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Abstract: Cultivars with efficient root systems play a major role in enhancing resource use efficiency,
particularly water absorption, and thus in drought tolerance. In this study, a diverse wheat association
panel of 136 wheat accessions including mini core subset was genotyped using Axiom 35k Breeders’
Array to identify genomic regions associated with seedling stage root architecture and shoot traits
using multi-locus genome-wide association studies (ML-GWAS). The association panel revealed a
wide variation of 1.5- to 50-fold and were grouped into six clusters based on 15 traits. Six different
ML-GWAS models revealed 456 significant quantitative trait nucleotides (QTNs) for various traits
with phenotypic variance in the range of 0.12–38.60%. Of these, 87 QTNs were repeatedly detected by
two or more models and were considered reliable genomic regions for the respective traits. Among
these QTNs, eleven were associated with average diameter and nine each for second order lateral root
number (SOLRN), root volume (RV) and root length density (RLD). A total of eleven genomic regions
were pleiotropic and each controlled two or three traits. Some important candidate genes such as
Formin homology 1, Ubiquitin-like domain superfamily and ATP-dependent 6-phosphofructokinase
were identified from the associated genomic regions. The genomic regions/genes identified in this
study could potentially be targeted for improving root traits and drought tolerance in wheat.

Keywords: wheat; germplasm; root traits; root architecture; quantitative trait nucleotides; ML-GWAS

1. Introduction

Globally, wheat (Triticum aestivum L.) is one of the most important cultivated food
grain crops with an area and production of 218.54 million hectares and 771.71 million
tons, respectively [1]. Wheat ranks second after rice (Oryza sativa L.) as a major staple
food crop in India with an acreage of 30.55 million hectares, and total production and
productivity of 107.18 million tons and 3508 kg/ha, respectively [2]. Wheat is adapted to
various climatic conditions including areas vulnerable to heat, salt and drought stress [3,4].
Drought is one of the major challenges that limits crop growth and yield in different areas
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of the world [5,6]. Drought stress can cause significant yield reduction in wheat and its
impact varies with intensity, timing and duration of stress relative to crop growth stages.
Yield reduction to the tune of 21.0%, 25.8% and 32.0% were reported in wheat under mild
(55–70% relative soil water content), moderate (35–55%, relative soil water content) and
severe (<35% relative soil water content) drought stress, respectively [7].

Root traits are important not only for water absorption from a drought stress perspec-
tive, but also for soil nutrient uptake and environmental stress tolerance [8–10]. Morphol-
ogy of the root system includes basic features such as root length, root length density, root
diameter, surface area and volume which influence the root structure’s spatial arrangement
and are significantly correlated with water uptake and nutrient absorption [11–13]. Drought
tolerance is directly associated with root diameter, as thicker roots with large xylem vessels
are more effective towards extraction of water and nutrients from deep soil layers under
rainfed condition [12]. Fine roots and the number of root tips, the major components of
root systems, often increase the water and nutrient uptake efficiency by increasing the
root surface area and volume [8,10]. Further, deep rooting, an essential root feature allow-
ing access to water from deeper soil profiles, improves crop productivity [14]. Therefore,
one approach to improve drought tolerance is to identify and introgress deeper rooting
alleles in shallow rooted and drought prone cultivars [15–17]. Thus, the study of root
system architecture (RSA) features can help define proxy traits to enhance tolerance to
various soil types and status of moisture and nutrient stress conditions [18]. RSA character-
istics are governed by polygenes with additive cumulative gene action and are influenced
by the environment [12]. Due to the difficulty of high-throughput phenotyping of RSA
characteristics in field conditions, their optimization was ignored [10,12,19]. However,
seedling level root architecture is associated with adult plant root architecture and is being
studied to translate the knowledge for later growth stages [20,21].

The knowledge on extent of genetic variability in wheat germplasm collections could
pave the way for successful conservation and utilization in crop improvement. In recent
years, cost effective advanced high throughput genotyping approaches, such as single
nucleotide polymorphism (SNP) arrays and sequencing based genotyping methods such
as genotyping by sequencing (GBS), restricted site associated DNA sequencing (RAD-seq)
and whole genome re-sequencing, have greatly accelerated genomic level characterization
of genetic diversity of crop germplasm resources in many species. Availability of these
techniques has made it feasible to conduct whole genome scan studies, such as associa-
tion mapping (AM) and genomic selection in a variety of crops including wheat, maize
(Zea mays L.), and rice [22,23]. Association mapping is an alternative approach to mapping
quantitative trait loci (QTLs) controlling complex traits which is based on the principle
of linkage disequilibrium between marker and trait. In contrast to the conventional QTL
approach, the AM approach enables screening of a large number of alleles present in
natural populations of species, thus providing greater resolution mapping of a target trait.
In the past couple of years, AM has been widely applied to map traits in many crop species
including wheat, rice, barley (Hordeum vulgare L.), maize and soybean (Glycine max L.
Merril) [21,24–27] with the availability of high-throughput genotyping and phenotyping
platforms [22,23].

Exploring genetic variability of root traits in a diverse germplasm collection could
assist in development of varieties with desired root features for drought tolerance or target
environments. To date, only a few reports are available on genetic variability and QTL map-
ping of root traits in wheat [28–30]. The wheat core and mini core collections constituted
from the large wheat accessions conserved in the national and international gene banks
could be a valuable genetic resource for mapping complex traits using a genome wide
association study (GWAS). The GWAS could facilitate uncovering genomic regions/genes
controlling various root architecture traits. In our earlier study, a core set of wheat geno-
types was identified from the entire wheat collection in the national gene bank of India
based on 35 agro-morphological traits [31]. This core set was subsequently reduced to
a mini core collection that captured huge variability for various traits and could be used
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for mapping root associated traits. The AM analysis on this mini core collection could
facilitate identification of genes/genomic regions associated with RSA traits that could be
exploited in a breeding program to develop drought tolerant cultivars. Keeping this in
mind, the objectives of this research were: (1) to study genetic variation of seedling root
system architecture in a diverse set of wheat genotypes including a subset of wheat mini
core collection; and (2) to identify genomic regions/candidate regions linked with these
traits using association mapping.

2. Results
2.1. Phenotypic Analyses

There were large differences for various root traits (Table 1) in the wheat association
panel owing to their diverse geographical origin (Supplementary Table S1). The abbrevia-
tions used here are listed and expanded in Table 1. A significant difference (p ≤ 0.001) was
observed among the genotypes for each phenotypic trait except for lateral root density, LRD
(Supplementary Table S2). Mean values of the traits (mean ± SE) were as follows: total
root size, TRS (242.94 ± 5.35); first order lateral root number, FOLRN (95.22 ± 3.58); sec-
ond order lateral root number, SOLRN (165.57 ± 8.97); lateral root size, LRS (0.39 ± 0.01);
lateral root density, LRD (2.81 ± 0.08); root length density, RLD (0.49 ± 0.01); average
diameter, AD (0.38 ± 0.01); root volume, RV (0.16 ± 0.01); seminal root number, SRN
(5.06 ± 0.04); shoot dry weight, SDW (35.58 ± 0.88); root dry weight, RDW (10.76 ± 0.32);
shoot length, SL (30.61 ± 0.41); root length, RL (24.81 ± 0.54); root shoot dry weight ratio,
RSDWR (0.31 ± 0.01) and specific root length, SRL (2.52 ± 0.07) (Table 1). We observed
a high range of coefficient variation (%CV) for all the phenotypic traits. The highest CV was
observed for SOLRN (64.10%) followed by FOLRN (44.50%) and LRS (38.39%). The lowest
CV was observed for AD (8.46%) followed by SRN (10.29%). The estimates of broad-sense
heritability were low to moderately high, ranging from 15.16% for LRD, to 78.95% for AD
(Supplementary Table S2).

The frequency distribution pattern of traits is presented in Supplementary Figure S1.
Most of the traits followed normal distribution, except SRN and SL which were negatively
skewed, while SOLRN and SRL were positively skewed. Selected wheat genotypes with
high and low mean performance of root and shoot morphological traits are shown in
Supplementary Table S3. The wheat genotype IC28755 exhibited maximum root length of
37.50 cm, whereas the genotype EC6903, a collection from the USA, showed a maximum
shoot length of 40.76 cm. The genotype IC128151 (C306) had highest value of 60.41 mg
for SDW and the genotype EC576889 had maximum value for RDW at 23.06 mg. The trait
root-shoot dry weight ratio indicated the amount of root dry mass to shoot dry mass. The
genotype IC532019 had the highest ratio of 0.59 contributing higher root dry mass than
shoot at seedling stage. Donors for multiple traits were also identified. Genotype IC82425A
exhibited the highest mean values for SOLRN, LRS and RV. Further the genotype IC128151
(C306) was among the top ten genotypes for seven traits, namely TRS, FOLRN, LRD, RLD,
RV, SDW and RDW. The genotype IC542076 ranked in the top ten genotypes for seven traits:
TRS, SOLRN, RLD, RV, SRN, SDW and RDW, and was therefore considered promising
for tolerating drought by extracting water stored in the deeper soil layers. The genotypes
IC128151, IC82425A and IC542076 were superior for several root and shoot traits in the
drought experiment carried out at the seedling stage under pot screening during the winter
season 2019–2020(data not presented). In addition, genotypes with low mean performance
were also identified so they could be utilized to generate bi-parental mapping populations
or multiparent advanced generation intercross (MAGIC) populations. An exotic collection
from the USA, EC339632, was observed to have lowest mean performance for TRS, FOLRN,
SOLRN, RLD, RV, SRN, RDW and RL, whereas EC187159 showed lower mean values for
TRS, SOLRN, LRS, RLD, SRN, SDW, RDW and SL.
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Table 1. Root system architecture and shoot traits along with their basic statistics of the wheat accessions in the diverse
association panel.

S. No. Trait Name Abbreviation Trait Description Unit Range Mean ± SE CV (%)

1 Total root
size TRS

Sum of the path
length of seminal
including primary
roots and lateral

roots (LRs)

cm 65.10–378.63 242.94 ± 5.35 26.06

2
First order
lateral root

number
FOLRN

Number of first
order LRs (emerging

from primary and
seminal roots)

- 14.33–240.67 95.22 ± 3.58 44.50

3
Second order
lateral root

number
SOLRN

Number of second
order LRs (emerging
from first-order LRs)

- 6.67–490.33 165.57 ± 8.97 64.10

4 Lateral root
size LRS

First order length +
second order length
divided by total root

size (TRS)

- 0.02–0.87 0.39 ± 0.01 38.39

5 Lateral root
density LRD First-order LR no.

divided by PRP cm−1 0.81–5.89 2.81 ± 0.08 35.67

6 Root length
density RLD

TRS divided by
volume of pot (500

cm3)
cm−2 0.11–0.76 0.49 ± 0.01 26.30

7 Average
diameter AD Projected area

divided by TRS mm 0.31–0.49 0.38 ± 0.01 8.46

8 Root volume RV π × (Half of the avg.
diameter/2) 2 × TRS cm3 0.02–0.35 0.16 ± 0.01 37.62

9 Seminal root
number SRN

Primary root bursts
through the
coleorhiza

- 2.67–6.00 5.06 ± 0.04 10.29

10 Shoot dry
weight SDW Shoot dry weight mg 5.02–60.41 35.58 ± 0.88 29.18

11 Root dry
weight RDW Root dry weight mg 1.07–23.06 10.76 ± 0.32 35.14

12 Shoot length SL Shoot length cm 13.57–40.77 30.61 ± 0.41 15.97

13 Root length RL Root length cm 9.67–37.50 24.81 ± 0.54 25.83

14
Root shoot
dry weight

ratio
RSDWR Ratio of root to shoot

dry weight - 0.16–0.59 0.31 ± 0.01 26.07

15 Specific root
length SRL Total root length per

unit root dry mass cm mg−1 1.32–9.10 2.52 ± 0.07 34.02

2.2. Multivariate Analyses of Phenotypic Traits
2.2.1. Association Analysis

Association analysis revealed the influence of a correlated response from different
traits (Figure 1). A highly significant positive association was observed between TRS
with FOLRN (r = 0.50), SOLRN (r = 0.65), LRS (r = 0.42), RLD (r = 0.99), RV (r = 0.77),
SRN (r = 0.42), SDW (r = 0.52), RDW (r = 0.70) and RL (r = 0.71). TRS showed a negative
association with AD (r = −0.37), SRL (−0.27) and LRD (r = −0.01). The traits FOLRN,
SOLRN, LRS and RV had a highly significant positive association with all traits except
AD and SRL. Further, LRD showed a highly significant positive correlation with FOLRN
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(r = 0.75), SOLRN (r = 0.36) and LRS (r = 0.36) and a positive significant correlation with
RV (r = 0.21), SRN (r = 0.23), SDW (r = 0.20) and RDW (r = 0.21). The RLD had a positive
and highly significant association with all traits, while there were negative associations
with AD (r = −0.37), LRD (r = −0.01) and SRL (r = −0.27). In contrast, AD was significantly
correlated with all the traits in a negative direction except SL. Similarly, SRL was also
negatively correlated with all traits.

Figure 1. Correlations between root system architecture traits and shoot traits. TRS, total root size (cm); FOLRN, first order
lateral root number; SOLRN, second order lateral root number; LRS, lateral root size; LRD, lateral root density (cm−1); RLD,
root length density cm−2; AD, average diameter (mm); RV, root volume (cm3); SRN, seminal root number; SDW, shoot
dry weight (mg); RDW, root dry weight (mg); SL, shoot length (cm); RL, root length (cm); RSDWR, root shoot dry weight
ratio; SRL, specific root length (cm mg−1). Red boundary for each pairwise correlation displays density ellipses covering
95% points between each variable. The density ellipses are a graphical indicator of the correlation between two variables.
It collapses diagonally as the correlation between the two variables approaches either 1 or −1. It is more circular if the
two variables are less correlated.



Int. J. Mol. Sci. 2021, 22, 7188 6 of 24

2.2.2. Principal Component Analysis

Principal component analysis (PCA) was performed for 15 RSA and shoot traits to
determine their contribution to overall variability. The first four principal components
(PCs) in the PCA analysis with eigenvalues >1 contributed a cumulative variance of 79.24%
among the genotypes (Supplementary Table S4). The scree plot showing the eigenvalues on
the y-axis and the number of components on the x-axis also depicted the number of relevant
PCs to explain maximum variance (Supplementary Figure S2A). Based on the contribution
towards the principal components, RV, RDW, SOLRN, RLD, TRS, RL, LRS, FOLRN, SRN
and RSDWR were the major contributors toward PC1 and were most significantly associ-
ated with the genotypic variations. Likewise, SDW and SL were major contributors to PC2,
LRD and FOLRN to PC3 and SRL to PC4 (Supplementary Table S4). Length of coordinates
or distance from the origin revealed the amount of variation contributed by each trait
(Supplementary Figure S2B) which also ascertained about their major contributions. The
PCA also indicated trait association, as the correlated traits have fewer angles between
them or are mostly parallel to each other. In this case, the positive quadrant had correlated
traits SDW and SRN. The results indicated that AD and SRL were opposite to other traits
in the second quadrant, hence their negative association with them.

2.2.3. Clustering of Genotypes

The diverse association panel of the wheat mini core subset (136 accessions, four had
a poor SNP call and were therefore excluded from the analysis) was divided into six clusters
(Supplementary Figure S3) when subjected to hierarchical analysis based on the 15 root
and shoot traits, which showed that the wheat genotypes were sufficiently diverse. Among
different classes, the largest cluster (II) contained 38 member genotypes and the smallest
cluster (III) had 2 members (EC339632, a USDA collection and EC578153 and a synthetic
line). Clusters six and three consisted of genotypes with high and low performance re-
spectively for many traits such as TRS, FOLRN and SOLRN (Supplementary Table S5).
A heatmap generated by two-way clustering also depicted that cluster six had high per-
forming genotypes, whereas cluster 1 had low performing genotypes for many of the traits
(Supplementary Figure S3).

2.3. Marker Distribution, Linkage Distribution and Population Structure

The SNP genotyping of 136 wheat genotypes yielded a total of 16,616 polymorphic
SNPs with exact chromosomal position and minor allele frequency (MAF) ≥ 10. The SNP
markers were proportionally distributed across the 21 chromosomes and their number
ranged from 287 for Chr4D to 1179 for Chr2B, and the average SNP markers per chro-
mosome was 791. The polymorphic SNPs covered 14066.28 Mb of wheat genome. The
sub-genome A included 5355 SNPs, the sub-genome B had 6343 SNPs and 4918 SNPs
were located on the sub-genome D. On sub-genome A, maximum SNPs were found on
2A (952) followed by 1A (911). Further, on sub-genome B, maximum SNPs were found on
Chr2B (1178), followed by Chr5B (1125). Chr2D of Sub-genome D had maximum SNPs
(1037) followed by Chr1D (895) (Table 2). The SNP marker density per chromosome per
Mb ranged from 0.56 for 4D to 1.59 for 2D, with a mean of 1.182. These polymorphic
16,616 SNP markers were used to estimate genome-wide linkage disequilibrium (LD) and
the pairwise pattern of LD was calculated using r2 of allele pairs between two loci. Among
these, a total of 19,528 SNP pairs were in perfect LD (r2 = 1), with B sub-genome having
a maximum (7287) number followed by D (7100) and A (5141) sub-genomes. Overall, in
the current association panel, low mean LD was observed across the 21 chromosomes
with values ranging from 0.087 (4D) to 0.298 (1D). The average LD (r2) per chromosome
ranged from 0.087 for 4D to 0.298 for 1D. The measures of LD decay for all 21 chromosomes
are summarized in Supplementary Figure S4. The LD decay in the AM panel was deter-
mined at r2 = 0.157 (background LD). LD decayed the fastest in sub-genome A followed
by sub-genome D and B. In sub-genome A, LD decayed at 3 Mb compared to 3.4 Mb in
sub-genome B and 4.2 Mb in sub-genome D (Table 2 and Supplementary Figure S4).
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Table 2. Distribution of 16,616 SNPs and identified linkage disequilibrium (LD) on 21 chromosomes in 136 wheat genotypes.

Chromosome Size (Mb) No. of SNP Average Number
of SNPs per (Mb) Average LD (r2)

No. of Marker
Pairs in Perfect

LD (r2 = 1)

1A 594.1 911 1.53 0.206 2134
1B 689.85 987 1.43 0.268 3511
1D 495.45 895 1.80 0.298 3923
2A 780.8 952 1.22 0.241 999
2B 801.26 1178 1.47 0.159 819
2D 651.85 1037 1.59 0.226 1813
3A 750.84 663 0.88 0.114 274
3B 830.83 1003 1.20 0.149 368
3D 615.55 579 0.94 0.098 121
4A 744.59 573 0.76 0.122 310
4B 673.62 447 0.66 0.111 197
4D 509.86 287 0.56 0.087 73
5A 709.77 737 1.03 0.122 368
5B 713.15 1125 1.57 0.189 1769
5D 566.08 769 1.35 0.147 713
6A 618.08 657 1.06 0.157 655
6B 720.99 846 1.17 0.147 354
6D 473.59 622 1.31 0.112 255
7A 736.71 862 1.17 0.122 401
7B 750.62 757 1.00 0.126 269
7D 638.69 729 1.14 0.099 202

Population analysis of the association panel was performed using both STRUCTURE
and PCA which indicated optimal number of population (K) as two (Figure 2). Of the total
accessions, 40 accessions belonged to subpopulation 1 and 96 accessions belonged to sub-
population 2. Further, in subpopulation 1 (SP1), 30.50% of the accessions were admixtures
and the remaining 62.50% of the genotypes were pure (>80% similarity) which included
25% EC (exotic) collection and 75% IC (indigenous) collection. The IC belonged to multiple
states in India (Rajasthan, Gujarat, Haryana, West Bengal, Uttarakhand, Uttar Pradesh,
Himachal Pradesh, Madhya Pradesh and Maharashtra). The EC belonged to Israel, China,
the USA and Australia. In subpopulation 2 (SP2), 42.70% of the genotypes were admixtures
and 57.29% of the genotypes were pure which included 31.25% EC and 68.75% IC collection.
The EC mainly belonged to Mexico, Russia, Finland and the USA. Based on PCA analy-
sis, genotypes contributing more variation to the PC1 were parallel to the PC1 axis and
genotypes contributing more variation to the PC2 were parallel to the PC2 axis (Figure 2).
A total of 88.2% cumulative variance were explained by two PCs. It also indicated that
genotypes used in this study were divided into two structured subpopulations.

2.4. Genome-Wide Association Studies

Marker-trait association analyses using six different ML-GWAS models (mrMLM,
FASTmrMLM, FASTmrEMMA, pLARmEB, ISIS EM-BLASSO and pKWmEB) revealed
456 significant quantitative trait nucleotides (QTNs) for 15 seedling stage root architecture
and shoot traits at a logarithm of the odd (LOD) score ≥3 with phenotypic variance in
the range of 0.12–38.60%. Among these, 18, 59, 93, 92 and 194 significant QTNs were
detected using FASTmrEMMA, mrMLM, FASTmrMLM, ISIS EM-BLASSO and pLARmEB,
respectively (Table 3 and Figure 3). In this case, pKWmEB model could not detect any
significant QTN. Maximum number of QTNs were recorded for AD (68) and RLD (68),
followed by LRS (46), SOLRN (42) and RV (37). The extent of phenotypic variation of the
QTNs varied from R2 = 1.8% for QTN-SOLRN at Chr 6A- AX-95244609 to R2 = 38.6% for
QTN-SOLRN at Chr 3B- AX-95150666. The highest number of QTNs was identified in
chromosome 7B (44) followed by 6A (34), 3B (33), 7A (31), 1D (31), 2B (29), 1B (29) and 6B
(27). Further, among the total 456 QTNs, 87 QTNs and 27 QTNs were repeatedly detected
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by two, three or more ML-GWAS models, respectively. These were considered reliable
QTNs for the respective traits. The reliable QTN that explained phenotypic variation ≥ 10%
for the trait in at least one of the GWAS models was considered a major QTN. Among
these 87 reliable QTNs, 11 QTNs were found to be associated with AD and 9 each for
SOLRN, RV and RL, respectively. Further, a total of 12 QTNs for traits including SOLRN:
AX-95077960, AX-94448890, AX-95150666 and AX-95244609; LRS: AX-95123855; AD: AX-
95244609; RV: AX-94439232 and AX-94664277; SRN: AX-94551988; SDW: AX-94470023,
RL: AX-94502864 and SRL: AX-94457792 were detected in four or five models (Table 3).
Manhattan plots depicting identification of a reliable QTN for SDW (Q.SDW-4AL) and RL
(Q.RL-6BL) by five ML-GWAS methods are presented in Supplementary Figures S5 and S6.
Further, graphical representation of the genetic position of identified reliable QTNs on
a physical map was given in Figure 4. It was revealed that the top five genomic regions that
contained a maximum number of significant QTNs were found on chromosomes Chr1B,
Chr3B, Chr4A, Chr6A and Chr7B.

Figure 2. Population stratification of wheat association mapping panel. (A) Delta K, rate of change
from 2 to 4. (B) Biplot of principal component analysis (PCA), PCA 1 and PCA 2. (C) Bar plot of the
AM panel showing the structuring of two subpopulations (SP1 and SP2) in different colors, viz. SP1
(red, 40 genotypes), SP2 (green, 96 genotypes).

Table 3. Common quantitative trait nucleotides (QTNs) of root and shoot traits identified using different multi-locus
genome-wide association studies (GWAS) methods.

S. No QTN Trait Marker Allele CHR
Physical
Position

(bp)
LOD Score R2 (%) Method

1 Q.TRS-2AS TRS AX-94952472 G/C 2AS 8181794 3.29–3.75 9.77–17.72 1,5
2 Q.TRS-4AL TRS AX-95105488 A/C 4AL 631903354 3.38–5.01 8.82–10.85 2,4
3 Q.TRS-7BS TRS AX-95119337 G/A 7BS 138882791 6.81–10.73 17.10–22.22 2,4
4 Q.FOLRN-7AS FOLRN AX-95249973 G/A 7AS 54997993 3.10–4.92 5.22–6.83 1,2
5 Q.FOLRN-7BS FOLRN AX-95123855 T/C 7BS 99635031 3.59–4.41 6.12–8.62 4,5
6 Q.SOLRN-1AL SOLRN AX-95102105 A/G 1AL 474573230 3.24–4.58 1.68–3.65 1,2,4
7 Q.SOLRN-1BL SOLRN AX-95077960 G/A 1BL 572301473 3.55–8.97 2–4.15 1,2,4,5
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Table 3. Cont.

S. No QTN Trait Marker Allele CHR
Physical
Position

(bp)
LOD Score R2 (%) Method

8 Q.SOLRN-1DS SOLRN AX-94448890 T/C 1DS 10741698 4.44–6.92 2.47–4.12 1,2,4,5
9 Q.SOLRN-3BL SOLRN AX-94516395 C/T 3BL 738699225 4.34–5.58 2.61–3.99 1,2,4
10 Q.SOLRN-3BL SOLRN AX-95150666 G/C 3BL 664019441 10.31–14.84 27.09–38.60 1,2,4,5
11 Q.SOLRN-3DL SOLRN AX-94450588 A/G 3DL 367309893 8.17–10.84 21.14–26.16 4,5
12 Q.SOLRN-6AL SOLRN AX-95244609 T/C 6AL 599035159 4.61–6.78 1.88–3.29 1,2,4,5
13 Q.SOLRN-7BL SOLRN AX-94564853 A/G 7BL 673962683 4.30–5.98 9.92–18.50 1,2,4
14 Q.SOLRN-7BS SOLRN AX-95123855 T/C 7BS 99635031 4.49–4.69 1.60–2.17 4,5
15 Q.LRS-2DS LRS AX-94471646 A/G 2DS 13929712 3.31–7.30 1–2.40 2,4
16 Q.LRS-3AS LRS AX-94961347 C/T 3AS 184635201 7.15–15.48 7.47–12.41 1,4,5
17 Q.LRS-3BL LRS AX-94480990 G/T 3BL 417261367 6.63–15.77 1–6.15 2,4
18 Q.LRD-5BS LRS AX-94706358 A/C 5BS 69134215 3.41–13.25 3.47–8.20 1,4,5
19 Q.LRS-6AL LRS AX-95244609 T/C 6AL 599035159 3.27–4.21 0.12–0.2 4,5
20 Q.LRD-7BL LRS AX-94528392 G/A 7BL 675314495 4.92–9.18 16.43–30.67 1,4,5
21 Q.LRD-7BS LRS AX-95123855 T/C 7BS 99635031 3.35–17.24 4.17–8.35 1,2,4,5
22 Q.LRD-4AL LRD AX-94841365 G/A 4AL 725751499 4.90–5.56 12.04–13.40 4,5
23 Q.LRD-5DL LRD AX-94571501 T/C 5DL 472635782 3.46–5.69 5.74–11.60 3,4,5
24 Q.LRD-7BL LRD AX-94763902 T/C 7BL 552120841 3.58–6.43 6.83–10.02 2,4,5
25 Q.RLD-1BL RLD AX-94728516 T/C 1BL 491241476 6.01–28.19 0.45–4.15 4,5
26 Q.RLD-2AS RLD AX-94952472 G/C 2AS 8181794 3.67–9.52 0.98–4.23 4,5
27 Q.RLD-3BS RLD AX-94516395 C/T 3BL 738699225 3.36–3.46 1.66–1.93 4,5
28 Q.RLD-3DL RLD AX-94544285 C/G 3DL 594478810 5.88–21.54 3.94–6.33 2,4
29 Q.RLD-4AL RLD AX-95105488 A/C 4AL 631903354 3.26–8.06 5.97–15.44 1,4
30 Q.RLD-5AL RLD AX-95659861 G/A 5AL 565754230 3.49–6.68 1.89–2.57 2,5
31 Q.RLD-5DS RLD AX-95160709 G/T 5DS 10471964 3.49–13.73 0.16–4.38 4,5
32 Q.RLD-6BL RLD AX-94502864 G/A 6BL 710324542 9.73–14.54 1.14–8.22 4,5
33 Q.RLD-7BS RLD AX-95119337 G/A 7BS 138882791 6.71–11.23 12.20–17.08 1,4,5
34 Q.AD-1AL AD AX-94932678 A/G 1AL 557954056 3.67–6.82 2.42–5.92 4,5
35 Q.AD-1BL AD AX-94620468 A/G 1BL 586302698 5.16–8.86 3.31–7.79 2,4,5
36 Q.AD-1BS AD AX-94668789 G/A 1BS 96515530 3.67–5.97 0.17–1.53 2,5
37 Q.AD-2DL AD AX-94647816 A/C 2DL 641980126 4.58–22.75 3.53–7.08 2,4
38 Q.AD-3AS AD AX-94996868 C/T 3AS 1030506 6.25–16.45 1.67–8.54 2,4
39 Q.AD-3BS AD AX-94886515 T/C 3BS 129437930 3.90–9.27 1.55–2.72 2,5
40 Q.AD-3DS AD AX-94726849 C/T 3DS 81391081 6.70–7.87 0.21–2.18 2,4
41 Q.AD-4AL AD AX-94740863 T/C 4AL 725802675 3.10–5.14 0.12–3.54 4,5
42 Q.AD-6AL AD AX-95244609 T/C 6AL 599035159 3.38–10.62 3.03–5.88 2,3,4,5
43 Q.AD-6BS AD AX-94691127 G/A 6BS 288419550 4.97–5.80 0.18–1.28 4,5
44 Q.AD-6DL AD AX-94853162 G/A 6DL 470294593 3.70–4.51 0.39–1.65 4,5
45 Q.RV-2BS RV AX-95227366 G 2BS 46089220 3.25–1152.63 11.40–13.56 1,2,4
46 Q.RV-4AL RV AX-95105488 A/C 4AL 631903354 3.97–1166.09 2.06–8.08 1,2,3
47 Q.RV-4BS RV AX-94648074 C/T 4BS 140929724 3.45–1122.58 2.72–4.81 1,2,4
48 Q.RV-5BL RV AX-94439232 C/A 5BL 287624152 3.80–1152.24 1.47–5.31 1,2,4,5
49 Q.RV-6AL RV AX-95162623 C/T 6AL 611851405 3.76–7.56 0.18–2.61 4,5
50 Q.RV-6AS RV AX-94687596 A/G 6AS 959041 5.10–7.87 0.97–2.20 4,5
51 Q.RV-6AS RV AX-94893701 A/G 6AS 24857477 5.21–9.45 0.70–1.23 4,5
52 Q.RV-6BL RV AX-94502864 G/A 6BL 710324542 4.54–1136.81 0.52–5.93 2,4,5
53 Q.RV-7AL RV AX-94664277 C/T 7AL 689920746 4.61–1155.16 5.53–11.20 1,2,4,5
54 Q.SRN-2DL SRN AX-94551988 A/G 2DL 579965138 4.27–7.94 6.83–17.74 1,3,4,5
55 Q.SRN-3BS SRN AX-94486290 T/C 3BL 477885835 5.68–6.68 5.82–6.51 1,2
56 Q.SRN-3DL SRN AX-94382595 C/T 3DL 392956661 3.19–4.40 0.31–8.32 2,4
57 Q.SRN-4DL SRN AX-95157799 A/G 4DL 461218017 5.66–7.19 17.38–20.91 1,2
58 Q.SRN-6AL SRN AX-94637211 A/G 6AL 611576606 3.08–4.87 11.77–14.95 1,2
59 Q.SRN-6AL SRN AX-94790960 C/A 6AL 600131055 6.19–9.13 23.20–28.08 1,2
60 Q.SDW-3DS SDW AX-94439998 T/C 3DS 85060915 4.29–4.29 8.15–9.74 1,2
61 Q.SDW-4AL SDW AX-94470023 T/C 4AL 581216490 4.49–6.61 8.09–19.05 1,2,3,4,5
62 Q.SDW-4BS SDW AX-95630040 A/G 4BS 12893614 3.25–8.40 5.43–11.57 3,4,5
63 Q.SDW-5BL SDW AX-94484139 T/C 5BL 289567014 4.72–4.87 5.64–5.92 4,5
64 Q.SDW-7AL SDW AX-94664277 C/T 7AL 689920746 3.36–4.03 4.39–5.30 4,5
65 Q.SDW-7BL SDW AX-95165787 C/A 7BL 591053449 3.11–3.13 6.54–7.06 4,5
66 Q.RDW-1BL RDW AX-94925225 T/C 1BL 372996241 4.49–4.97 4.87–7.59 4,5
67 Q.RDW-5AL RDW AX-94501549 C/T 5AL 672339596 4.29–4.91 4.71–7.45 2,3,4
68 Q.RDW-6AS RDW AX-94809955 C/T 6AS 631698 4.67–5.39 4.37–5.67 2,4
69 Q.RDW-7AS RDW AX-94386260 G/A 7AS 269093921 3.65–4.35 18.35–18.60 1,2
70 Q.SL-1AL SL AX-94929421 T/C 1AL 550331092 5.63–5.66 5.16–5.39 1,2
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Table 3. Cont.

S. No QTN Trait Marker Allele CHR
Physical
Position

(bp)
LOD Score R2 (%) Method

71 Q.SL-2AL SL AX-95076063 T/C 2AL 555820355 3.52–4.91 3.68–8.24 1,3,5
72 Q.SL-4BS SL AX-95012217 C/T 4BS 97922535 4.71–6.36 5.06–5.74 1,5
73 Q.SL-5BL SL AX-95092434 C/G 5BL 579153579 4.16–5.20 5.57–8.61 1,2
74 Q.SL-7BS SL AX-94876335 G/A 7BS 144484919 4.04–5.48 7.23–8.27 1,2
75 Q.RL-1DS RL AX-94448890 T/C 1DS 10741698 4.02–5.52 3.67–7.89 1,2,5
76 Q.RL-2BS RL AX-95227366 G 2BS 46089220 3.68–5.77 8.59–15.76 1,4
77 Q.RL-6BL RL AX-94502864 G/A 6BL 710324542 4.63–6.06 4.68–9.41 1,2,3,4,5
78 Q.RL-6BS RL AX-94539094 A/C 6BS 8387528 3.52–6.77 2.83–17.15 1,2,5
79 Q.RL-6BS RL AX-94900754 A/G 6BS 157792843 3.27–5.44 5.26–9.16 1,3
80 Q.RL-7AL RL AX-95241843 G/T 7AL 610498024 6.31–6.50 5.55–5.97 1,2
81 Q.RL-7BL RL AX-94528392 G/A 7BL 675314495 3.21–8.52 15.42–30.83 1,5
82 Q.RL-7DL RL AX-94861078 A/G 7DL 614276051 3.36–5.01 3.12–4.24 3,4
83 Q.RSDWR-2AL RSDWR AX-94430108 C/T 2AL 509357786 5.19–14.68 0.55–1.38 2,4
84 Q.RSDWR-2BL RSDWR AX-94856412 C/T 2BL 754864363 4.85–103.96 0.58–1.95 4,5
85 Q.RSDWR-3BS RSDWR AX-94691217 A/G 3BS 8029967 8.14–83.91 0.02–3.22 2,4
86 Q.SRL-5AL SRL AX-94748697 A/G 5AL 406534846 3.37–6.01 4.81–8.10 2,4,5
87 Q.SRL-2BL SRL AX-94457792 T/C 2BL 576083471 8.12–19.40 64.33–31.92 1,2,4,5

TRS, total root size (cm); FOLRN, first order lateral root number; SOLRN, second order lateral root number; LRS, lateral root size; LRD,
lateral root density (cm−1); RLD, root length density cm−2; AD, average diameter (mm); RV, root volume (cm3); SRN, seminal root
number; SDW, shoot dry weight (mg); RDW, root dry weight (mg); SL, shoot length (cm); RL, root length (cm); RSDWR, root shoot dry
weight ratio; SRL, specific root length (cm mg−1). ML-GWAS methods (MrMLM-1, FASTMrMLM-2, FASTMrEMMA-3, pLARmEB-4, ISIS
EM-BLASSO-5).

Figure 3. Distribution of the QTNs (quantitative trait nucleotides) identified using five different multi-
locus GWAS (genome wide association study) models. (A) Number of significant QTNs detected
for 15 traits across five multi-locus GWAS methods. (B) Number of significant QTNs detected using
each of five multi-locus GWAS methods. (C) Number of QTNs per chromosome.
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Figure 4. Chromosome location of 87 reliable QTNs (quantitative trait nucleotides) for 15 root and shoot traits. The color
bars represent QTNs identified for different traits, red = SOLRN (second order lateral root number); dark green = TRS; (total
root size) light green = RV (root volume); orange = AD (average diameter); pink = RDW (root dry weight); light blue = RLD
(root length density); blue = SL (shoot length). (For interpretation of color references in this figure legend, refer to the web
version of this article).

2.4.1. Colocalization of Root Architecture Loci

Different root traits are mostly correlated and complex biological mechanisms might
be involved in coordination for their expression. The pleiotropic action of genetic loci
on different traits or their tight linkage results in a correlation between traits. A total of
11 QTNs were found to be pleiotropic markers (Table 4). A locus on 1D (AX-94448890) was
associated with root morphology (SOLRN and RL) and another locus on 2A (AX-94952472)
was associated with TRS and RLD. Similarly, other loci were also identified as pleiotropic on
2B (AX-95227366) for RV and RL, 3B (AX-94516395) for SOLRN and RLD, 4A (AX-95105488)
for TRS, RLD and RV, 6A (AX-95244609) for SOLRN, LRS, AD and 6B (X-94502864) for RLD,
RV and RL. We also identified two pleiotropic loci on the short arm of 7B (AX-95123855)
associated with root morphology traits (FOLRN, SOLRN, LRS) and QTN-7B-AX-95119337
associated with TRS and RLD whereas its long arm had a locus (AX-94528392) associated
with RL and LRS. Other pleiotropic QTNs were 1DS- AX-94448890 (SOLRN and RL) and
7AL- AX-94664277 (RV and SDW) (Figure 4 and Table 4). These identified loci influencing
several traits could be potential markers for marker-assisted breeding after validation.

Table 4. Pleiotropic quantitative trait nucleotides (QTNs).

S. No. Marker Traits Chromosome Position (Mb)

1 AX-94448890 SOLRN, RL 1DS 10.7417
2 AX-94502864 RLD, RV, RL 6BL 710.3245
3 AX-94516395 SOLRN, RLD 3BL 738.6992
4 AX-94528392 LRS, RL 7BL 675.3145
5 AX-94664277 RV, SDW 7AL 689.9207
6 AX-94952472 TRS, RLD 2AS 8.181794
7 AX-95105488 TRS, RLD, RV 4AL 631.9034
8 AX-95119337 TRS, RLD 7BS 138.8828
9 AX-95123855 FOLRN, SOLRN, LRS 7BS 99.63503

10 AX-95227366 RV, RL 2BS 46.08922
11 AX-95244609 SOLRN, LRS, AD 6AL 599.0352

TRS, total root size (cm); FOLRN, first order lateral root number; SOLRN, second order lateral root number; LRS,
lateral root size; RLD, root length density cm−2; AD, average diameter (mm); RV, root volume (cm3); SDW, shoot
dry weight (mg); RL, root length (cm).
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2.4.2. Allelic Effects of Identified Genomic Regions on Respective Phenotypes

Seven major loci detected in four or more ML-GWAS methods were analyzed to
determine the range of phenotypic variations for all traits (Figure 5). Association panel
genotypes were divided into two classes according to allele types. It was observed that all
seven QTNs demonstrated a significant effect on respective traits (p ≤ 0.01). Among these
seven QTNs, three showed a significant effect on SOLRN (Q.SOLRN-1DS: AX-94448890,
Q.SOLRN-1BL: AX-95077960, Q.SOLRN-6AL: AX-95244609) and one each on LRS (Q.LRS-
7BS: AX-95123855), RV (Q.RV-5BL: AX-94439232), SDW (Q.SDW-4AL: AX-94470023) and
AD (Q.AD-6AL: AX-95244609). The marker, AX-95244609 at Chr6AL was pleiotropic
for SOLRN, LRS and AD. These significant associations suggest their plausible role in
determining root architecture traits.

Figure 5. Boxplot for seven reliable QTNs with significant effects (p < 0.01) on corresponding root and shoot traits. For
each QTNs, the germplasm lines were divided into two groups according to superior and inferior allele type. The x-axis
represents the two alleles for each QTNs, while the y-axis corresponds to phenotypic value. Subfigures, (A–C) represent
allelic differences for SOLRN and superior alleles for QTNs Q.SOLRN-1DS, Q.SOLRN-1BL and Q.SOLRN-6AL were T, A
and T respectively. Subfigures (D–G) represent allelic differences for LRS, RV, SDW and AD for QTNs Q.LRS-7BS, Q.RV-5BL,
Q.SDW-4AL and Q.AD-6AL with superor alleles as T, C, T and C respectively.

2.4.3. Genes Linked to Quantitative Trait Nucleotides

Out of the total SNPs associated with various root and shoot traits, 52 SNP mark-
ers were found to be located within genes (Supplementary Table S6). Some important
proteins encoded by these genes included glycoside hydrolase superfamily protein, car-
bonic anhydrase superfamily protein, auxin response factor, nitrogen regulatory protein,
transmembrane protein, enhancer of polycomb-like protein and glutamate receptor. More-
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over, we found that some of the loci corresponding to large effect QTNs and detected
by multiple methods harbored genes for the growth and development of wheat root
and shoot organs. For instance, QTN locus Chr2B: AX-94457792 for SRL is comprised
of genes TraesCS2B02G406800 and is predicted to encode Formin-like protein which reg-
ulates root-hair elongation in rice [32]. This locus also controls the actin cytoskeleton
in root hair in wheat [33]. The other largely effected QTN associated with SL (Chr7BS:
AX-94876335) was linked to a transcriptional responses of maize seedling root to phos-
phorus starvation [34]. Most QTNs associated with SRN were at loci containing genes
predicted to encode Histone-lysine N-methyltransferase ATXR2, ATPase, F1/V1/A1 com-
plex, alpha/beta subunit and the N-terminal domain superfamily. Other harboring genes
encode nucleotide-diphospho-sugar transferases, ribosome-inactivating protein super-
family and papain-like cysteine peptidase superfamily. The large effect QTNs Chr7AS:
AX-95249973 and Chr7BS: AX-95123855 associated with FOLRN were involved in plant
growth, development and adaptation (Supplementary Table S6).

3. Discussion

Root traits play a major role in resource uptake, particularly with respect to water
access and uptake in the context of drought tolerance. In this way, root traits help maintain
crop yield under limited water environments. To realize maximum yield in wheat, a well-
developed root system is warranted [28,35]. The discovery of a novel source of germplasm
and new alleles to improve RSA and introgression of new traits into adapted but otherwise
susceptible phenotypes are a desirable approach toward breeding for drought tolerance.
Different strategies were adopted for early screening of the wheat RSA, assuming that
genotypes with a diverse nature of root architecture at the seedling stage would also
respond in a similar way at the adult stage when water and/or nutrients become scarce
for grain yield [36]. We studied the root and shoot behaviors at the seedling stage under
controlled conditions in perlite vermiculite mixtures in pots. This method of screening
was considered a reliable method to examine the root system variations compared to field
conditions, where there are several confounding impacts and extracting and measuring
roots is difficult. Genetic variability in root systems during seed germination and seedling
development is a key trait for seedling establishment and early vigor under water stress
and resource poor environments. Improved root traits during this key stage will impact
crop emergence and seedling establishment resulting in a good plant population which is
one of the key components of yield under both optimal conditions and stress conditions.

3.1. Phenotypic Variability

The significant variation observed for various RSA features and shoot traits could be
attributed to diversity among the genotypes of the association panel due to their diverse
genetic background and wide geographical distributions. The association panel genotypes
were collected from various parts of India and around the world. Further, a broad range of
variation was detected for individual RSA traits. The highest and lowest morphometric
values for various RSA traits (Table 1) reflected the level of diversity within the gene pool
and could be promising material to improve root traits through breeding. High coefficient
of variation (%) for FOLRN, SOLRN, LRS, LRD, RV, RDW and SRL (>30%) revealed wide
variability of these traits in the AM panel. The broad sense heritability (H2) of the trait is
a critical parameter determining their utility in breeding. We observed high heritability for
traits such as SOLRN, SDW, RDW, SL, RL, AD, RV and moderate heritability for traits such
as, LRS, RLD, SRN, RSDWR, SRL, TRS (Supplementary Table S2). Li et al. [37] reported
moderate to high H2 for root and shoot traits, ranging from 56.0% to 94.6%.

For acquisition of water and nutrients from the deep zone of soil, RV with a greater
number of root tips is essentially required [8,10]. Further, it would be desirable to have
genotypes with longer RV, RDW, and other associated parameters so they could extract
water and maintain growth under moisture stress environments. The genotype IC406521
from Uttarakhand (India) showed the highest mean value of RV (0.35 cm3), and lowest
AD (0.31 mm), thus its root distribution occupied a larger area of soil. Further, the geno-
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type IC539574 ranked one with the value of 240.66 for FOLRN whereas the genotype
IC82425A recorded the highest mean value of 490.33 for SOLRN. Similarly, top ranking
genotypes for RLD, LRS, LRD and AD were IC542076 (0.75 cm−2), IC82425A (0.86), IC29008
(5.89 cm−1) and EC187159 (0.49 mm), respectively. These genotypes could serve as donors
of these traits for crop improvement to combat drought stress. The genotypes with the
highest AD are considered best for drought stress tolerance due to large xylem vessels
which can extract more water and nutrients from deep soil layers [12,38]. We recorded
variation for SRN in our diverse panel, ranging from 2 to 6 which was also observed by
Djanaguiraman et al. [14]. However, Cane et al. [36] reported 4 to 6 seminal roots in elite
wheat varieties which might be due to less variability. We identified donors for multiple
traits. For example, the genotype EC426644, an Australian cultivar (Tincurrin), showed
high performance for traits, namely TRS, RLD, FOLRN and RSDWR. Bustos et al. [39] also
reported Tincurrin cultivar with high root system size in their study.

3.2. Multivariate Analyses

Correlations between root and shoot traits shows the balance between the organs of
roots and shoots and resource partitioning between the above ground and below ground
plant parts [40,41]. In this case, FOLRN and SOLRN exhibited strong correlations with all
the traits except AD and SRL. FOLRN directly or indirectly contributes to the variability
in root morphological traits which increase water use efficiency at critical stages of plant
growth through more absorption of water and nutrients from soil sub layers. The inverse
relationship between AD with other traits observed in the present study was in line with
the previous studies on flax (Linum usitatissimum L.) and Arabidopsis thaliana [42,43]. This
is because fine roots are the main root feature, and the number of root tips increases
the root surface area and volume, hence enhancing the absorption efficiency of water
and nutrients [8,10]. A high correlation between RV and RDW is obvious. Moreover,
a high correlation between shoot and root dry weights observed might be due to supply
of nutrients from root to the shoot parts, as is evident in the case of rice [44]. One of the
easily scorable key traits, SRN, showed a high correlation with a majority of the root traits,
suggesting its utility to provide a broad idea about the root system. The high correlation
between root and shoot traits is due to reliance of crops on the root system for water and
nutrient uptake.

Based on PCA, RV, RDW, SOLRN, RLD, TRS, RL, LRS, FOLRN, SRN and RSDWR
were major contributors to PC1 and most significantly associated with genotypic variations.
Likewise, SDW and SL are major contributors to PC2. Hence these traits need to be focused
on root studies. RV indicates the proliferation of roots which is essential for plants to uptake
more water and nutrients from the soil, whereas linear root elongation may be quite useful
in extracting water from deeper soil layers in the event of drought. However, RDW varies
among genotypes with varying RL. Therefore, it would be desirable to have genotypes with
high RL as well as RDW for a more efficient root system. Higher root density is found to be
useful for the plants to uptake more nutrients and therefore the plants with a deeper root
system would be more advantageous for drought tolerant genotypes [45,46]. Clustering of
genotypes in six groups was also evident in a two-dimensional PCA biplot based on root
and shoot morphological traits. Genotypes from two contrasting clusters 1 and 6 could
be used in crossing program for genetics studies, mapping population development and
trait introgression.

3.3. Genome Wide Association and Candidate Genes Identification

Identification of a novel source of genes and genomic regions associated with RSA
traits at the seedling stage is expected to boost development of high yielding drought
tolerant varieties. In this context, historical wheat germplasm collections maintained in
gene banks could prove valuable genetic resource for searching genes/genomic regions
using association genetics approach. In this study, we used a diverse panel of 136 wheat
genotypes including landraces, varieties, local collection, synthetic germplasm and elite
breeding line for mapping RSA and shoot traits. For conducting GWAS, ML-GWAS models
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were used as these are considered superior to SL-GWAS models for mapping complex traits
due to the fact that in ML-GWAS models, all-marker effects are simultaneously estimated.
Moreover, unlike SL-GWAS models, these do not require testing of identified associations
using stringent multiple testing corrections that generally result in rejection of significant
associations [47]. Using six different ML-GWAS models, 456 QTNs were detected for
15 RSA features and shoot traits, distributed over 21 chromosomes. The phenotypic
variation estimated (PVE) (r2) for the traits ranged from 0.12% to 38.67%, indicating that
RSA traits are controlled by multiple loci with small to moderate effects. This also revealed
the complex genetic control of these traits at an early stage of crop growth. Among the
six ML-GWAS models used in our analysis, the pLARmEB model was the most powerful,
which revealed the maximum number of associations (194) whereas the FASTmrEMMA
was the least powerful as it detected the lowest number of MTAs (18). These findings were
consistent with the observation of the Safdar et al. [48] who used ML-GWAS models to
dissect agronomic traits in bread wheat.

Among the root traits, TRS was found to be associated with drought tolerance in
wheat due to spreading of roots in the soil and its effect on the resource uptake [49]. The
SNP marker AX-94952472, AX-95105488 and AX-95119337 on chr2AS, 4AL and 7BS were
associated with TRS as well as RLD with phenotypic variance in the range of 3.29–11.23%.
Root length is an important parameter that determines the ability of a plant to capture water
from deeper soil layer [50]. Eight QTNs for RL were detected with more than two models,
out of which Q.RL-6BL was consistently detected in five models. Further, this marker
was pleiotropic and was associated with RV and RLD which were positively associated
traits. Two reliable QTNs for RL (Q.RL-6BL and Q.RL-7AL) were not documented in earlier
studies. There, they are considered novel QTNs, whereas other QTNs were reported to be
associated with wheat seedling root development under abiotic stresses and phosphorus
starvation [51,52]. For traits, FOLRN and SOLRN, two and nine QTNs were identified,
respectively. Lateral roots play an important role for foraging water from a shallow depth.
Wheat cultivation in the dry area requires more lateral roots at deeper layers for absorption
of nutrients and water from deep soil layers. Our analysis revealed a pleiotropic marker,
AX-95123855 on 7BS associated with RSA traits FOLRN, SOLRN and LRS. This marker was
located within a gene (TraesCS7B02G086500) that encodes Calcineurin which was reported
to control inward ion flux in the root, a process essential for plant survival and growth [53].

The SRL is a widely used morphological parameter for root trait which character-
izes economic aspects of root system, demonstrating the role of root mass for nutrient
acquisition. Genotypes with large SRL have thin roots that increase the surface area per
unit root volume enhancing water and nutrient uptake efficiencies [54]. Furthermore,
genotypes with small root diameter and large RLD at depth are better adapted to drought
conditions [55]. Our study identified 2 QTNs for SRL, one each on 5AL and 2BL. Of these,
QTN on 2BL (Q.SRL-2BL) was associated with a gene encoding for Formin-like protein,
a family of actin organizing protein involved in root hair development [33]. Further, RLD
is considered a primary driver of drought avoidance and enables complete uptake of the
soil moisture. Breeding for plants with increased RLD in medium and deep layers and
less RLD in shallow soil layers have been proposed as an efficient growth strategy where
deep water could be available to crops during late maturity [45,56–58]. Nine QTNs were
identified for RLD in our study. Root diameter is another critical parameter determining
nutrient uptake and transport. In this study, we identified as many as eleven consistent
QTNs for AD and all of them had minor effects, suggesting complex genetic regulation of
this trait. Among these, two QTNs Q.AD-1BL (AX-94620468) and Q.AD-6AL (AX-95244609)
were detected in three or more models and could represent important genomic regions
controlling this trait. Moreover, we found that marker AX-95244609 for QTN Q.AD-6AL
was associated with other traits such as SOLRN and LRS, and thus could be a potential
target for improvement of more than one RSA traits.

Another important trait is SRN, which emerges first from coleorhiza of seed embryo.
The gravitropic response of wheat seminal roots was heritable and suggested to be under
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control of a single dominant gene [59]. Soriano et al. [60] reported meta-QTNs for SRN in
wheat on 2A, 2B, 3B, 4A, 5A, 7A and 7B. In this study, a total of six novel QTNs for SRN
were identified with the QTNs on 2D (Q.SRN-2DL: AX-94551988) having consistency in
four methods. We found that SNP marker AX-94551988 associated with Q.SRN-2DL was
located within gene TraesCS2D02G478700 encoding for histone-lysine N-methyltransferase.
In a previous study on Arabidopsis, histone-lysine N-methyltransferase gene was reported
to inhibit lateral root development [61]. Based on this, it could be suggested that identified
Histone-lysine N-methyltransferase candidate gene might participate in regulating SRN
through modification of histone proteins.

Moreover, root biomass accumulation at the seedling stage is beneficial for drought es-
cape as it could enable efficient uptake of water and nutrient from soil. In previous studies,
RDW QTLs have been identified under both normal and drought stress conditions [60].
Among the four QTNs for RDW identified in this study, the one on 7AS (Q.RDW-7AS)
explained maximum percentage of phenotypic variance (18.35–18.60%) and coincided with
a meta-QTL, root_MQTL_68 [60], suggesting this is an important genomic region associated
with root trait and its role can be further validated. Among the studied traits, RSDWR is
considered the most important as it indicates ability of a genotype to absorb water and
nutrients from the soil. Generally, plants have higher root shoot ratio under nutrient deficit
soils, suggesting more allocation of resources for the development of root so the plant
can extract nutrients from deep and wider zone [62]. Studies have identified genomic
regions for the RSDWR trait on various chromosomes of wheat under both control as well
as nutrient deficit conditions [60]. Our analysis revealed three QTNs for RSDWR, one each
on 2A, 2B and 3B respectively, however each of them have small effect, indicating limited
potential for their utilization in breeding programs.

The underground root traits significantly affect development of above ground traits
including shoot traits such as, SDW and SL, and thus grain yield. We could identify
six and five reliable QTNs for SDW and SL, respectively. The strongest QTN for SDW
was identified on 4A, Q.SDW-4AL which explained phenotypic variance in the range of
8.09–19.05%, and was found reliable, as detected by using all five models. The SNP marker
associated with this QTN was located within a gene TraesCS4B02G095100 that encodes
for an F-box-like domain superfamily. F-box family proteins play a diverse role in plant
growth and development and could be critical for shoot growth as their expression has
also been detected in the shoot tissues of plant species [49].

Applications of root phenotype-genotype association through GWAS has enabled
the identification of important QTNs for root traits that impact shoot traits including
yield [63,64]. Markers significantly associated with these traits can be used in marker
assisted backcross breeding for varietal improvement. Pleiotropic loci with consistent
effects should be amenable to MAS for many traits together. Further, our study provides
understanding into phenotype–genotype associations for early root and shoot traits of
diverse wheat genotypes by identifying QTNs and proposing plausible candidate genes
for future investigations.

4. Materials and Methods
4.1. Experimental Material and Design

Phenotyping of 140 wheat germplasm of diverse panel including mini core subset
was carried out at the Indian Council of Agricultural Research—National Institute of Plant
Biotechnology (NIPB), New Delhi (India) as pot screening in growth chambers under con-
trolled environmental conditions during Kharif season (June–September), 2019. Detailed in-
formation about the origin and pedigree of the material is given in Supplementary Table S1.
Root morphology and root system architecture (RSA) along with shoot traits were stud-
ied by destructive methods at early seedling stage (Fifteen-day-old seedlings). Figure 6
describes the steps and methodology used in this experiment.
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Figure 6. Flow diagram of phenotyping protocol. (A) Sterilized wheat seeds for germination;
(B) germinated seeds after two days; (C) transferring healthy seedlings to pot containing perlite and
vermiculite; (D) transplanted seedlings; (E) different stages of seedlings growth under controlled
condition; (F) manual measurement of root and shoot length; (G) root images captured by using
flatbed scanner; (H) scanned images of roots. The experimental design adopted for screening was
a completely randomized design (CRD) with three replications including two checks (C306 and
HD2967). For each replication five biological replicates were used in each pot. The experiment was
done in batches for 20 genotypes at each time. Before germination, 20 seeds of each accession were
washed carefully and thoroughly with double distilled water and surface sterilized with 0.5% Sodium
hypochlorite solution for 30 s. The sterilized seeds were then washed with double distilled water
three to four times to remove any trace of adhering chemicals. The seeds were placed well spread in
a thoroughly moist germination paper/filter paper taken in a petri dish and allowed to germinate
under a growth chamber at 22 ± 1 ◦C room temperature in the dark.
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In this experiment, five germinated wheat seeds were sown initially in pots (4-inch
diameter) containing perlite and vermiculite (1:2 ratio v/v). Germinated seeds that were
two days old with primary roots of 1 cm in length were placed inside the pot with the
root radical facing down at equal depth. The Murashige–skoog (MS) liquid media were
supplemented with 8 mM NO3

− as nutrient media at uniform intervals during the entire
growth period. The calcium concentration in all media was kept constant by adjusting the
amount of CaNO3. Murashige–skoog (MS) N+ nutrient solution was prepared as per the
given composition and stored in 4 ◦C. For one liter of working solution preparation, 100 mL
of MS media, 4 mL of CaNO3 and the remaining 896 mL of distilled water constituted 1 L
of solution, which were added in equal proportion to all the genotypes grown in controlled
conditions at equal intervals. In the growth chamber, 150–200 µmol photon/m2/s light
intensity, 10/14 dark/light hours, 70% relative humidity (RH) and at 22 ± 1 ◦C conditions
were maintained as described by Sinha et al. [65].

4.2. Root and Shoot Traits Measured for Phenotyping

After completing 15 days of growth in the controlled growth conditions, the seedlings
were harvested from the pots by removing the perlite + vermiculite mixture and plants were
separated carefully without damaging the roots and shoots. The plants were immediately
placed on a tray to wash out the adhering perlite + vermiculite particles by running tap
water with the utmost care so that to avoid breakage of any roots. The entire seedling
was carefully spread on blotting paper and maximum root length and shoot length were
measured with the help of a length measuring scale. The root was then extracted intact
by cutting at the collar region using a sharp blade and the roots were placed in a tray
containing distilled water. The roots were then individually scanned in an Epson Perfection
V 700 Photo® flatbed scanner at a resolution of 400 dpi modified for this purpose (Regent
Instruments Inc., Quebec, QC, Canada) as per the manufacturer’s guidelines. The root
images from the scanner were analyzed with customized software WinRHIZO™ (Regent
Instruments Inc., Quebec, QC, Canada) [66]. Various root trait data were recorded by
software which were later transformed in major RSA traits measured manually using
published protocols [32,67–69] (Table 1).

4.3. Statistical Analyses of Phenotypic Data

Mean data across the replications were used as the input data for statistical analyses
and GWAS analysis. Descriptive statistics and frequency distribution were analyzed to
check range of variability among the traits. Pearson’s correlation coefficient, cluster analysis
and PCA was performed using SAS software version 9.3 (JMP) program (SAS Institute,
Cary, NC, USA). Heritability (H2) was estimated from the analysis of variance.

4.4. DNA Extraction and SNP Genotyping

Genomic DNA was extracted from 15-day-old wheat seedlings using CTAB meth-
ods [70]. DNA quality was checked using NanodropTM 2000 (Thermo Fisher Scientific,
Wilmington, DE, USA). Samples with good quality DNA were genotyped using Axiom®

Wheat Breeders’ Array (Thermo Fisher Scientific, Wilmington, DE, USA) according to the
procedure described by Affymetrix (Axiom® 2.0 Assay for 384 samples P/N 703,154 Rev.
2). SNP markers with >10% missing data and <10% MAF were excluded. Identified SNPs
were localized on a wheat genome assembly International Wheat Genome Sequencing
Consortium (IWGSC) RefSeq version 1.0 using BLASTn program with default parameters.

4.5. Population Structure and LD

Population structure was estimated with 525 unlinked SNP markers nearly uniformly
distributed across the wheat genome using the Bayesian model-based approach imple-
mented in STRUCTURE program version 2.2 (Pritchard Lab, Stanford University, Stanford,
CA, USA) [71]. A burn-in of 20,000 iterations followed by 50,000 Monte Carlo Markov
Chain (MCMC) was run to estimate the number of subpopulation (k) in a putative range of
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k = 1 to 10. The subpopulation number was estimated using an ad hoc statistic delta k based
on the rate of change in log probability of data between successive values [72]. The squared
allele frequency correlation (r2) between SNP markers was used to estimate LD across
sub-genome A, B, and D using TASSEL v5.0 (Buckler’s Lab, Ithaca, NY, USA) [73]. LD
decay across the three sub-genomes and whole genome level was estimated as the physical
distance between SNPs where average r2 reduced to half of the maximum LD value.

4.6. Genome Wide Association Analysis

The use of multi-locus methods that capture small effect loci in complex polygenic
traits such as in plant roots and shoots have recently become a popular and feasible
approach. To benefit the algorithmic merits of different models and support results of one
by another, it is also advantageous to apply multiple methods [49]. GWAS analysis was
performed using six multi locus GWAS methods within mrMLM [74], FASTmrMLM [75],
FASTmrEMMA [76], pKWmEB [77], pLARmEB [78] and ISIS EMBLASSO [79], which
were included in the R package mrMLM v3.1 [80]. All parameters were set at default
values in this GWAS. The critical thresholds of significant association for the six methods
were set as LOD score 3.00 or >3.00. The most significant QTNs, detected in at least
two methods, were considered as reliable QTNs. The associated SNPs and their putative
underlying genes were illustrated on the wheat chromosomes using Map Chart 2.3, (https:
//www.wur.nl/en/show/Mapchart.htm accessed on 8 June 2021) [81]. The favorability of
alleles at QTNs detected by at least four of the multi-locus models was illustrated using
a box plot based on mean phenotypic value of genotypes with each allele.

4.7. Identification of Potential Candidate Genes

SNPs (probe sequences) that were significantly associated with root architecture traits
were searched against the Triticum aestivum genome assembly IWGSC-refseq version1.0
in online web resource Ensemble plants (https://plants.ensembl.org/Triticum_aestivum/
Tools/Blast, accessed on 14 November 2020) using BLASTn with default parameters to
identify potential candidate genes. BLAST2GO tool was used to get annotation of expressed
transcripts [82].

5. Conclusions

This study revealed wide variability for RSA and shoot traits at the seedling stage
in the studied association panel. Ten top and bottom performing lines for 15 traits were
identified for use in genetics, development of mapping population and introgression
studies. Based on PCA, several traits such as RV, RDW, SOLRN, RLD, TRS, RL, LRS,
FOLRN, SRN and RSDWR, were the most influential traits for phenotypic variations. The
GWAS analysis enabled genetic detection of RSA traits and revealed 11 pleotropic loci
associated with correlated traits. Further, putative candidate genes were identified from the
associated genomic region that could be validated using a functional genomics approach.
Development of wheat cultivars possessing superior root traits will play an important role
in enhancing drought tolerance under water stress conditions. The large variability found
in Indian germplasm for RSA traits and the novel genomic regions regulating them makes
this germplasm a valuable source for improving root architecture, which plays a significant
role in absorption and uptake of water and nutrients and increases crop productivity.
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