synthesis, and cell migration in many different cell
types. The concentration of AGE proteins and testosterone
correlated positively, even after controlling for BMI and other
metabolic function tests (292). Taken together these two studies
suggest that monocytes from women with PCOS would be more
responsive to RAGE ligands. This heightened responsiveness
could promote cellular inflammatory responses that contribute
to asthma pathogenesis. Studies are needed to examine how the
increased testosterone in women with PCOS affects circulating
monocytes and lung macrophages to increase asthma prevalence
in this group.

Testosterone and DHEA Administration in
Asthma and COPD
Testosterone has been administered therapeutically for asthma.
In an early study, asthmatic women were given testosterone
either daily for 5 days over 2 weeks or daily for 3 days over
2 or more weeks. Although the number of participants in
the study was small, 88% saw improved symptoms, with 47%
reporting no asthma attacks up to 3 months later (294, 295).
No studies have examined the effect of exogeneous testosterone
administration on blood monocytes or lung macrophages in men
and women with asthma. Testosterone deficiency is also present
in patients with COPD (296–304). In a clinical study of exercise
and testosterone injection in men with COPD, the interventions
did not significantly alter pulmonary function or blood gas
variables (305). On the other hand, a retrospective study of two

large cohorts of men who commenced testosterone replacement
therapy within 12 months of a COPD diagnosis showed a
4.2–9.1% decrease in hospitalizations, dependent on age (306).
More work is needed to understand how testosterone and its
signaling pathways can be harnessed to alleviate lung disease
without affecting reproductive systems or having unwanted
metabolic effects.

Asthmatic patients have decreased serum concentration of
DHEA and DHEA-S (307–309). Therefore, some clinical trials
have tested whether DHEA-S supplementation reduces asthma.
Men and women with poorly controlled moderate-to-severe
asthma were given nebulized DHEA-S for 6 weeks. This
treatment led to a statistically significant improvement in the
Asthma Control Questionnaire (ACQ) and trends toward better
asthma symptom scores and more symptom-free days and
nights (310). Oral DHEA for 2 weeks improved lung function
in asthmatic women with low DHEA-S < 200 µg/dL (48).
However, neither of these clinical studies examined the cellular
component of the disease pre- or post-intervention. DHEA
and DHEA-S are also lower in patients with COPD than in
healthy controls, and COPD leads to pulmonary hypertension
(PH). DHEA supplementation improved the 6-min walk test,
pulmonary hemodynamics, and the diffusing capacity of the
lungs for carbon monoxide of patients with PH-COPD (311,
312). The therapeutic potential of DHEA is currently being
investigated in 24 patients with PH in the EDIPHY (Effects of
DHEA in Pulmonary Hypertension) trial. However, outcome
measures of this trial do not include examination of the immune
cells or the effect of DHEA treatment on those cells. Analysis of
immune cell function would add important cellular mechanistic
insight to these types of trials and help uncover some of the
widespread effects of this hormone on the immune system.

DISCUSSION, UNANSWERED QUESTIONS
AND AREAS OF FUTURE STUDY

Modulation of monocyte and macrophage function mediated by
the interaction of androgen and AR has been examinedmostly by
correlative studies in humans following lifespan changes in sex
hormones or using hormonal manipulation in mouse models of
lung disease. Most human-based reports are merely descriptive
or correlative and do not consider variables such as age, BMI,
and phase of the menstrual cycle as key modulators of circulating
sex hormone concentrations. Taking these factors into account
should be encouraged if we are to gain a better understanding
of the impact of sex hormones in health and disease. Analyses
of the function of immune cells from male and female healthy
controls and patients with lung diseases are needed to unlock
how sex hormones alter the biology of the innate and adaptive
immune response.

Studying the role of sex hormones as modulators of the
immune system is complex because they interact with other
hormonal systems and with one another, and because of the
nearly ubiquitous expression of sex hormone receptors in most
cells of the body. Males and females have all types of sex steroids,
although in different circulating concentrations. In humans,

Frontiers in Immunology | www.frontiersin.org 13 August 2020 | Volume 11 | Article 1698

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Becerra-Diaz et al. Androgen/AR in Lung Monocyte-Macrophage Biology

changes in the concentration of sex steroids have implications
for lung health and may contribute to disease by affecting the
function of the immune system. Female sex hormones have been
more widely studied as immune system modulators than have
androgens. More focus in the future must be directed to how
androgens affect the immune system and the interaction between
male and female sex steroids in immune function.

Historically, animal models have used only males as study
subjects, leaving females aside out of concern for the variability
in results introduced by sexually mature adult females with active
estrous cycles. As a result, biomedical and preclinical research
has neglected to reflect more than 50% of the world’s population.
This omission had some notable negative consequences: eight of
ten drugs withdrawn by the FDA between 1997 and 2000 had
significant health risks to women (313). It was not until 2016
that the NIH addressed this oversight with its requirement to
include sex as a biological variable in all research studies (314).
The practices of using only male animals, not clearly reporting
the sex (and age) of the animals used, and mixing male and
female results have obscured a proper understanding of how sex
and sex hormones influence normal biology and that of disease
states. Moreover, many reports comparing sex as a variable lack
strict controls on culture conditions in vitro, which can alter
the results. For example, if investigators fail to appreciate that
animal serum or pH indicators, such as phenol red, may act as
a source of steroids or sex hormone receptor agonists and do
not clearly report their use, the interpretation and reproducibility
of the experiments can be diminished. We strongly advocate for
the use of hormone-free serum or animal serum replacements
(for human cell studies) and use of culture medium that does

not contain sex steroid receptor agonists. Moreover, rigorous
experimentation should include careful and detailed reporting of
cell culture conditions, donor sex and age for cell studies, accurate
age and sex in animal work (adherence to ARRIVE guidelines),
and separate male and female results.

Here, we have highlighted the importance of sex hormones as
modulators of monocytes and macrophages and the important
role of these innate immune cells in lung diseases where sex
differences are apparent. These cells are part of a larger response
that includes the adaptive immune system as well as the structural
cells of the lung that are all affected by the action of sex steroids.
As such, how innate cells like monocytes and macrophages
shape the pulmonary immune response and how they resolve
lung inflammation differently in the male and female lung
and in the presence of different sex steroids needs intensive
study. Uncovering the cellular and molecular mechanisms will
be crucial for finding new ways to treat different lung diseases
depending on the sex of the patient.
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