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Accurate segmentation of liver from abdominal CT scans is critical for computer-assisted diagnosis and therapy. Despitemany years
of research, automatic liver segmentation remains a challenging task. In this paper, a novel method was proposed for automatic
delineation of liver on CT volume images using supervoxel-based graph cuts. To extract the liver volume of interest (VOI), the
region of abdomen was firstly determined based on maximum intensity projection (MIP) and thresholding methods. Then, the
patient-specific liver VOI was extracted from the region of abdomen by using a histogram-based adaptive thresholding method
and morphological operations. The supervoxels of the liver VOI were generated using the simple linear iterative clustering (SLIC)
method. The foreground/background seeds for graph cuts were generated on the largest liver slice, and the graph cuts algorithm
was applied to the VOI supervoxels.Thirty abdominal CT images were used to evaluate the accuracy and efficiency of the proposed
algorithm. Experimental results show that the proposed method can detect the liver accurately with significant reduction of
processing time, especially when dealing with diseased liver cases.

1. Introduction

Liver cancer is one of the most common cancers worldwide,
with increasing morbidity and high mortality [1]. Computed
Tomography (CT) has been widely used for clinical diagnosis
of hepatic disease because of its high resolution. Accurate
liver segmentation from abdominal CT scans is critical for
computer-assisted diagnosis and therapy, including patient-
specific liver anatomy evaluation, functional assessment, treat-
ment planning, and image-guided surgery [2]. Traditionally,
radiologists or physicians have tomanually delineate the liver
region slice by slice, which is tedious and time-consuming
due to the large amount of data [3]. Therefore, accurate and
efficient methods for liver segmentation are demanded.

Liver segmentation from CT images remains an open
challenge due to the high variability in the shape and size
of liver, presence of pathologies like tumor or cirrhosis, and
low contrast with adjacent tissues or organs [4]. Recently, a
large variety of semiautomatic and automatic methods have
been developed to improve the liver segmentation procedure.

Thesemethods are commonly based on region growing [5–7],
clustering [8, 9], deformable models or level sets [10–13], sta-
tistical shapemodels (SSMs) [14, 15], probabilistic atlases [16–
18], and graph cuts [19–24]. Several comprehensive reviews of
liver segmentation techniques have been conducted [25–27].

Table 1 gives an overview of selected liver segmenta-
tion methods for CT images. Semiautomatic segmentation
methods tend to obtain more precise results compared to
automatic methods, while automatic methods can reduce
interoperator and intraoperator variability. Region growing
or clustering approaches are fast and easy to implement, but
they may become ineffective when the liver is inhomoge-
neous due to large lesions. Deformable models and level set
based methods are often used as the final step to refine the
segmented contour/surface to improve the accuracy, but they
are sensitive to the initial contour/surface and need an iter-
ative process which is time-consuming. Probabilistic atlases
and SSMs can offer highly accurate results, but they demand
sufficient training data with gold standards to generate the
atlases or shape models. Graph cuts methods have been
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Table 1: Overview of liver segmentation methods for CT images: auto = automatic; semi = semiautomatic; VOE = volumetric overlap error;
RVD = relative absolute volume difference; MaxD = maximum symmetric surface distance; DSC = dice similarity coefficient; RG = region
growing; DM = deformable model; SSM = statistical shape model; PA = probabilistic atlas; GC = graph cuts; local = from local hospitals;
Sliver07 = MICCAI 2007 grand challenge in segmentation of liver datasets.

Study Year Method Accuracy Dataset Auto Time (s) CPU (GHz)
Kumar et al. [7] 2013 RG DSC = 98% local Auto 40/slice —

Goryawala et al. [8] 2014 Clustering + RG DSC = 92%
RVD = 2.78% local Semi 10.96/slice —

Peng et al. [10] 2014 DM
VOE = 6.10%
RVD = −0.00%

MaxD = 16.80mm
Sliver07 Semi 180 3.16GHz

4GB RAM

Kainmüller et al. [15] 2007 SSM + DM
VOE = 6.09%
RVD = −2.86%

MaxD = 18.69mm
Sliver07 Auto 900 Intel 3.2 GHz

Linguraru et al. [16] 2010 PA + DM
DSC = 96.2%
VOE = 2.20%
ASD = 1.20mm

Sliver07 Auto — —

Platero and Tobar [18] 2014 PA + GC
VOE = 7.60%
RVD = −0.50%

MaxD = 24.70mm
Sliver07 Auto 261.35

Intel Xeon
E5520

2.27GHz
Massoptier and Casciaro [19] 2007 GC DSC = 95% local Auto — —

Li et al. [20] 2015 SSM + GC
VOE = 6.24%
RVD = 1.18%

MaxD = 18.82mm
Sliver07 Auto 284.95

Core(TM) i5
3.1 GHz

4GB RAM

Chen et al. [23] 2012 GC
VOE = 4.16%
RVD = 3.53%

MaxD = 16.70mm
Sliver07 Semi 60–180

Intel Core 2
2.66GHz
3.25 RAM

widely used in medical image segmentation because they
can achieve global optimum solution. For liver segmentation,
graph cuts methods based on adaptive thresholding [19],
SSMs [20], probabilistic atlas [16], and deformable models
[24] have been developed. However, directly constructing the
graph over the voxels of CT volume data will lead to a high
computational cost.

In this paper, we proposed a new method for automatic
liver delineation on CT volume images using supervoxel-
based graph cuts. It was highly efficient compared to other
methods and provided accurate segmentation results. Both
the liver volume of interest (VOI) and the foreground/back-
ground seed points for graph cuts were extracted automat-
ically. Supervoxels of the liver VOI were generated, and the
graph used for three-dimensional (3D) graph cuts segmenta-
tion was defined over the obtained VOI supervoxels.

The rest of this paper is organized as follows. Section 2
introduces the details of the proposed method. Section 3
describes the experiments. Section 4 shows the experimental
results, and discussion is given in Section 5. Conclusions are
summarized in Section 6.

2. Methods

The flow chart of the proposed approach is illustrated in
Figure 1. The proposed segmentation framework consisted
of five steps. (1) In the preprocessing step, smoothing and
resampling were conducted by using recursive Gaussian fil-
tering and linear interpolation, respectively. (2)The patient-
specific liver VOI extraction procedure was performed firstly

Original CT volume data

Preprocessing

Liver VOI extraction and 
largest liver slice selection

SLIC supervoxel partition 
on liver VOI

Graph cuts segmentation

Postprocessing

Figure 1: Flow chart of the proposed 3D liver segmentationmethod.

by determining the region of abdomen using maximum
intensity projection (MIP) [28] and thresholding methods,
followed by applying a histogram-based adaptive thresh-
olding method and morphological operations. The largest
liver slice, which was the axial slice containing the maximal
amount of liver tissue, was automatically selected. (3) The
generation of supervoxels was performed on the liver VOI
using the simple linear iterative clustering (SLIC) method
[29]. (4) In the segmentation step, foreground/background
seed points for graph cuts were selected on the largest liver
slice, and additional background seed points on regions of
heart and kidney were extracted automatically on selected
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heart and kidney slices. Gaussian mixture models (GMMs)
were used to estimate the intensity distributions of fore-
ground/background seeds [30]. Subsequently, the graph cuts
algorithm [31, 32] was applied to the VOI supervoxels. (5)
Finally, morphological opening, cavity filling, and median
filtering were used to refine the segmented liver. After being
resampled back to the original spatial resolution and size, the
segmentation result was output for evaluation.

2.1. Preprocessing. The preprocessing step included smooth-
ing and resampling. Recursive Gaussian filtering was first
applied to smooth the input CT volume image 𝐼. Then, the
smoothed CT volume image was resampled from anisotropic
to isotropic voxel size (1.5 × 1.5 × 1.5mm) by linear interpola-
tion to obtain the preprocessed volume image 𝐼pre.

2.2. Liver VOI Extraction and Largest Liver Slice Selection. For
computational efficiency, the region of abdomen 𝐼ROA was
firstly extracted from 𝐼pre to remove several nonabdominal
slices and voxels. Then, the liver VOI image 𝐼VOI was deter-
mined in 𝐼ROA.

2.2.1. 3D Abdominal Region Extraction. To extract the region
of abdomen 𝐼ROA, a 3D abdominal bounding box (ABB) was
measured using MIP and thresholding. Coronal and axial
MIP images were obtained by applying the MIP algorithm
to 𝐼pre. Let [𝑋min, 𝑋max, 𝑌min, 𝑌max, 𝑍min, 𝑍max] be the
coordinates of ABB, where𝑍min and Zmax were the lower and
upper bounding coordinates along 𝑧-axis and 𝑋min, 𝑋max,
𝑌min, and 𝑌max were the in-plane bounding coordinates. The
dimensions of 𝐼pre were denoted by 𝑢𝑥, 𝑢𝑦, and 𝑢𝑧 in 𝑥, 𝑦, and
𝑧 directions, respectively.

(1) Calculation of the Lower Bounding Coordinate 𝑍
𝑚𝑖𝑛

. For
the coronal MIP image 𝑀coronal (Figure 2(a)), which had a
size of 𝑢

𝑥
× 𝑢

𝑧
, segmentation of bones was performed using

theOtsu algorithm [33] to obtain the binary bonemask𝑀bone
(Figure 2(b)). Let 𝑛total denote the total number of pixels in
𝑀bone. The number of bone pixels 𝑛

𝑏
(in white color) was

counted.
If 𝑛
𝑏
/𝑛total < 3/4, 𝑀bone was regarded as successful

bone segmentation. Otherwise, if 𝑛
𝑏
/𝑛total ≥ 3/4, which

meant the extraction of bones failed, Otsu algorithm with
two thresholds was applied to𝑀coronal to generate thresholds
𝑇

1
and 𝑇

2
(𝑇
1
< 𝑇

2
); then,𝑀bone was obtained by applying

binary thresholding [𝑇
2
,𝑇max] to𝑀coronal, where𝑇max was the

maximum CT value in Hounsfield unit (HU).
For the bone mask 𝑀bone, morphological opening with

round structuring elements (radius 𝑟 = 3), cavity filling, and
median filtering were conducted to generate the processed
binary bone mask𝑀∗bone (Figure 2(c)).

For 𝑀∗bone, the number of bone pixels was calculated in
each column: 𝑖 = 0, 1, . . . , 𝑢

𝑥
− 1. Among multiple columns

with the maximum number of connected bone pixels, the
left-most column was regarded as the position of spine 𝑖spine
(shown as the blue line in Figure 2(c)).Then, among columns
𝑖 = 0, 1, . . . , 𝑖spine − 30 and 𝑖 = 𝑖spine + 30, . . . , 𝑢𝑥 − 1, the local
maximums of the number of connected bone pixels, 𝑐left and
𝑐right, were computed on both sides of the spine.

Assign 𝑍min = min(𝑐left, 𝑐right) − 5, shown as the red line
in Figure 2(c).

(2) Calculation of the In-Plane Bounding Coordinates 𝑋
𝑚𝑖𝑛

,
𝑋

𝑚𝑎𝑥
, 𝑌
𝑚𝑖𝑛

, and 𝑌

𝑚𝑎𝑥
. For the axial MIP image 𝑀axial

(Figure 2(d)), Otsu algorithm with two thresholds was used
to generate thresholds 𝑇

3
and 𝑇

4
(𝑇
3
< 𝑇

4
), and then binary

thresholding [𝑇
3
, 𝑇max] was applied to 𝑀axial to obtain the

binary abdomen mask𝑀abdomen (Figure 2(e)).
For𝑀abdomen, morphological closing (r = 1), cavity filling,

and selection of the largest connected region were performed
to generate the processed binary abdomen mask 𝑀∗abdomen
(Figure 2(f)).

A two-dimensional (2D) bounding box was determined
based on the abdominal region (in white color) in𝑀∗abdomen.
The coordinates of the 2D bounding box were then taken as
[𝑋min,𝑋max, 𝑌min, 𝑌max].

Assign [𝑋min, 𝑋max, 𝑌min, 𝑌max] ← [𝑋min − 5,𝑋max −
5, 𝑌min − 10, 𝑌max], as the liver was located in the right upper
quadrant of the abdomen, shown as the yellow rectangle in
Figure 2(f).

(3) Calculation of the Upper Bounding Coordinate Z
𝑚𝑎𝑥

. Lungs
are filled with air and have very low intensity values in CT
images. By applying binary thresholding [𝑇min, −300] to 𝐼pre,
where 𝑇min was the minimumCT value in HU, candidate air-
filled regions were extracted.Then, the binary lungmask 𝐼lung
was obtained by selecting lung regions among the candidate
air-filled regions. Figure 2(g) shows the 3D visualization of a
lung mask.

For 𝐼lung, the number of lung pixels was calculated in each
axial slice 𝑗 = 0, 1, . . . , 𝑢

𝑧
−1.The slice 𝑗max with themaximum

number of lung pixels was regarded as the upper bounding of
ABB (Figure 2(h)). Assign Zmax = 𝑗max, shown as the green
line in Figure 2(c).

Based on the extracted 3D abdominal bounding boxABB,
𝐼pre was cropped to obtain the region of abdomen 𝐼ROA.

2.2.2. Liver VOI Extraction. In the region of abdomen, liver
is the largest organ and located in the right upper quadrant
of the abdomen. Also, liver is the largest object in middle
axial slices of 𝐼ROA. According to this prior knowledge, the
liver VOI was extracted from 𝐼ROA by applying a histogram-
based adaptive thresholding method and morphological
operations.

For adaptive thresholding, a rough estimation of the liver
intensity range [𝑇lower, 𝑇upper] was calculated from the his-
togram of 𝐼ROA, where 𝑇lower and 𝑇upper denoted the minimal
and maximal intensity values of liver voxels, respectively.

By analyzing the volumetric histogram of 𝐼ROA, 𝐼ROA
could be classified as high contrast or low contrast [34]. The
image with two high peaks in the histogram was regarded as
high contrast (Figure 3(a)). If only one high peakwas detected
in the histogram, the image was regarded as low contrast
(Figure 3(b)).

In Figure 3, 𝑉 denoted the intensity value and ℎ(𝑉) was
the histogram value corresponding to 𝑉. If 𝐼ROA was a high
contrast image,𝑉

1
and𝑉

2
were taken as the intensity values of
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Figure 2: An example of the 3D abdominal region extraction. (a) Coronal MIP image. (b) The binary bone mask of (a). (c) The processed
binary mask. Blue line shows the position of spine. Red and green lines show the lower and upper bounding along 𝑧-axis, respectively. Yellow
lines are corresponding to the in-plane bounding box in (f). (d) Axial MIP image. (e) The binary abdomen mask of (d). (f) The processed
binary mask. Yellow rectangle shows the in-plane bounding box. (g) The extraction of lungs. (h) The binary lung mask with the largest lung
region area.

the valley and the second peak, respectively;𝑉
3
was calculated

by ℎ(𝑉
3
) = ℎ(𝑉

2
)/30, 𝑉

3
> 𝑉

2
; then, assign 𝑇lower = 𝑉1 and

𝑇upper = 𝑉3. If 𝐼ROA was a low contrast image, 𝑉
5
was taken as

the intensity value of the peak; then,𝑉
4
and𝑉
6
were calculated

by ℎ(𝑉
4
) = ℎ(𝑉

5
)/2, 𝑉

4
< 𝑉

5
and ℎ(𝑉

6
) = ℎ(𝑉

5
)/30, 𝑉

6
> 𝑉

5
,

respectively; assign 𝑇lower = 𝑉4 and 𝑇upper = 𝑉6.
By applying binary thresholding [𝑇lower, 𝑇upper] to 𝐼ROA,

the initial binary liver mask 𝐼0liver was obtained (Figure 4(a)).

For 𝐼0liver, selection of the largest connected component on
the right side of abdomen was conducted on each axial slice
to obtain the binarymask 𝐼1liver.Then, morphological opening
(𝑟 = 1) and selection of the largest connected region were
applied to each coronal slice of 𝐼1liver to obtain the binary liver
mask 𝐼2liver (Figure 4(b)).

To determine the liver VOI, the bounding box of the
largest 3D connected object in 𝐼2liver was calculated. The liver
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Figure 3: Examples of volumetric histograms in range [15, 600]HU. (a) A high contrast image with two high peaks. (b) A low contrast image
with only one high peak.

(a)

(b)

(c)

Figure 4: An example of liver VOI extraction and the largest liver slice selection. (a) Axial slices of the initial binary liver mask by using
adaptive thresholding. (b) Axial slices of the processed binary liver mask. (c) The selected largest liver slice with the initial liver region in
yellow and the liver VOI in red.
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(a) (b)

Figure 5: Illustration of superpixel generation. (a) Original image. (b) Supervoxels generated by the 2D simple linear iterative clustering
(SLIC) algorithm. Yellow contours show the boundaries between the superpixels.

VOI image 𝐼VOI was taken as the obtained bounding box with
a margin of ten voxels around it.

2.2.3. Largest Liver Slice Selection. In the largest liver slice
corresponding to the largest cross section of the liver, the
liver was a whole object. Therefore, the seed points could
be extracted on the largest liver slice without missing any
separate parts of the liver.

To select the largest liver slice, the number of liver pixels
was calculated in each axial slice of 𝐼2liver (Figure 4(b)). The
slice with the maximum number of liver pixels was regarded
as the largest liver slice. As shown in Figure 4(c), the largest
liver slice𝑀liver was selected with the corresponding binary
livermask𝑀∗liver, where the red rectangle represented the liver
VOI and the yellow contour denoted the liver region in𝑀∗liver.

2.3. SLIC Supervoxel Partition on Liver VOI. SLIC is a
novel 𝑘-means based clustering algorithm which can gen-
erate supervoxels quickly and efficiently [29, 35]. The SLIC
supervoxels have nearly uniform size, while their boundaries
closely match true image boundaries. Figure 5 shows the
result of superpixel partition on one CT slice using 2D SLIC
algorithm.

Let𝑁V denote the number of voxels in the liverVOI image
𝐼VOI:

𝑁V = 𝑁𝑝𝑆
3

, (1)

where 𝑆 denoted the supervoxel spacing in each dimension
and𝑁

𝑝
was the desired number of supervoxels. The intensity

of each supervoxel was computed as the average intensity of
all voxels within the supervoxel.

2.4. Graph Cuts Segmentation. The liver segmentation prob-
lem can be posed as a binary labeling problem and formulated
in terms of energy minimization. Graph cuts segmentation
achieves an optimal solution by minimizing the energy func-
tion via the max-flow/min-cut algorithm [31, 32]. Necessary
hard constraints (seed points) and intensity distributions
were required for the graph cuts segmentation.

2.4.1. Necessary Hard Constraints. Necessary foreground/
background seed points should be selected for graph cuts.
On the largest liver slice𝑀liver, foreground seed points were
sampled automatically in the liver region corresponding to
the mask 𝑀∗liver. By applying morphological dilating (𝑟 =
20), negative operation, and binary thresholding [−50, 𝑇max]
to 𝑀∗liver, the background mask 𝑀∗bkg was obtained. Then,
background seed points were sampled automatically on𝑀∗bkg
around the liver region.

Additional background seeds on regions of heart and
kidney were also selected to prevent oversegmentation. In
our experiments, the upper bounding of the liver VOI in 𝑧
direction was taken as the heart slice, and one or two kidney
slices were selected among slices between the lower bounding
of 𝐼VOI and the largest liver slice.

In liver CT images, regions of heart and kidney always
have higher intensities compared to the liver region. Based on
the histogram mentioned in Section 2.2, binary thresholding
[𝑉
𝑚
, 𝑇max] was applied to the heart and kidney slices to

obtain the binary background masks 𝑀∗heart and 𝑀∗kidney,
where 𝑉

𝑚
denoted the intensity value of the highest peak in

the histogram.
For 𝑀∗heart and 𝑀

∗

kidney, morphological opening (𝑟 = 1)
and eroding (𝑟 = 2) were applied. Then, the connected
regions with average intensity values less than 𝑉

𝑚
+ 10 and

𝑉

𝑚
+ 50 were removed on 𝑀∗heart and 𝑀

∗

kidney, respectively.
Additional background seed points were sampled in the
remaining regions of𝑀∗heart and𝑀

∗

kidney.
In our method, the graph cuts algorithm was applied to

the liver VOI supervoxels. Therefore, the seed points were all
converted to the corresponding supervoxels in the liver VOI.

2.4.2. Gaussian Mixture Models. For liver segmentation on
CT images, there were foreground tissues including liver
parenchyma, vessels, and tumors as well as background tis-
sues including intercostal muscles, bones, heart, and kidneys.
The intensity distribution of each tissue was assumed to
follow Gaussian distribution [36].
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Let𝑉
𝑝
denote the intensity of a supervoxel 𝑝, and let𝑁 be

the number of supervoxels in the foreground or background
samples. The intensity distributions of foreground and back-
ground were represented as GMMs:

𝑃GMM (𝑉𝑝) =
𝐾

∑

𝑘=1

𝜔

𝑘
𝑃

𝑁
(𝑉

𝑝
| 𝜇

𝑘
, 𝜎

2

𝑘
) ,

𝑃

𝑁
(𝑉

𝑝
| 𝜇

𝑘
, 𝜎

2

𝑘
) =

1

√

2𝜋𝜎

2

exp [− 1

2𝜎

2
(𝑉

𝑝
− 𝜇)

2

] ,

𝜇

𝑘
=

1

𝑁

𝑘

∑

𝑝

𝑉

𝑝
,

𝜎

2

𝑘
=

1

𝑁

𝑘

∑

𝑝

𝑉

2

𝑝
− 𝜇

2

𝑘
,

𝜔

𝑘
=

1

𝑁

𝑁

𝑘
,

(2)

where 𝜔
𝑘
, 𝜇
𝑘
, and 𝜎2

𝑘
were the weight, mean, and variance of

the 𝑘th Gaussian components, respectively; 𝐾 denoted the
number of Gaussian components. One GMM was used for
the foreground 𝑃fg(𝑉𝑝), and another one was used for the
background 𝑃bkg(𝑉𝑝). The expectation maximization (EM)
algorithm [37] was applied to estimate the parameters of
GMMs.

2.4.3. Graph Cuts. The graph 𝐺 = (𝑄,𝑊) was created, where
𝑄 represented the set of nodes.The nodes comprised the liver
VOI supervoxels 𝑝, a source terminal𝑄

𝑆
, and a sink terminal

𝑄

𝑇
. The set of edges𝑊 consisted of two types of undirected

edges: 𝑛-links (neighborhood links) connecting all unordered
pairs (𝑝, 𝑞) of neighboring supervoxels in the liver VOI and 𝑡-
links (terminal links) connecting each supervoxel to the two
terminals.

Let 𝐿 = (𝑙

1
, . . . , 𝑙

𝑝
, . . . , 𝑙

𝑁𝑝
) be a binary vector whose

components 𝑙
𝑝
specified assignments to supervoxels 𝑝; 𝑙

𝑝
∈

{0, 1}, with 𝑙
𝑝
equaling 0 for background and 1 for foreground

(i.e., liver). Vector 𝐿 defined a segmentation, and the goal was
to assign a unique label to each𝑝 byminimizing the following
energy function 𝐸(𝐿):

𝐸 (𝐿) = 𝛼∑

𝑝∈𝑃

𝑅 (𝑙

𝑝
) + 𝛽 ∑

(𝑝,𝑞)∈𝑊

𝐵 (𝑙

𝑝
, 𝑙

𝑞
) , (3)

where 𝑅(𝑙
𝑝
) and 𝐵(𝑙

𝑝
, 𝑙

𝑞
) were the regional term and bound-

ary term, respectively; 𝛼 and 𝛽 were weighting factors. The
minimum cost cut could be computed in polynomial time for
the two terminal graph cuts.

Table 2 gives the weights of edges in 𝑊. We specified
that 𝑄

𝑆
and 𝑄

𝑇
corresponded to label 0 (background) and

label 1 (liver), respectively. Two sets of the seed points were
defined as foreground nodes𝑄fg and background nodes𝑄bkg,
respectively.

The regional term 𝑅(𝑙

𝑝
) specified the cost of assigning

a label 𝑙
𝑝
to 𝑝 based on its intensity 𝑉

𝑝
and the intensity

Table 2: Graph edge weights.

Edge Weight For
(𝑝, 𝑞) 𝛽 ⋅ 𝐵 (𝑙

𝑝
, 𝑙

𝑞
) (𝑝, 𝑞) ∈ 𝑊

(𝑝, 𝑄
𝑆
)

0 𝑝 ∈ 𝑄fg

∞ 𝑝 ∈ 𝑄bkg

𝛼 ⋅ 𝑅 (𝑙

𝑝
= 0) Others

(𝑝, 𝑄
𝑇
)

∞ 𝑝 ∈ 𝑄fg

0 𝑝 ∈ 𝑄bkg

𝛼 ⋅ 𝑅 (𝑙

𝑝
= 1) Others

probabilistic model. With the foreground and background
GMMs, we defined 𝑅(𝑙

𝑝
) as negative log-likelihood:

𝑅 (𝑙

𝑝
= 0) = − log (𝑃fg (𝑉𝑝)) ,

𝑅 (𝑙

𝑝
= 1) = − log (𝑃bkg (𝑉𝑝)) .

(4)

Theboundary term𝐵(𝑙
𝑝
, 𝑙

𝑞
) represented the penalty of the

discontinuity between two adjacent supervoxels 𝑝 and 𝑞 [38].
The penalty became large when 𝑝 and 𝑞 had similar intensity
values. Consider

𝐵 (𝑙

𝑝
, 𝑙

𝑞
) = 𝛿 (𝑙

𝑝
, 𝑙

𝑞
) ⋅

1

(𝑉

𝑝
− 𝑉

𝑞
)

2

+ 1

,

𝛿 (𝑙

𝑝
, 𝑙

𝑞
) =

{

{

{

1, if 𝑙
𝑝
̸= 𝑙

𝑞
,

0, if 𝑙
𝑝
= 𝑙

𝑞
.

(5)

2.5. Postprocessing. After finishing the 3D graph cuts seg-
mentation procedure, the resulting binary liver mask 𝐼seg
was obtained. Morphological opening, cavity filling, largest
region selection, and median filtering methods were applied
to 𝐼seg to remove spicules and smooth the liver surface. Then,
the binary image was resampled back to the original spatial
resolution and size for further evaluation.

3. Experiments

3.1. Datasets. TheMICCAI Sliver07 datasets [4] used in this
study contained 30 clinical contrast-enhanced (portal venous
phase) abdominal CT volume images acquired using a variety
of scanners, including 20 images with expert segmentations
(Sliver07-train) and 10 testing images (Sliver07-test). Most
datasets were pathologic, and Sliver07-test datasets involved
relatively more extreme cases. The ground truth of Sliver07-
test was not publicly available, and the evaluations on
Sliver07-test were performed by the organizer of theMICCAI
Sliver07.

For Sliver07 datasets, the number of slices, in-plane
resolution, and interslice resolution varied between 64 and
394, 0.58 and 0.81mm, and 0.7 and 5.0mm, respectively. The
segmented liver region was defined to include the entire liver
tissue and all internal structures, including vessels, tumors,
and cirrhosis.
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3.2. Evaluation Measures. To quantitatively evaluate the
performance of the proposed method, five different error
measures were used to measure the volumetric overlap or
surface distances of the segmentation result compared to
the ground truth [4]. These were volumetric overlap error

(VOE) [%], relative volume difference (RVD) [%], average
symmetric surface distance (ASD) [mm], root mean square
symmetric surface distance (RMSD) [mm], and maximum
symmetric surface distance (MaxD) [mm]:

VOE = 100 (1 − 𝐴 ∩ 𝐵
𝐴 ∪ 𝐵

) ,

RVD = 100 (|𝐴| − |𝐵|
|𝐵|

) ,

ASD = 1

|𝑆 (𝐴)| + |𝑆 (𝐵)|

( ∑

𝑆𝐴∈𝑆(𝐴)

𝑑 (𝑆

𝐴
, 𝑆 (𝐵)) + ∑

𝑆𝐵∈𝑆(𝐵)

𝑑 (𝑆

𝐵
, 𝑆 (𝐴))) ,

RMSD = √ 1

|𝑆 (𝐴)| + |𝑆 (𝐵)|

( ∑

𝑆𝐴∈𝑆(𝐴)

𝑑

2
(𝑆

𝐴
, 𝑆 (𝐵)) + ∑

𝑆𝐵∈𝑆(𝐵)

𝑑

2
(𝑆

𝐵
, 𝑆 (𝐴))),

MaxD = max{ max
𝑆𝐴∈𝑆(𝐴)

𝑑 (𝑆

𝐴
, 𝑆 (𝐵)) , max

𝑆𝐵∈𝑆(𝐵)

𝑑 (𝑆

𝐵
, 𝑆 (𝐴))} ,

(6)

where 𝐴 denoted the segmented volume produced by the
proposed method; 𝐵 was the segmented volume by experts;
𝑆(𝐴) denoted the set of surface voxels of 𝐴. The shortest
distance of a voxel V to 𝑆(𝐴) was defined as 𝑑(V, 𝑆(𝐴)) =
min
𝑠𝐴∈𝑆(𝐴)

‖V−𝑠
𝐴
‖, where ‖ ⋅‖ denoted the Euclidean distance.

A positive value of RVD meant oversegmentation, while a
negative value meant undersegmentation.

For MICCAI Sliver07 datasets, the score of 100 indicated
a perfect segmentation when all the five measures were zero
[4]. The manual segmentation of the average quality (VOE
= 6.4%, RVD = 4.7%, ASD = 1.0mm, RMSD = 1.8mm, and
MaxD = 19.0) was worth the score of 75. The total running
time for segmentation was also recorded.

3.3. Implementation. Tovalidate the proposedmethod, exper-
iments were conducted on HP EliteBook 8470w (Intel Core
2.40GHz CPU and 4GBRAM).The proposed algorithmwas
implemented in C++ under Visual Studio 2008, with the use
of SLIC code byAchanta et al. [29] (http://ivrl.epfl.ch/research/
superpixels) and max-flow/min-cut code by Boykov and
Kolmogorov [31] (http://vision.csd.uwo.ca/code/).TheGMM
algorithm was implemented using the open source com-
puter vision toolkit OpenCV (http://www.opencv.org/), with
seeds initialization performed by the k-means++ algorithm
[39]. The insight segmentation and registration toolkit ITK
(http://www.itk.org/) and the visualization toolkit VTK
(http://www.vtk.org/) were used for basic 3D image process-
ing and 3D visualization of segmentation results, respectively.

The key parameters of the proposed algorithm were
determined experimentally on five datasets, which were
selected randomly from Sliver07-train. SLIC supervoxels
were generated with step 𝑆 = 3 and compactness 𝑚 = 20.
The number of components 𝐾 in foreground/background
GMMmodels was set to 𝐾 = 5. In graph cuts segmentation,

the 𝑛-links of the graph were specified to 6-neighborhood
connectivity. The weighting factors of the energy function
were set to 𝛼 = 0.01 and 𝛽 = 100.

In the experiments, a larger value of 𝐾 had no obvious
improvement on the segmentation result. A smaller value of
𝐾 led to imprecise segmentations in some cases, due to the
presence of pathologies like tumors, similar intensity with
adjacent tissues, and low CT image quality.

In the supervoxel partition step, when 𝑆was set to a larger
step size, fewer number of supervoxels would be generated,
resulting in a lower segmentation accuracy. However, as
shown in Table 3, when 𝑆 = 3, the number of the liver
VOI supervoxels was suitable, on an average of 46 × 53 × 51
supervoxels. A smaller value of 𝑆 led tomore supervoxels, but
it would take a longer time for supervoxel generation.

4. Results

Figure 6 illustrates an example of liver segmentation using
the proposed method. Figures 6(a) and 6(b) show the 3D
abdominal region extraction using MIP and thresholding
methods. In Figures 6(c)–6(f), the orange rectangles show
the extracted liver VOI, which was obtained by analyzing
the histogram and by using adaptive thresholding and mor-
phological methods. Figure 6(c) shows the largest liver slice
with initial liver region in blue and background region in
red. Foreground and background seed points were sampled
in the liver and background region, respectively. To avoid
oversegmentations of heart and kidney, additional back-
ground seeds were extracted on the heart and kidney slices,
as shown in Figures 6(e) and 6(f). The segmented liver after
postprocessing is shown as the yellow contour in Figure 6(f).
Figure 6(g) shows the 3D liver volume reconstructed by using
surface rendering algorithms in VTK.
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Table 3: Examples of reduction of the volume size: train = Sliver07-train datasets; test = Sliver07-test datasets.

Data Original CT [voxels] Resampled CT [voxels] Abdominal region [voxels] Liver VOI [voxels] VOI supervoxels [supervoxels]
Train number 5 512 × 512 × 319 197 × 197 × 212 163 × 175 × 200 121 × 148 × 192 40 × 49 × 64
Train number 11 512 × 512 × 388 200 × 200 × 258 172 × 136 × 148 172 × 136 × 148 57 × 45 × 49
Train number 14 512 × 512 × 129 245 × 245 × 427 217 × 162 × 138 137 × 160 × 138 45 × 53 × 46
Test number 1 512 × 512 × 502 253 × 253 × 267 216 × 219 × 122 129 × 183 × 122 43 × 61 × 40
Test number 4 512 × 512 × 165 253 × 253 × 328 234 × 202 × 176 143 × 178 × 169 47 × 59 × 56

(a) (b) (c) (d)

(e) (f) (g)

Figure 6: An example of liver segmentation using the proposed method. (a) and (b) show the 3D abdominal region extraction. (c) The
selected largest liver slice with initial liver region in blue contour and background regions in red contours. From (c) to (f), orange rectangles
show the liver VOI. (d) and (e) show the heart and kidney slices, respectively, with additional background regions in red contours. (f) The
segmented result after postprocessing in yellow contour. (g) The reconstructed 3D liver volume.

Figure 7 illustrates some representative slices of the
segmentation results from three Sliver07-train datasets com-
pared with expert segmentations, where the red contours
indicate the expert segmentations and the yellow contours
are the segmentation results by the proposed method. Each
column shows slices of one specific case in axial, coronal,
and sagittal directions, respectively. It can be seen that the
livers extracted by the proposed method are comparable to
the expert segmentations.

In Figures 7(g) and 7(i), our method succeeded in sepa-
rating the liver fromheart and kidney to avoid oversegmenta-
tions. In the third column of Figure 7, the presence of tumors
in the liver also could be handled. However, there were
still some small oversegmentation or undersegmentation
errors occurring near the liver boundaries, mainly due to the
low contrast near the liver boundaries. Undersegmentation
errors occurred at the tip of the liver (Figure 7(c)) and high
intensity regions near the liver edges (Figures 7(b) and 7(e)).

Oversegmentation error was mainly at the place of vena cava
(Figure 7(h)).

Table 3 shows examples of the reduction of volume size
after each step before graph cuts segmentation. It can be seen
that the extraction of liver VOI and generation of supervoxels
can significantly reduce the volume size, therefore reducing
computational cost.

For Sliver07-train datasets, Table 4 shows the comparative
results of the proposed method with the traditional graph
cuts method (TGC) [32] and the semiautomatic graph cuts
method on SLIC supervoxels (SGC). SGC was similar to
our method except that there was no step of liver VOI
extraction and largest liver slice selection, and the extraction
of seed points was conducted by manual interaction on one
or two axial slices. In addition, for SGC, the original CT
image was firstly converted to the 8-bit image in the intensity
range [0, 255] by using linear contrast stretching with a fixed
intensity window. Then, the 8-bit image was used in the
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Table 4: Comparative results for the Sliver07-train datasets: auto = automatic; semi = semiautomatic; TGC = traditional graph cuts method;
SGC = semiautomatic graph cuts method on supervoxels.

Method Auto Runtime [s] VOE [%] RVD [%] ASD [mm] RMSD [mm] MaxD [mm] Score
TGC Semi 180–240 11.52 6.02 1.72 3.74 31.92 57.5
SGC Semi 30 9.73 2.00 1.64 3.26 27.82 66.1
Our method Auto 21 7.54 4.16 0.95 1.94 18.48 75.2

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Illustrations of the segmentation results. Each column shows slices of one case in the axial, coronal, and sagittal directions,
respectively. The contour of the ground truth is in red. The contour of the segmented liver by the proposed method is in yellow.

procedures of supervoxel generation and GMM modeling.
For Sliver07-train datasets, the proposed method had a VOE
and RVD of 7.54% and 4.16% and an ASD, RMSD, andMaxD
of 0.95mm, 1.94mm, and 18.48mm, respectively. The total
runtime was 21.21 s on average. It can be seen that, compared
with TGC, our method had a great improvement on the
time efficiency, which was achieved mainly by using the
supervoxels. Compared with SGC, the proposed automatic

segmentation method took less runtime and could obtain
more robust segmentation without user interaction.

The evaluation results on the Sliver07-test datasets are
presented in Table 5, comparing results of the proposed algo-
rithm and human experts. The average VOE of 7.87%, RVD
of 1.31%, ASD of 1.286mm, RMSD of 2.498mm, and MaxD
of 23.563mm were obtained, which were comparable to the
performance of human experts. The total runtime, including
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Table 5: Quantitative evaluation of segmentation result for Sliver07-test datasets.

Data number Runtime [s] VOE [%] RVD [%] ASD [mm] RMSD [mm] MaxD [mm]
1 27.04 9.37 6.68 1.54 2.77 26.84
2 30.76 9.22 5.41 1.37 2.23 21.66
3 31.47 5.98 −1.68 1.14 2.02 19.73
4 36.88 7.16 2.97 1.19 2.38 18.02
5 23.93 7.60 −2.21 1.37 2.85 30.51
6 27.13 8.94 1.34 1.75 4.29 41.46
7 10.31 7.08 1.16 1.07 2.12 25.46
8 16.91 6.90 2.46 1.10 1.80 15.19
9 7.52 9.57 −1.00 1.31 2.58 22.10
10 12.03 6.89 −2.03 1.02 1.94 14.66
Average 27.04 7.87 1.31 1.29 2.50 23.56

Table 6: Comparative results with previous methods for the Sliver07-test datasets.

Method Runtime [s] Auto VOE [%] RVD [%] ASD [mm] RMSD [mm] MaxD [mm] Score
Peng [10] 180 Semi 6.10 −0.00 0.90 1.60 16.80 81.8
Chen [23] 60–180 Semi 4.16 3.53 0.72 1.26 16.70 81.5
Peng [24] 120–180 Semi 4.58 1.08 0.68 1.45 16.88 83.4
Li [20] 285 Auto 6.24 1.18 1.03 2.11 18.82 77.9
Platero [18] 261 Auto 7.60 −0.50 1.30 2.90 24.70 70.5
Our method 27 Auto 7.87 1.31 1.29 2.50 23.56 71.4

the time taken for VOI extraction, largest liver slice selection,
supervoxel generation, and graph cuts segmentation, was
27.04 s on average.

Table 6 shows the quantitative comparative results of the
proposed method with previous methods for the Sliver07-
test datasets. It can be seen that, compared with automatic
segmentationmethods, semiautomaticmethodsmight have a
higher accuracy. In automatic graph cuts based segmentation
methods, Li [20] obtained the highest accuracy by using
deformable graph cuts with SSM based initialization. The
proposed method was comparable to the performance of
human experts and the method of Platero [18]. Compared
with other methods, the proposed method significantly
improved the time efficiency of liver segmentation.

5. Discussion

5.1. Contributions of This Study. In this paper, an efficient
supervoxel-based graph cuts method was proposed for auto-
matic liver segmentation from CT images.

To reduce computational time andmemory requirement,
the proposed method effectively incorporated the graph
cuts method with supervoxels partition. The SLIC method
was applied to generate supervoxels in the liver VOI. By
constructing the graph over supervoxels, the number of
nodes in the graph was reduced significantly. Therefore, the
computational complexity of graph cuts was decreased.

An automatic liver VOI extraction method was intro-
duced, which contained two steps. First, the region of
abdomen was extracted by using MIP and thresholding
methods. By analyzing the region of bones in the coronal
MIP image and finding the largest lung slice in the extracted

lung region, unnecessary nonliver slices were removed. By
measuring the in-plane abdominal bounding box in the axial
MIP image, more nonliver voxels were excluded. Second, the
liverVOIwas extracted from the region of abdomenby apply-
ing adaptive thresholding and morphological methods. The
adaptive threshold values were calculated by estimating the
liver intensity range in the volumetric histogram. According
to the prior knowledge of the liver’s location and size, an
initial binary liver mask was generated and the liver VOI was
determined based on the binary liver mask. Voxels outside
the liver VOI were removed.

For the purpose of extracting foreground and back-
ground seed points automatically, the largest liver slice and
heart/kidney sliceswere extracted to generate foreground and
background regions by using adaptive thresholdingmethods.
On the largest liver slice, foreground seeds were sampled
inside the liver region without missing any separate parts of
liver. To tackle the problem of separating the liver from heart
and kidney with similar intensities, additional background
seeds were selected on the heart and kidney slices. Then,
sufficient seed points were used to estimate the intensity
distributions of foreground and background.

5.2. Comparisonwith PreviousWork. Comparedwith the tra-
ditional graph cuts method (Table 4), the proposed approach
can realize 3D liver segmentation in an automatic and fast
manner.Themain improvements come from (1) constructing
the graph over supervoxels instead of the voxels, which can
greatly reduce the number of nodes in the graph, therefore
improving the efficiency of the energy minimization proce-
dure, and (2) generating seed points automatically instead
of manual interaction. The foreground and background seed
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(a) (b) (c) (d)

Figure 8: Illustrations of the segmentation results compared with expert segmentations from Sliver07-train datasets. The contour of the
ground truth is in red. The contour of the segmented liver by the proposed method is in yellow.

(a) (b) (c)

Figure 9: Illustrations of the segmentation results from Sliver07-test datasets.The contour of the segmentation result of the proposedmethod
is in yellow.

points were sampled in the initial liver region and back-
ground regions, respectively. This can avoid interoperator or
intraoperator variability and improve the robustness of the
proposed method.

As shown in Table 6, in the semiautomatic graph cuts
based methods, Chen [23] incorporated domain knowl-
edge of the intensity, location, and spatial connectivity into
the optimization framework, and Peng [24] incorporated
appearance and intensity constraints for both the liver and
tumor. Unlike Chen’s and Peng’s methods, both the liver
VOI and foreground/background seed points were extracted
automatically in our method. Prior knowledge of liver and
histogram information were introduced such that the extrac-
tion procedures of VOI and seed points were conducted in an
adaptive way.

In the automatic graph cuts methods, Platero [18] com-
bined probabilistic atlases with graph cuts, and Li [20] incor-
porated SSM with graph cuts. Compared to the initialization
procedure based on atlases or shape models in Platero’s
and Li’s methods, the proposed method generated hard
constraints for graph cuts segmentation based on histogram
analysis and simple morphological operations. Also, the
nodes of the graph corresponded to supervoxels instead
of the voxels in the liver VOI. Although the segmentation

accuracy of our method was lower than that of Li’s SMM
initialized graph cuts method [20], it was comparable to
the performance of human experts. Moreover, the proposed
method was faster than other graph cuts based methods.
Such a fast segmentation speed may be required in practical
applications like computer-assisted ablation needle trajectory
(path) planning in image-guided hepatic ablation therapy
[40]. Needle trajectory planning involves segmentation of
all relevant structures including liver, tumor, hepatic vessels,
and other surrounding organs [41, 42]. In cases like CT-
guided hepatic ablation procedures, the time efficiency of
needle trajectory planning is highly demanded. Therefore, it
would be beneficial if the liver segmentation procedure was
performed in a fast way with a low computational cost.

Compared with other previous methods based on SSMs,
probabilistic atlases, and deformablemodels, no training pro-
cess of atlases or shapemodels was needed for initialization in
the proposed method. As shown in Figure 7, although there
was a great variation in the intensity, shape, and position
of liver among different datasets, the proposed algorithm
correctly segmented liver from surrounding organs or tissues.

5.3. Limitations. Figure 9(c) shows an inadequate segmenta-
tion at the long and thin boundaries of the liver.This ismainly
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due to the similarity in intensity and the shrinking bias of
graph cuts minimization. Surface refinement work could be
applied to get a better result. Also, the energy function of
graph cuts may be improved to obtain better performance on
the tiny parts of liver.

On most pathological cases, our approach can handle the
presence of tumors in liver, as shown in Figures 8(a), 8(b),
and 9(a). However, in Figures 8(c), 8(d), and 9(b), tumors
near the liver boundaries still might bemisclassified. For such
cases, algorithms for generating automatically additional
foreground seeds on both the liver and tumor regions could
be incorporated in future work.

Another limitation of this study is that the number of
datasets for evaluation is small. More datasets should be used
to evaluate the performance of the proposed method in the
future.

6. Conclusions

This paper presented a new method for automatic liver CT
image segmentation using SLIC supervoxels-based graph
cuts. The liver VOI was extracted to reduce computational
cost. Foreground and background seed points were generated
automatically on the largest liver slice and on additional
heart and kidney slices to avoid undersegmentations or
oversegmentations. By supervoxel partition and liver VOI
extraction, the computation time of the proposed method
was reduced to less than one minute, while accurate seg-
mentation result can be obtained. In the future, methods
for reducing undersegmentation or oversegmentation errors
need to be designed to improve the accuracy of the proposed
method, especially for pathological cases with tumors. Also,
more datasets for evaluation are needed.
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