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Distinct interacting core taxa in 
co-occurrence networks enable 
discrimination of polymicrobial oral 
diseases with similar symptoms
Takahiko Shiba1,*, Takayasu Watanabe2,*, Hirokazu Kachi3, Tatsuro Koyanagi1, 
Noriko Maruyama1, Kazunori Murase4, Yasuo Takeuchi1, Fumito Maruyama4, Yuichi Izumi1 & 
Ichiro Nakagawa4

Polymicrobial diseases, which can be life threatening, are caused by the presence and interactions of 
multiple microbes. Peri-implantitis and periodontitis are representative polymicrobial diseases that 
show similar clinical symptoms. To establish a means of differentiating between them, we compared 
microbial species and functional genes in situ by performing metatranscriptomic analyses of peri-
implantitis and periodontitis samples obtained from the same subjects (n = 12 each). Although the two 
diseases differed in terms of 16S rRNA-based taxonomic profiles, they showed similarities with respect 
to functional genes and taxonomic and virulence factor mRNA profiles. The latter—defined as microbial 
virulence types—differed from those of healthy periodontal sites. We also showed that networks 
based on co-occurrence relationships of taxonomic mRNA abundance (co-occurrence networks) were 
dissimilar between the two diseases. Remarkably, these networks consisted mainly of taxa with a high 
relative mRNA-to-rRNA ratio, with some showing significant co-occurrence defined as interacting core 
taxa, highlighting differences between the two groups. Thus, peri-implantitis and periodontitis have 
shared as well as distinct microbiological characteristics. Our findings provide insight into microbial 
interactions in polymicrobial diseases with unknown etiologies.

Biofilms are matrix-enclosed microbial populations that adhere to hard and soft tissue surfaces and are implicated 
in over 80% of known infectious diseases1. A technical challenge when studying the pathogenicity of polymicrobial 
infections by culture-dependent methods2 is the high prevalence of unculturable or fastidious bacteria3. Recent 
advances in molecular techniques with high-throughput sequencers have enabled the determination of polymi-
crobial community composition and/or interactions among microbial species in upper respiratory tract infec-
tions, osteomyelitis of the jaw, and periodontitis4–6.

Periodontitis is a representative polymicrobial biofilm-related disease that occurs in oral cavities. According 
to a report by the World Health Organization, disease prevalence is 15–20% in middle-aged adults (35–44 years), 
with 5–15% of these cases resulting in tooth loss (http://www.who.int/mediacentre/factsheets/fs318/en/). Recent 
evidence suggests that oral infection in periodontitis is associated with systemic diseases such as diabetes7 and 
cardiovascular diseases8. In addition, dental implant-based reconstruction—which has been adapted to replace 
conventional fixed or removable partial dentures—has led to the emergence of peri-implantitis as a serious prob-
lem in 28–56% of recipients9 and a major cause of implant loss. As such, effective prevention and management of 
peri-implantitis are essential for improving the quality of life and health of patients.

1Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental 
University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan. 2Laboratory of Food-borne Pathogenic 
Microbiology, Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of 
Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan. 3Department of Maxillofacial Surgery, Graduate School of 
Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, 
Japan. 4Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, 
Kyoto 606-8501, Japan. *These authors contributed equally to this work. Correspondence and requests for materials 
should be addressed to Y.T. (email: takeuchi.peri@tmd.ac.jp) or F.M. (email: maruyama.fumito.5e@kyoto-u.ac.jp)

received: 16 March 2016

accepted: 12 July 2016

Published: 08 August 2016

OPEN

http://www.who.int/mediacentre/factsheets/fs318/en/
mailto:takeuchi.peri@tmd.ac.jp
mailto:maruyama.fumito.5e@kyoto-u.ac.jp


www.nature.com/scientificreports/

2Scientific Reports | 6:30997 | DOI: 10.1038/srep30997

Peri-implantitis and periodontitis are polymicrobial diseases that present with similar clinical symptoms10. 
Most periodontitis cases respond favourably to treatment and show long-term stability of periodontal tissues11. 
However, clinical treatments for peri-implantitis—including those used for periodontal disease—are often 
ineffective12. In addition, peri-implantitis has been found to progress more rapidly than periodontitis in animal 
models13. To clarify the cause of differences between the two diseases, studies have characterised their respective 
microbiomes using culture-independent molecular approaches, including DNA hybridisation and 16S rDNA 
sequencing14–16. However, the causative microbial species in peri-implantitis and periodontitis are disputed. 
Several studies have reported the predominance of microbial species common to both diseases16, others unique 
to peri-implantitis sites have also been described10. One possible reason for these conflicting results is the pres-
ence of dead and/or inactive microbes in previous studies, which were based on DNA sequencing. Alternatively, 
microbiome samples from peri-implantitis and periodontitis sites were not obtained from the same oral cavity 
except in one study15.

To establish a means of differentiating between peri-implantitis and periodontitis, we investigated the micro-
bial species associated with each disease as well as their functions in situ by carrying out a metatranscriptomic 
analysis at peri-implantitis and periodontitis sites in the same subjects. Our findings reveal that although they 
share similarities in their mRNA profiles, differences in interacting core taxa of co-occurrence networks account 
for the distinct etiologies of these diseases.

Results
Clinical characteristics of subjects and summary of sequence reads.  A total of 12 patients (five 
men and seven women) with both peri-implantitis and periodontitis were recruited for this study. The average 
age was 64.5 years (range: 49–80 years); one patient was a smoker. There were no significant differences in the 
following clinical parameters for the two disease sites: years in function (for peri-implantitis sites only), probing 
depth, clinical attachment level, bleeding on probing, suppuration, and radiographic bone loss (Table 1, schematic 
illustrations in Supplementary Figs S1 and S2, and Supplementary Results).

Evaluation of microbiome microbial compositions based on 16S rRNA sequences.  When short 
metagenomic reads were analysed, there was no representative microbial composition as previously described17. 
In this approach, small subunits of the rRNA gene (16S/18S) were reconstructed using a mapping-based algo-
rithm17. To assign microbial compositions with high resolution in situ and identify microbial species responsible 
for the diseases, we characterised the composition at both disease sites by sequencing total RNA and performing 
full- or nearly full-length reconstruction of their 16S rRNA regions18. The number of reconstructed 16S rRNAs 
(hereafter referred to as rc-rRNAs) forming operational taxonomic units (OTUs) was 58.5 ±​ 21.8 and 62.3 ±​ 20.3 
in peri-implantitis and periodontitis samples, respectively (Supplementary Fig. S3a). Using the Human Oral 
Microbiome Database (HOMD)19, rc-rRNAs were assigned to 184 microbial taxa at the species level, with 150 and 
164 taxa identified in peri-implantitis and periodontitis samples, respectively (Supplementary Table S2). There 
were no significant differences in alpha diversity, the number of OTUs (P =​ 0.715), or Shannon index (P =​ 0.834) 
between the two diseases (Supplementary Fig. S3a). Results from rarefaction curves indicated that a sufficient 
number of reads was obtained for 16S rRNA analyses (Supplementary Fig. S3b).

A dendrogram with a heat map and principal coordinates analysis (PCoA) plot (based on 1 −​ Spearman’s coef-
ficient) was generated to examine differences in beta diversity. Most of the samples formed two clusters (Fig. 1), 
indicating differences in beta diversity between the two diseases. This was supported by an analysis of similarity 
(ANOSIM), which revealed that microbial compositions were dissimilar between the two groups (R =​ 0.399 and 
P =​ 1.00E-3). In addition, microbial composition at the genus level was diverse among samples for each disease 
and between both samples from each individual (Supplementary Fig. S4a). However, the predominant species 
were similar (Supplementary Fig. S3c and Supplementary Table S2), and no species differed significantly in terms 
of rc-rRNA abundance between the two diseases in Wilcoxon signed-rank tests.

Peri-implantitis Periodontitis P value (two-tailed paired t test)

Age 64.5 ±​ 7.0a —

Gender (males/females) 5/7 —

Smoking/non-smoking 1/11 —

Sampled sites Maxillary anterior 2 1 0.34

Maxillary posterior 5 7 0.17

Mandibular anterior 0 1 0.34

Mandibular posterior 5 3 0.17

Years in function 8.6 ±​ 7.2a —​ —​

PD (mm) 8.2 ±​ 2.9a 8.3 ±​ 3.1a 0.95

CAL (mm) 8.3 ±​ 2.8a 9.9 ±​ 3.9a 0.35

Number of sites with BOP 12 12 —​

Number of sites with SUP 4 3 0.34

Radiographic bone loss (%) 52.4 ±​ 20.6a 60.9 ±​ 15.6a 0.29

Table 1.   Clinical characteristics of study subjects. aValues represent mean ±​ standard deviation. BOP, 
bleeding on probing; CAL, clinical attachment level; PD, probing depth; SUP, suppuration.
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Functional profiles of microbiomes.  The above analyses revealed dissimilarities in microbial composi-
tion between the two diseases; however, examining mRNA profiles can provide greater insight into functional 
differences between microbiomes20,21. We used the publically available Metagenomics Rapid Annotation using 
Subsystem Technology (MG-RAST) analysis pipeline to characterise putative mRNA reads in our data. We also 
used the SEED subsystems database to categorise functional genes into four hierarchical subsystems22. A total 
of 2461 and 2379 functional genes were assigned to peri-implantitis and periodontitis samples, respectively 
(Supplementary Table S3). Of these, 2006 were common to both diseases. There was no significant difference in 
the number of functional genes between the two diseases (P =​ 0.41). Among level-1 SEED subsystems, ‘carbo-
hydrates’ was predominant at both peri-implantitis (22.1 ±​ 4.9%) and periodontitis (21.7 ±​ 5.1%) sites, followed 
by ‘protein metabolism’ and ‘clustering-based subsystems’ (Fig. 2A). The composition of level-1 subsystems was 
similar among samples of each disease and between both samples from each individual (Fig. 2A). An ANOSIM 
showed similarities in the functional profiles (R =​ 5.26E-5 and P =​ 0.403), and there were no genes with signifi-
cantly different mRNA abundance between the two diseases in Wilcoxon tests.

Similar functional compositions were observed in the MG-RAST-processed data using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database, in which metabolic pathways are listed hierarchically23. 
According to this analysis, 1380 and 1291 genes were assigned to peri-implantitis and periodontitis sites, respec-
tively (Supplementary Table S4) and 1134 genes were shared by both diseases. There was no significant difference 
in the number of functional genes between the two disease groups (P =​ 0.370), which shared most metabolic 
pathways (Fig. 2B and Supplementary Table S4). Although there were some disease-specific pathways (Fig. 2B), 
most were active in only a single sample (Supplementary Table S4). Similar functional profiles were observed in 
an ANOSIM (R =​ −​1.00E-4 and P =​ 0.471), and the results of the Wilcoxon tests showed no differences in expres-
sion between samples of either disease, in agreement with the SEED subsystems database assignments.

We also examined whether there were similarities when using the National Center for Biotechnology 
Information non-redundant (NCBI nr) protein database for functional assignment24 (Supplementary Fig. S1). In 
this database, protein functions are not categorised or organised hierarchically, but are archived with descriptions 
of the taxonomic origins of each function. A total of 95 487 ±​ 47 017 and 110 868 ±​ 64 965 clusters25 were formed 
from the pre-processed reads (i.e., those in which low-quality bases and putative eukaryotic organisms from raw 
reads were removed) for the peri-implantitis and periodontitis sites, respectively; of these, 22 988 ±​ 16 581 and 
42 831 ±​ 18 992, respectively, were removed as clusters derived from putative 16S rRNA reads. The remaining 
clusters were further analysed as mRNA clusters (72 499 ±​ 48 541 and 68 038 ±​ 54 801 in the peri-implantitis 
and periodontitis samples, respectively). Using the NCBI nr database, these were assigned to 22 613 and 21 187 
functional genes, respectively, for a total of 30 923 distinct mRNA clusters (Supplementary Table S5). In total, 
12 737 genes were common to the two diseases; hypothetical and ribosomal proteins were predominant in both. 
In the dendrogram and PCoA plot, samples from each disease had similar mRNA profiles for the two diseases 
(Fig. 2C,D). An ANOSIM revealed similarity between the two groups (R =​ −​1.18E-2 and P =​ 0.627), and the 
Wilcoxon tests showed no differences in read abundance of mRNA clusters or mRNA abundances for any of the 
genes between them. These observations were cosistent even when hypothetical and ribosomal proteins were 
excluded (data not shown).

Figure 1.  Dendrogram with a heat map and a PCoA plot of rc-rRNA profiles. (A) Dissimilarity values (1 −​ 
Spearman’s coefficient) were clustered using the average linkage method, as shown in the dendrogram. Disease 
types and patient numbers are shown under the tree. The heat map shows log2 rc-rRNA abundances for each 
taxon, as indicated by the colour gradient. (B) PCoA was carried out for the dissimilarity matrix value of 1 −​  
Spearman’s coefficient, and 12 samples from the peri-implantitis (blue circles) and periodontitis (red circles) 
groups were plotted with two coordinates. The mean and standard deviation in each axis are indicated by an 
ellipse for each disease group. Dots corresponding to peri-implantitis and periodontitis samples from the same 
patient are connected by a broken line.
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Functional profiles of putative virulence factors.  The SEED subsystems, KEGG, and NCBI nr data-
bases were used for comprehensive functional assignment of metatranscriptomic data, whereas virulence factor 
databases were more informative for generating detailed profiles of virulence genes20,21. Functional assignments 
for mRNA clusters relied on the Virulence Factors of Pathogenic Bacteria (VFDB; http://www.mgc.ac.cn/VFs/) 
and MvirDB (http://mvirdb.llnl.gov/) databases26,27. A total of 1579 and 1537 virulence genes in the VFDB were 
used to assign mRNA clusters found in peri-implantitis and periodontitis samples, respectively (Supplementary 
Table S6); of 1827 analysed genes, 1289 were common to both diseases. An elongation factor-encoding gene was 
most prevalent in peri-implantitis and periodontitis (9.89 ±​ 1.07% and 10.13 ±​ 2.26%, respectively), followed 
by glyceraldehyde 3-phosphate dehydrogenase, alkyl hydroperoxide reductase (ahpC), and enolase genes. The 
mRNA profiles of the two diseases were similar based on dendrograms and PCoA plots (Fig. 3A,B), which was 
supported by an ANOSIM (R =​ 3.16E-​04 and P =​ 0.482). Wilcoxon tests revealed no differences in mRNA abun-
dance of any virulence genes between the two diseases.

The MvirDB returned 2722 and 2622 virulence genes for the assignment of mRNA clusters in the 
peri-implantitis and periodontitis samples, respectively (Supplementary Table S7); 2136 genes were shared by 
both diseases. The predominant genes in terms of mRNA abundance were similar between peri-implantitis and 
periodontitis, although their rank order differed (Supplementary Table S7). As with assignments made with the 
VFDB, the similarity in mRNA profiles was apparent in the dendrogram-PCoA plot (Fig. 3A,B) and by ANOSIM 
(R =​ −​1.82E-2 and P =​ 0.738), and there was no difference in the mRNA abundance of any gene between the two 
diseases.

Our metatranscriptomic data were further characterised according to mRNA profiles of virulence factors, 
which were designated as microbial virulence (MV) types. The MV types of peri-implantitis and periodontitis 
sites were similar, suggesting that the two diseases were associated with similar virulence factors. This raised the 
question of whether MV types of diseased and healthy sites differ. MV types were assigned to RNA sequencing 
(RNA-seq) data from samples of healthy periodontal sites20, which were then compared to our data. The MV 
types observed in our data were distinct from those of healthy sites, as shown by PCoA plots based on assign-
ments made with the VFDB and MvirDB (Fig. 4 and Supplementary Table S8). This was supported by ANOSIMs: 
we determined correlations of R =​ 0.980, P =​ 3.00E-3 and R =​ 0.845, P =​ 3.00E-3 for peri-implantitis and 

Figure 2.  mRNA profiles obtained following assignment with SEED subsystems and KEGG and NCBI nr 
databases. (A) Percentage composition of level-1 SEED subsystems are shown for each sample ID, with the 
corresponding colours shown in the box below. (B) Active KEGG pathways present in any of the 12 samples 
for each disease (left map) and common and disease-specific pathways (middle and right maps, respectively). 
(C) Dendrogram constructed based on mRNA abundances during assignments with the NCBI nr database, 
as described in Fig. 1A. (D) PCoA plot prepared from mRNA profiles assigned with the NCBI nr database, as 
described in Fig. 1B.

http://www.mgc.ac.cn/VFs/
http://mvirdb.llnl.gov/
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periodontitis, respectively, vs. healthy sites using VFDB-based profiles; and R =​ 0.867, P =​ 3.00E-3 and R =​ 0.783, 
P =​ 5.00E-3, respectively using MvirDB-based profiles. These results indicate that MV types of the disease sites 
differed from those of healthy body sites, despite similarities between the two diseases.

Characterisation of taxonomic mRNA origins and detection of viable taxa with high mRNA 
abundance.  A previous metatranscriptomic study reported that microbial composition determined based on 
16S rRNA sequences differed from that based on taxonomic mRNA profiles in active sludge28. Using data that was 
functionally assigned with NCBI nr, we first assessed the taxonomic origin of each gene for taxonomic assignment 
of mRNA clusters (see Supplementary Figs S4B and S5A, Supplementary Table S9, and Supplementary Results). 
PCoA plots and ANOSIMs showed differences in the species compositions of mRNA and read abundances for 
rc-rRNAs (Fig. 5A; R =​ 0.496, P =​ 1.00E-3 in peri-implantitis and R =​ 0.588, P =​ 1.00E-3 in periodontitis sam-
ples). Taxa detected in both rc-rRNA and mRNA profiles were defined as viable taxa with in situ function (VTiF), 

Figure 3.  Functional mRNA profiles for assignments made with VFDB and MvirDB. (A) Dendrograms 
constructed as described in Fig. 1A. Disease types and patient numbers are shown under the tree. The heat map 
shows log2 mRNA abundances for each functional gene. (B) PCoA plots prepared as described in Fig. 1B.
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of which 146 and 133 were identified in the peri-implantitis and periodontitis samples, respectively. Wilcoxon test 
results revealed significant differences in read abundance of each VTiF between rc-rRNA and mRNA clusters (96 
and 74 taxa in the peri-implantitis and periodontitis samples, respectively; Supplementary Table S10). Log ratio–
mean average (MA)-plots showed that these VTiFs mainly included taxa with high relative mRNA-to-rRNA 
ratio (referred to as active taxa), with mRNA abundances higher than rc-rRNA abundances (93/96 and 
70/74 in peri-implantitis and periodontitis samples, respectively; Fig. 5B and Supplementary Table S10).  
Relative mRNA-to-rRNA ratios were indicators of the viability and functionality of microbial taxa responsible for 
disease etiology29,30 in the same way that the 16S rRNA-to-16S rDNA ratio has been used as an indicator of cur-
rent bacterial activity31. In peri-implantitis samples, Slackia exigua and Eubacterium saphenum showed a relative 
mRNA-to-rRNA ratio >​7; in periodontitis samples, Porphyromonas sp., Prevotella oralis, Campylobacter concisus, 
Treponema socranskii, and Veillonella sp. showed a relative mRNA-to-rRNA ratio >​7 (Fig. 5C and Supplementary 
Table S10).

VTiFs in co-occurrence networks and interacting core taxa.  Specific microbial co-occurrence pat-
terns in polymicrobial disease were previously characterised by correlation analysis15, which is a useful tool 
for identifying representative and important microbial associations in polymicrobial disease32. We analysed 
co-occurrence relationships in mRNA profiles of VTiFs by constructing network structures (referred to as 
co-occurrence networks) in which two co-occurring taxa were indicated by nodes and connected by a degree. 
There were one and two main network(s) with >​ three nodes in peri-implantitis and periodontitis samples, 
respectively. Means of 1.75 and 1.21 degrees per node connected 79 peri-implantitis and 71 periodontitis nodes, 
respectively, with clustering coefficients of 0.221 and 0.165, respectively, in these networks (Fig. 6). Active taxa 
were prevalent in the networks, with 60/79 and 45/71 such cases found in peri-implantitis and periodontitis 
samples, respectively (Fig. 6 and Supplementary Tables S10–S12). Most nodes connected by interactions with 
significant co-occurrence were active taxa and were detected in at least eight patients; these taxa were considered 
as interacting core taxa (Fig. 6 and Table 2).

Discussion
Polymicrobial communities are composed of a variety of microorganisms, including bacteria, archaea, fungi, 
and viruses. The microbiome of oral cavities comprise ~600–1000 species of bacteria alone33. We previously 
showed by sequencing PCR-amplified 16S rRNA libraries that many microorganisms are responsible for chronic 
osteomyelitis of the jaw4 and peri-implantitis and periodontitis15. RNA-Seq is a powerful tool for examining the 
diversity of microbial species and their functional profiles since the obtained data reflect RNA abundance in situ34. 
We carried out metatranscriptomic analyses of peri-implantitis and periodontitis samples from the same oral 
cavities to minimise the effects of inter-individual differences. Using this approach, we observed microorganisms 
common to as well as differing between the two diseases with similar clinical symptoms. Moreover, we found 
similarities in functional profiles—including metabolic pathways and virulence factors—whereas interacting core 
taxa were dissimilar between the two diseases.

We first characterised the taxonomic profiles of microbial species in peri-implantitis and periodontitis 
samples by quantifying 16S rRNA instead of 16S rDNA; viable species were assigned while dead species were 
excluded35. Consistent with previous reports15,20, we detected high rc-rRNA abundances of Porphyromonas gingi-
valis, Treponema denticola, and Tannerella forsythia in both diseases (Supplementary Fig. S3C and Supplementary 
Table S2). These species are collectively known as the red complex and are prevalent in deep periodontal pockets 
and thus strongly associated with periodontitis36. Although microbial transmission from periodontal lesions to 

Figure 4.  PCoA plots of functional profiles for diseased and healthy sites. PCoA plots of functional profiles 
for our sequence data, as well as downloaded data pertaining to healthy sites assigned with the VFDB and 
MvirDB, were prepared as described in Fig. 1B.
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implant-adjacent tissues may underlie the onset of peri-implantitis37, samples from both diseases showed dis-
tinct microbial compositions (Fig. 1A,B), despite the similarities reported in our previous DNA-based study15. In 
addition, species common to both diseases with relative abundances of ≥​0.5% observed here and in a previous 
study15 showed partial overlap (19.64% of 11/56 in this study), including P. gingivalis, T. denticola, T. forsythia, and 
Eubacterium nodatum (Supplemental Table S2), although both studies used the HOMD for taxonomic assign-
ments. These differences could be due to amplicon bias38 and the detection of dead bacteria in DNA samples35.

It was previously reported that functional microbiome profiles of various healthy body sites were similar in 
terms of robustness, despite differences in microbial composition39. It is thus possible that peri-implantitis and 
periodontitis have distinct microbial compositions but similar functional profiles. Functional assignment of puta-
tive mRNA reads revealed that mRNA profiles were similar between the two diseases, with no functional gene dif-
fering significantly in terms of mRNA abundance between them according to assignments made with the SEED 
subsystems, KEGG, and NCBI nr databases (although some disease-specific genes were identified). The diseases 
shared some of the same SEED subsystems (such as ‘carbohydrates’ and ‘protein metabolism’) and KEGG path-
ways (Fig. 2 and Supplementary Tables S3 and S4) related to functions essential for microbial viability. However, 
microbial functional categories associated with the progression of both diseases showed low abundance. The 
level-1 SEED subsystem ‘fatty acids, lipids, and isoprenoids’—which is reportedly associated with periodontitis 
progression40—showed a prevalence of 2.22 and 2.43% at peri-implantitis and periodontitis sites, respectively, 
while the ‘virulence, disease, and defense’ subsystem showed a prevalence of 2.22 and 1.84%, respectively, at these 
sites. These were lower than percentages in environmental sample microbiomes41. We further analysed putative 
mRNA reads using the virulence-factor databases VFDB and MvirDB (Supplementary Tables S6, S7). Similarities 
were observed in the mRNA profiles of both disease sites despite being limited to virulence functions (Fig. 3A,B); 
these included genes encoding elongation factor Tu, glyceraldehyde 3-phosphate dehydrogenase, alkyl hydrop-
eroxide reductase (ahpC), and enolase (Supplementary Table S6). There were no correlations between the mRNA 
abundance of virulence factors and clinical parameters (data not shown); indeed, the presence of virulence factors 
may be more important than their relative abundances at disease sites42. Correlations may have been observed if 
the virulence functions had been highly specific instead of broad.

Figure 5.  Differences in rc-rRNA and taxonomic mRNA profiles. (A) PCoA was performed to analyse 
rc-rRNA and mRNA abundances, and 12 samples in both the peri-implantitis and periodontitis groups are 
plotted with two coordinates. The mean and standard deviation in each axis are indicated by an ellipse. Dots 
corresponding to rc-rRNA and mRNA in the same patient are connected by a broken line. (B) VTiFs shown 
in MA plots for peri-implantitis and periodontitis samples. The y axis shows difference values [M] of rc-rRNA 
and mRNA abundances and the x axis shows mean values [A]. Coloured points indicate taxa with statistically 
significant differences in abundance between rc-rRNAs and mRNAs. (C) mRNA/rc-rRNA abundance ratio 
calculated for each VTiF shown in (B); predominant taxa (based on mean log2 ratios) for the 12 samples are 
shown in descending order.
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Peri-implantitis and periodontitis showed similar mRNA profiles although these were of virulence functions; 
different functional profiles may occur at healthy periodontal sites. Functional pathways in healthy and peri-
odontitis sites have been compared by metatranscriptomic analysis43. In addition, differences in mRNA abun-
dance between healthy and periodontitis sites have been reported for each microbial taxon and for functional 
and taxonomic profiles of virulence factors20. When the functional properties were clustered in the same manner 
as enterotypes for enteric bacteria44, they highlighted the microbiological origin of both diseases as well as their 

Figure 6.  Co-occurrence networks of VTiF profiles. (A) All networks are shown with each microbial taxon 
and co-occurrence relationship indicated by a node and edge, respectively. Active taxa are indicated with bold 
circles, and interactions with significant co-occurrence are indicated with bold lines. Interacting core taxa are 
indicated in red text for peri-implantitis and periodontitis samples.



www.nature.com/scientificreports/

9Scientific Reports | 6:30997 | DOI: 10.1038/srep30997

contrast with healthy sites. In this study, we compared the MV types of both diseases with those of healthy sites 
using metatranscriptomic data from a previous study20, and demonstrated that the MV types of peri-implantitis 
and periodontitis sites were distinct from those of healthy sites (Fig. 4). In microbiomes showing dysbiosis, there 
was a reduction in microbial functional robustness in the healthy state following changes in MV type, which led 
to the diseased states. We therefore propose that MV types determined only by assignment of virulence factors 
can serve as a means of distinguishing between diseased and healthy states.

It was not always the case that the major species were also functionally predominant or that the taxonomic 
origins of functional genes were similar between two diseases with similar functional profiles. We therefore deter-
mined the taxonomic origins of functional genes using the NCBI nr database. The red complex species were 
predominant in terms of mRNA abundance and in the rc-rRNA profile, indicating that they are associated with 
both diseases. However, there were similarities in the taxonomic profile and origin of each mRNA. The taxonomic 
profiles of rc-rRNAs differed from those of mRNA clusters in both disease groups (Fig. 5A,B); this was consistent 
with previous results obtained by comparing microbial compositions between 16S rRNA and mRNA using the 
same database28. Since the results may have been affected by differences in the databases for the assignment of 
rc-RNA and mRNA clusters, we focused on VTiFs shared by the rc-rRNA and mRNA profiles and evaluated the 
functional activities of each VTiF by calculating their ratios of mRNA-to-rc-rRNA abundance. The anaerobic 
Gram-positive rod S. exigua45 and E. saphenum were highly abundant in peri-implantitis samples. S. exigua DNA 
was detected at slightly higher levels at periodontitis sites than at healthy sites, while E. saphenum DNA was more 
abundant at the former46. These two taxa were also more abundant at peri-implantitis sites than at healthy implant 
sites47. Taxa that were active in periodontitis samples (Fig. 5C) were also detected at periodontitis sites in a pre-
vious study48. Our analyses also revealed unclassified bacterial taxa whose functions and virulence are unknown 
but that highlight the dissimilarity between the two diseases. Our results demonstrate that metatranscriptomic 
analysis—including taxonomic mRNA classification—can detect active taxa in the microbiome.

We also observed that co-occurrence relationships in mRNA-based taxonomic profiles of VTiFs may be dis-
similar between peri-implantitis and periodontitis when visualised by network structures (Fig. 6), although this 
was not apparent in the taxonomic mRNA profiles described above. Microbial network analyses can be used to 
characterise microbial interactions in environments such as soil and oral-cavity samples32,49. The networks were 
more complex in the peri-implantitis as compared to the periodontitis microbiome (Fig. 6); in the former, the red 
complex species P. gingivalis, T. denticola, and T. forsythia were associated with each other, whereas in the latter 
there were limited connections between P. gingivalis and T. denticola. Furthermore, active taxa were prevalent in 
the networks of both diseases (Fig. 6). In periodontitis samples, the interacting core taxa included E. nodatum, 
Streptococcus pneumoniae, and Atopobium sp., which are reportedly more abundant at periodontal sites than at 
healthy sites affected with periodontitis21. P. gingivalis and Prevotella nigrescens were among the interacting core 
taxa in peri-implantitis samples and were found to be more abundant16 while Veillonella dispar was less abun-
dant50 at peri-implantitis sites than at healthy implant sites. Previous data showed that P. gingivalis is a major 
species in oral biofilm, which can lead to dysbiosis through changes in polymicrobial community composition51. 

Specificity to 
disease groups Species name

Log2 mRNA/
rc-rRNA ratio

Number of 
samples detected Species name

Log2 mRNA/
rc-rRNA ratio

Number of 
samples detected

Positive correlation 
coefficient

Specific to peri-
implantitis group Porphyromonas sp. 6.863 12 Porphyromonas gingivalis 1.098 12 0.740

Porphyromonas endodontalis 1.238 12 Filifactor alocis 1.207 12 0.643

Streptococcus sp. 2.489 12 Streptococcus oralis 0.878 11 0.625

Porphyromonas endodontalis 1.238 12 Eubacterium brachy 4.465 11 0.605

Selenomonas sputigena 5.428 10 Selenomonas sp. 4.771 12 0.605

Streptococcus sp. 2.489 12 Selenomonas sputigena 5.428 10 0.601

Treponema medium 2.409 9 Porphyromonas endodontalis 1.238 12 0.526

Treponema medium 2.409 9 Fretibacterium fastidiosum 2.154 12 0.496

Oribacterium sp. 1.361 11 Eubacterium sulci 5.186 11 0.487

Solobacterium moorei 2.421 9 Eubacterium infirmum 3.113 11 0.483

Oribacterium sp. 1.361 11 Atopobium rimae 2.072 9 0.479

Filifactor alocis 1.207 12 Desulfovibrio sp. 2.398 10 0.443

Neisseria subflava 3.314 11 Corynebacterium durum 0.187 8 0.431

Prevotella oralis 6.469 11 Atopobium parvulum 2.493 9 0.413

Streptococcus mutans 1.760 11 Prevotella melaninogenica 2.460 11 0.392

Selenomonas sputigena 5.428 10 Desulfovibrio sp. 2.398 10 0.375

Specific to 
periodontitis group Treponema vincentii 4.598 11 Porphyromonas endodontalis 1.300 11 0.595

Streptococcus pneumoniae 2.080 10 Gemella haemolysans 0.592 11 0.468

Gemella morbillorum 1.696 11 Corynebacterium matruchotii 2.583 9 0.430

Streptococcus sp. 2.615 10 Rothia mucilaginosa 2.928 9 0.384

Prevotella oralis 7.763 11 Atopobium sp. 6.261 12 0.355

Table 2.   Interactions of interacting core taxa.
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In this study, P. gingivalis was included among interacting core taxa in the peri-implantitis but not in the peri-
odontitis microbiome. Moreover, there were no significant interactions common to the two diseases (Table 2). 
These network dissimilarities are presumed to be associated with differences in disease etiology.

Our analytical methods provide an approach for characterising the interactions between the putative causal 
agents of diseases based on 16S rRNA and mRNA expression data. We also propose that it could be useful for 
characterising the MV types. Additional studies with a larger number of analysed samples could help identify 
differences in the functional profiles of the two diseases and clarify the role of interacting core taxa52.

In summary, we propose that interacting core taxa in co-occurrence networks offer novel insights into 
polymicrobial diseases with similar mRNA profiles. The observed similarities and dissimilarities could explain 
the common symptoms and differences in disease progression, respectively. In microbiomes with dysbiosis, we 
characterised MV types that were distinct from those of healthy sites and found that the breakdown of microbial 
functional robustness in the healthy state leads to a diseased state. Our findings provide a basis for the develop-
ment of treatment approaches specific to peri-implantitis or periodontitis as well as a framework for metatran-
scriptomic studies of other polymicrobial diseases with unknown etiologies. This, in turn, can lead to a deeper 
understanding of the relationship between healthy and diseased states at various sites in the human body.

Methods
Overview of experimental workflow and statistical analyses.  Experiments were performed as 
shown in the flowchart in Supplemental Fig. S1. Statistical analyses are schematically illustrated in Supplemental 
Fig. S2 and described in the Supplementary Methods.

Ethical statement.  This study was performed in accordance with the Ethical Guidelines for Clinical Studies 
(2008 Notification number 415 of the Ministry of Health, Labor, and Welfare). Ethical approval was obtained 
from the Ethics Committee of Tokyo Medical and Dental University (approval no. 661), and all patients provided 
informed consent before their participation.

Patient selection and clinical assessment.  Twelve subjects with at least one dental implant functioning 
for ≥​1 year with peri-implantitis as well as one tooth with periodontitis were recruited for this study at the Tokyo 
Medical and Dental University Hospital Faculty of Dentistry from 2012 to 2013 (Table 1). The patients were 
healthy adults who had not received systemic antibiotics or oral anti-inflammatory agents in the 3 months prior to 
enrollment in the study. For all implants and teeth in each patient, probing depth (PD), clinical attachment level, 
bleeding on probing (BOP), and suppuration (SUP) were assessed at six sites per implant or tooth (i.e., mesiobuc-
cal, buccal, distobuccal, mesiolingual, lingual, and distolingual sites). Bone loss surrounding each implant/tooth 
was examined with intra-oral periapical radiographs using Insight Dental Films (Eastman Kodak Co., Tokyo, 
Japan) obtained using the parallel technique, and was quantified by a single examiner as previously described2,3. 
Based on clinical data, one implant and one tooth exhibiting PD ≥​ 4 mm, BOP and/or pus, and radiographic bone 
loss were selected for sample collection (Table 1).

Procedure for obtaining Illumina sequence data.  Subgingival plaque samples were obtained from the 
peri-implant and periodontal pockets at the deepest of six sites in each implant/tooth using sterile cotton and 
were dried to reduce eukaryotic DNA contamination. Ten pieces of paper were inserted into the pocket for 30 s, 
placed in a sterile tube, and stored at −​80 °C. RNA was extracted from each sample, followed by cDNA synthesis 
and library preparation, and Illumina sequencing (Supplementary Methods). Sequence data were processed as 
described in the Supplementary Methods.

Reconstruction and taxonomic assignment of putative 16S rRNA reads.  Pre-processed, paired-read 
data were screened with EMIRGE17 to select putative reads derived from 16S rRNA genes and to form rc-rRNAs as 
OTUs. The rc-rRNAs were assigned by BLASTN against the HOMD19. Alpha and beta diversities were estimated 
and visualised by a dendrogram-PCoA plot and heat map. Detailed procedures are descried in Supplementary 
Methods.

Functional assignment of putative mRNA reads with the MG-RAST pipeline.  Pre-processed data 
were further processed with MG-RAST (v.3.3)53 to obtain mRNA profiles with the online BLAT program54, which 
were then analysed using the SEED subsystems22 and KEGG23 databases (Supplementary Methods).

Formation of mRNA clusters and functional annotation.  Clusters were formed from pre-processed 
data using the Cluster Database at High Identity with Tolerance program25, and putative 16S rRNA reads were 
removed (Supplementary Methods). The remaining (mRNA) clusters were presumed to be derived from mRNA 
reads and their abundance was calculated as the number of reads in that cluster. The mRNA clusters were assigned 
by BLASTX against the NCBI nr, VFDB, and MvirDB databases as described in the Supplementary Methods. 
A dendrogram-PCoA plot and heat map were prepared as described for rc-rRNA analyses.

Evaluation of differences in taxonomic profiles between rc-rRNAs and mRNAs.  The assignment 
of rc-rRNA and mRNA clusters took into account differences in sequence type (nucleic/amino acid) and sam-
pled environments among the databases used. The taxonomic names of rc-rRNAs in the HOMD were manu-
ally adjusted to those of mRNA clusters, which were excluded if they were not in the list of adjusted names for 
rc-rRNAs, since the breadth of sampled environments was greater in the NCBI nr than in the HOMD. In addi-
tion, the % reads per kilobase per million mapped reads (RPKM) values obtained when assigning rc-rRNAs were 
converted to RPKM values (Supplementary Methods).
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The Spearman’s coefficient was calculated for all pairs of each sample during the assignment of rc-rRNAs with 
HOMD and of mRNA clusters with NCBI nr. A dissimilarity matrix based on the value 1 −​ Spearman’s coefficient 
for both disease groups was used for the PCoA. The average and difference of paired log2 values of rc-rRNAs and 
mRNAs were calculated for each taxon to obtain MA plots for both sample groups55.

Characterisation of VTiF co-occurrence networks.  We first removed VTiFs with a relative abundance 
of <​0.1% of the total number of VTiF reads52,56,57. Co-occurrence coefficients were then calculated using the 
SparCC program58 and the mRNA taxonomic abundances in each disease. Ten iterations were used to estimate 
the median correlation of each pairwise comparison, and the statistical significance of each correlation was calcu-
lated by bootstrapping with 500 iterations56. Taxon pairs with SparCC values ≥​0.3 were considered as exhibiting 
a co-occurrence relationship with a positive correlation. Our criterion for significance testing was more stringent 
than the previously used value of ≥​0.2559. Co-occurrence patterns were drawn using a network structure in which 
each taxon and co-occurrence was indicated by a node and edge, respectively, for all taxon pairs with a positive 
correlation. The networks were visualised using Cytoscape software v.2.860.
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