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Cellular immunity relies on the ability of a T-cell receptor (TCR) to recognize a peptide (p) presented by a class 
I major histocompatibility complex (MHC) receptor on the surface of a cell. The TCR-peptide-MHC (TCRpMHC) 
interaction is a crucial step in activating T-cells, and the structural characteristics of these molecules play a 
significant role in determining the specificity and affinity of this interaction. Hence, obtaining 3D structures 
of TCRpMHC complexes offers valuable insights into various aspects of cellular immunity and can facilitate 
the development of T-cell-based immunotherapies. Here, we aimed to compare three popular web servers for 
modeling the structures of TCRpMHC complexes, namely ImmuneScape (IS), TCRpMHCmodels, and TCRmodel2, 
to examine their strengths and limitations. Each method employs a different modeling strategy, including docking, 
homology modeling, and deep learning. The accuracy of each method was evaluated by reproducing the 3D 
structures of a dataset of 87 TCRpMHC complexes with experimentally determined crystal structures available 
on the Protein Data Bank (PDB). All selected structures were limited to human MHC alleles, presenting a diverse 
set of peptide ligands. A detailed analysis of produced models was conducted using multiple metrics, including 
Root Mean Square Deviation (RMSD) and standardized assessments from CAPRI and DockQ. Special attention 
was given to the complementarity-determining region (CDR) loops of the TCRs and to the peptide ligands, which 
define most of the unique features and specificity of a given TCRpMHC interaction. Our study provides an 
optimistic view of the current state-of-the-art for TCRpMHC modeling but highlights some remaining challenges 
that must be addressed in order to support the future application of these tools for TCR engineering and computer-
aided design of TCR-based immunotherapies.
1. Introduction

T-cell lymphocytes play a crucial role in the immunosurveillance 
against cellular diseases, including cancer and infections by intracellu-
lar pathogens [1,2]. Central to this function is the ability to specifically 
recognize diseased cells that must be eliminated, while avoiding harm 
to healthy cells. CD8+ cytotoxic T cells are known for their remarkable 
specificity, which is made possible by the expression of unique T-cell re-
ceptors (TCRs). These receptors recognize peptide-targets derived from 
intracellular proteins, which are presented on the cell surface via class I 
Major Histocompatibility Complex (MHC-I) receptors (Fig. 1). The MHC-
I binding cleft encloses both ends of the peptide, having deeper pockets 
that accommodate specific “anchor” residues in the peptide ligands (e.g., 
pockets B and F) [3,4]. Note that MHC-I receptors are encoded by the 
most polymorphic genes in the human genome, and different MHC al-
leles encode different pockets, in turn leading to different requirements 
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for peptide binding [5]. Adding to that diversity, the pool of displayed 
peptides reflects both the genetic diversity of the host (i.e., the proteome 
of a healthy cell) and that of the pathogen or cancer (e.g., viral proteins 
or cancer neoantigens) [1]. Therefore, peptide-MHC (pMHC) complexes 
loaded with peptides derived from tumoral or viral proteins can serve 
as molecular targets for TCR recognition. However, recognition of these 
diverse pMHC targets requires elaborated mechanisms to promote the 
diversity of TCR specificities, which are reflected in the unique struc-
tural features of individual TCR molecules [6].

TCRs are heterodimers usually consisting of one 𝛼 and one 𝛽
chain [7], each one composed of a constant and a variable region 
[8,9]. The variable regions of each chain include three highly variable 
complementarity-determining region (CDR) loops, of which the most di-
verse is the CDR3𝛽 (i.e., unique sequences and structures, as determined 
by the somatic rearrangement of V(D)J gene segments). Together, the 
combined surface of the 6 CDR loops forms the TCR interface that specif-
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Fig. 1. The TCRpMHC structure. A. On the left, schematic view of a CD8+ lym-
phocyte using the T-cell receptor (TCR) to recognize a peptide-loaded class I Ma-
jor Histocompatibility Complex (pMHC) at the surface of an antigen-presenting 
cell (APC). The interaction is further stabilized by the CD8 glycoprotein. The 
extracellular portion of the TCRpMHC structure is presented on the right side 
(cartoon). The grey box indicates the cropped structure that was used for all anal-
yses in this study, limited to the 𝛼1 and 𝛼2 domains of the MHC receptor (blue), 
the peptide ligand (purple), and the variable TCR domains (V𝛼/V𝛽, in green), 
which include the Complementarity Determining Region (CDR) loops (orange). 
B. Surface representation of the same cropped structure. Separation between 
TCR (shades of green) and pMHC (purple/blue) was increased for visualization 
purposes. C. Representation of the Crossing Angle, capturing the TCR twist mo-
tion. D. Representation of the Incident Angle, capturing the TCR tilt motion.

ically interacts with a cognate pMHC complex (Fig. 1). It is important to 
note, however, that the same TCR can engage with multiple pMHC com-
plexes, a phenomenon known as T-cell cross-reactivity [10,9,11,1]. This 
feature of cellular immunity enables a limited pool of T-cells to provide 
broader coverage against a more comprehensive range of targets [12]. 
On the other hand, T-cell cross-reactivity can lead to autoimmune reac-
tions and off-target toxicity, representing a significant safety concern for 
T-cell-based immunotherapies [1,13]. In this context, understanding the 
molecular and structural features driving the specificity of TCRpMHC in-
teractions is central to the development of better and safer T-cell-based 
immunotherapies, particularly those involving TCR engineering efforts 
(e.g., TCR-T and TCR-mimic CAR-T cell therapies) [14–17].

In recent decades, much has been learned from TCRpMHC structures 
determined with experimental assays [8,18,4,19,20], such as X-ray crys-
tallography, but the cost and time required to resolve a single structure 
prevent the use of these approaches for large-scale analysis. On the other 
hand, the aforementioned diversity of TCRpMHC complexes requires the 
detailed structural analysis of potentially millions of TCRpMHC com-
plexes to identify therapeutic opportunities, particularly for personal-
ized immunotherapies. As a consequence, there is growing interest in 
the development of accurate and scalable computational methods for 
the structural modeling of TCRpMHC complexes, which is becoming a 
crucial step for the development of novel T-cell-based immunotherapies 
[21–23]. However, the limited experimental data available for training 
and the extreme variability of the TCRpMHC molecules, including di-
verse docking orientations (Fig. 1), all contribute to making this a very 
challenging problem in computational biology [23].

In this work, we evaluate the accuracy of available web servers for 
the structural prediction of TCRpMHC complexes. The selected web 
servers have efficient implementations but rely on distinct computa-
tional approaches, including molecular docking, homology modeling, 
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and deep learning. We analyzed the strengths and limitations of these 
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Fig. 2. Sequence logo of peptides from studied complexes. The logo plot illus-
trates the distribution and prevalence of amino acids by position across all 87 
peptide sequences (a) or a subset of 20 peptides from structures published after 
2021 (b). The All dataset includes one 8-mer, 55 9-mer, 22 10-mer, five 11-mer, 
and four 13-mer. There is no dominant sequence motif in the All dataset, aside 
from a preference for Leucine in p2, which is compatible with HLA-A2 super-
type binding preference.

methods by reproducing a reference dataset of 87 experimentally deter-
mined TCRpMHC structures. We assessed the accuracy of the produced 
models using an assortment of metrics capturing both the geometry of 
the individual molecules and how they interact as a complex (e.g., in-
termolecular contacts and docking orientation).

2. Method

2.1. Data preparation

Our dataset consists of 87 TCRpMHC complexes with (i) structures 
determined experimentally and available at the Protein Data Bank (PDB) 
[24], and (ii) curated annotations at the Immune Epitope Database 
(IEDB) [25]. All these structures were determined by X-ray crystallog-
raphy, having average, min, and max resolution of 2.57 Å, 1.54 Å and 
3.51 Å, respectively (Table 1).

These complexes cover a diversity of peptide ligand sources, in-
cluding 39 viral, 28 cancer-associated, 13 “self” (human), 4 synthetic, 
and 3 bacterial peptides. The peptide sequences were also very diverse 
(Fig. 2(a)), with the exception of peptide anchor position 2 (p2). This 
position exhibited a noticeable preference for leucine (L), a bias that 
is consistent with the overrepresentation of the HLA-A2 supertype in 
the dataset. In addition to HLA-A2, our dataset also includes HLA-A24-
restricted structures, as well as structures with HLA-B and HLA-C alleles 
(Table 1).

The FASTA sequences and crystal structures of selected complexes 
were downloaded from the PDB. All structures were manually truncated 
to reduce the overall size of the modeled complexes (Fig. 1), which in 
turn reduces the required computing time and increases the precision of 
all analyses. Specifically, only the variable domains of the TCR chains 
were retained, removing the constant regions that are not part of the 
binding site. On the MHC, only the 𝛼-1 and 𝛼-2 domains were retained 
for further analysis, therefore removing the 𝛼-3 domain and the 𝛽2-
microglobulin.

2.2. Modeling protocols

We used three different web servers to predict TCRpMHC com-

plexes based on various approaches: namely TCRpMHCmodels [26], 
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Table 1

A comprehensive table of TCR-Peptide-HLA complexes.

# PDB ID Epitope Source Allele TCR ID Method Resolution

Structures generated prior 2021

1 1AO7 LLFGYPVYV virus HLA-A*02:01 AV2S1A2, BV13S1 X-ray diffraction 2.6
2 1BD2 LLFGYPVYV virus HLA-A*02:01 ADV21S1A1N2, BV13S1 X-ray diffraction 2.5
3 1MI5 FLRGRAYGL virus HLA-B*08:01 TRAC, TRAB X-ray diffraction 2.5
4 1QRN LLFGYAVYV virus HLA-A*02 TRAC, TRAB X-ray diffraction 2.8
5 1QSF LLFGYPVAV virus HLA-A*02 TRAC, TRAB X-ray diffraction 2.8
6 2AK4 LPEPLPQGQLTAY virus HLA-B*35:08 SB27 X-ray diffraction 2.5
7 2BNQ SLLMWITQV synthetic HLA-A*02 TRAC, TRAB X-ray diffraction 1.7
8 2BNR SLLMWITQC synthetic HLA-A*02 TRAC, TRAB X-ray diffraction 1.9
9 2F53 SLLMWITQC cancer HLA-A*02:01 TRAC, TRAB X-ray diffraction 2.1
10 2F54 SLLMWITQC cancer HLA-A*02:01 TRAC, TRAB X-ray diffraction 2.7
11 2P5E SLLMWITQC cancer HLA-A*02 TRAC, hypothetical protein X-ray diffraction 1.89
12 2P5W SLLMWITQC cancer HLA-A*02 TRAC, hypothetical protein X-ray diffraction 2.2
13 2VLJ GILGFVFTL virus HLA-A*02:01 JM22 X-ray diffraction 2.4
14 2VLR GILGFVFTL virus HLA-A*02:01 JM22 X-ray diffraction 2.3
15 3DXA EENLLDFVRF virus HLA-B*44:05 DM1 X-ray diffraction 3.5
16 3FFC FLRGRAYGL synthetic HLA-B*08 CF34 X-ray diffraction 2.8
17 3GSN NLVPMVATV virus HLA-A*02 TRAV24, TRBV6-5 X-ray diffraction 2.8
18 3H9S MLWGYLQYV self HLA-A*02 A6 TRAC, TRBV6-5 X-ray diffraction 2.7
19 3HG1 ELAGIGILTV cancer HLA-A*02:01 TRAC, TRAB X-ray diffraction 3
20 3KPR EEYLKAWTF virus HLA-B*44:05 LC13 X-ray diffraction 2.6
21 3KPS EEYLQAFTY self HLA-B*44:05 LC13 X-ray diffraction 2.7
22 3KXF LPEPLPQGQLTAY virus HLA-B*35:08 SB27 X-ray diffraction 3.1
23 3MV7 HPVGEADYFEY virus HLA-B*35:01 TK3 X-ray diffraction 2
24 3MV8 HPVGEADYFEY virus HLA-B*35:01 TK3 X-ray diffraction 2.1
25 3MV9 HPVGEADYFEY virus HLA-B*35:01 TK3 X-ray diffraction 2.7
26 3O4L GLCTLVAML virus HLA-A*02:01 TRAC, TRAB X-ray diffraction 2.54
27 3PWP LGYGFVNYI self HLA-A*02:01 A6 X-ray diffraction 2.69
28 3QDG ELAGIGILTV cancer HLA-A*02:01 DMF5 X-ray diffraction 2.69
29 3QDJ AAGIGILTV cancer HLA-A*02 DMF5 X-ray diffraction 2.3
30 3QDM ELAGIGILTV cancer HLA-A*02 DMF4 X-ray diffraction 2.8
31 3QEQ AAGIGILTV cancer HLA-A*02 DMF4 X-ray diffraction 2.59
32 3QFJ LLFGFPVYV virus HLA-A*02 A6 X-ray diffraction 2.29
33 3UTT ALWGPDPAAA self HLA-A*02:01 1E6 X-ray diffraction 2.6
34 3VXM RFPLTFGWCF virus HLA-A*024 C1-28 X-ray diffraction 2.5
35 3VXR RYPLTFGWCF virus HLA-A*024 H27-14 X-ray diffraction 2.4
36 3VXS RYPLTLGWCF virus HLA-A*024 H27-14 X-ray diffraction 1.8
37 3VXU RFPLTFGWCF virus HLA-A*24 T36-5 X-ray diffraction 2.7
38 4FTV LLFGYPVYV virus HLA-A*02 A6 X-ray diffraction 2.74
39 4G8G KRWIILGLNK virus HLA-B*27:05 C12C X-ray diffraction 2.4
40 4G9F KRWIIMGLNK virus HLA-B*27:05 C12C X-ray diffraction 1.9
41 4JFD ELAAIGILTV cancer HLA-A*02 high affinity TCRA, TCRB X-ray diffraction 2.46
42 4JFE ELAGIGALTV cancer HLA-A*02:01 high affinity TCRA, TCRB X-ray diffraction 2.7
43 4JFF ELAGIGILTV cancer HLA-A*02 high affinity TCRA, TCRB X-ray diffraction 2.43
44 4JRX LPEPLPQGQLTAY virus HLA-B*35:05 CA5 X-ray diffraction 2.3
45 4JRY LPEPLPQGQLTAY virus HLA-B*35:05 SB47 X-ray diffraction 2.8
46 4L3E ELAGIGILTV cancer HLA-A*02:01 DMF5 X-ray diffraction 2.56
47 4MJI TAFTIPSI virus HLA-B*51:01 TRAC, TRAB X-ray diffraction 2.99
48 4MNQ ILAKFLHWL self HLA-A*02:01 LOC452776, TRBC1 X-ray diffraction 2.74
49 4PRH HPVGDADYFEY virus HLA-B*35:08 TK3 X-ray diffraction 2.5
50 4PRI HPVGEADYFEY virus HLA-B*35:08 TK3 X-ray diffraction 2.4
51 4QOK EAAGIGILTV cancer HLA-A*02 Mel5 X-ray diffraction 3
52 4QRP HSKKKCDEL virus HLA-B*08:01 DD31 X-ray diffraction 2.9
53 5D2L NLVPMVATV virus HLA-A*02 C7 X-ray diffraction 3.51
54 5D2N NLVPMVATV virus HLA-A*02 C25 X-ray diffraction 2.1
55 6Q3S SLLMWITQV synthetic HLA-A*02:01 TRAV21, TRBV6-5 X-ray diffraction 2.5
56 6R2L SLSKILDTV cancer HLA-A*02:01 TRAV22, TRBV11-2 X-ray diffraction 2.3
57 6RP9 SLLMWITQV cancer HLA-A*02:01 NYE_S1 X-ray diffraction 3.12
58 6RPB SLLMWITQV cancer HLA-A*02:01 NYE_S3 X-ray diffraction 2.5
59 6RSY RMFPNAPYL cancer HLA-A*02:01 A7B2 X-ray diffraction 2.95
60 6TMO EAAGIGILTV cancer HLA-A*02:01 A24B17 X-ray diffraction 2.1
61 6TRO GVYDGREHTV cancer HLA-A*02:01 GVY01 X-ray diffraction 3
62 6UON GADGVGKSAL cancer HLA-A*02:01 GVY01 X-ray diffraction 3.5
63 6VMX RPPIFIRRL virus HLA-B*07:02 HD14 X-ray diffraction 3.1
64 6VQO HMTEVVRHC cancer HLA-A*02:01 1A2 X-ray diffraction 3
65 6VRM HMTEVVRHC cancer HLA-A*02:01 12-6 X-ray diffraction 2.61
66 6VRN HMTEVVRHC cancer HLA-A*02:01 38-10 X-ray diffraction 2.61
67 7N6E YLQPRTFLL virus HLA-A*02:01 NR1C X-ray diffraction 3.2
2940
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Table 1 (continued)

# PDB ID Epitope Source Allele TCR ID Method Resolution

Structures generated after 2021

68 7N1E RLQSLQTYV virus HLA-A*02:01 RLQ3 X-ray diffraction 2.3
69 7N1F YLQPRTFLL virus HLA-A*02:01 pYLQ7 X-ray diffraction 2.39
70 7N2N TRLALIAPK self HLA-B*27:05 AS4.2 X-ray diffraction 2.6
71 7N2O LRVMMLAPF bacteria HLA-B*27:05 AS4.2 X-ray diffraction 2.3
72 7N2P GQVMVVAPR self HLA-B*27:05 AS4.3 X-ray diffraction 2.5
73 7N2Q LRVMMLAPF bacteria HLA-B*27:05 AS4.3 X-ray diffraction 2.7
74 7N2R TRLALIAPK self HLA-B*27:05 AS4.3 X-ray diffraction 2.28
75 7N2S TRLALIAPK self HLA-B*27:05 AS3.1 X-ray diffraction 2.37
76 7OW5 VVVGAGGVGK self HLA-A*11:01 JDIa41b1 X-ray diffraction 2.58
77 7OW6 VVVGADGVGK self HLA-A*11:01 JDIa41b1 X-ray diffraction 2.64
78 7PB2 VVVGADGVGK self HLA-A*11:01 JDI X-ray diffraction 3.41
79 7PBC GLYDGMEHL cancer HLA-A*02:01 c796 X-ray diffraction 2.04
80 7PBE YLQPRTFLL virus HLA-A*02:01 YLQ36 X-ray diffraction 3
81 7PDW GLYDGMEHL cancer HLA-A*02:01 c728 X-ray diffraction 1.82
82 7QPJ GLYDGMEHL cancer HLA-A*02:01 c756 X-ray diffraction 1.54
83 7RK7 YMNGTMSQV self HLA-A*02:01 TIL1383I X-ray diffraction 2.54
84 7RM4 HMTEVVRHC cancer HLA-A*02:01 6-11 X-ray diffraction 3.33
85 8CX4 LRVMMLAPF bacteria HLA-B*27:05 AS8.4 X-ray diffraction 2.2
86 8GOM RLQSLQTYV virus HLA-A*02:01 RLQ7 X-ray diffraction 2.78
87 8GON RLQSLQIYV virus HLA-A*02:01 RLQ7 X-ray diffraction 2.6
ImmuneScape (IS) [27] and TCRmodel2 [2]. TCRmodel2, the newest 
method, is a tailored implementation of AlphaFold2 (AF2) [28]. Hence, 
we also included AF2 in our analysis to provide baseline performance 
for a general-purpose deep-learning method.

TCRpMHCmodels [26] is a publicly available web server that uses 
the amino acid sequences of MHC 𝛼 chain, peptide chain, and TCR 𝛼
and 𝛽 chains as input to predict the 3D structure of TCRpMHC com-
plexes. This tool can be accessed on the DTU Health Tech bioinformatics 
services webpage. TCRpMHCmodels rely on homology modeling with 
MODELLER v9.18 automodel class and default settings [26], with the 
modeling of each complex taking approximately 5 minutes. To sup-
port that, three separate template databases are used to model the 
pMHC, TCR, and TCRpMHC complexes, respectively. The pMHC tem-
plate database encompasses 455 pMHC structures sourced from IEDB 
and PDB. A Hidden Markov Model uses these datasets to construct a 
comprehensive profile for MHC class I, drawing from all the sequences 
in the database. The TCR template database has 105 paired TCR chains 
curated from LYRA [29]. Finally, the TCRpMHC template database is 
comprised of 61 structures obtained from IEDB and PDB.

ImmuneScape (IS) also uses amino acid sequences as input to predict 
TCRpMHC structures, but this tool’s protocol is centered on molecular 
docking [27]. This tool is directly accessible from the Systems Immunol-
ogy lab’s webpage. Unlike the TCRpMHCmodels tool, the user can select 
the MHC alleles by name without having to provide a sequence. The 
modeling also takes around 5 minutes per model and encompasses six 
main steps. First, TCR chains are modeled with LYRA and Repertoire 
Builder. Second, NetMHCpan and BLOSUM62 are used to choose the 
pMHC template. Next, the BLOSUM62 matrix implemented in MAFFT 
[30] selects the docking template. Then, TCR chains are docked into the 
docking template using conserved residues as anchor positions, followed 
by pMHC side chain remodeling with SCWRL4 [31]. Lastly, different 
models are ranked with BLAST, Repertoire Builder scores, and EMPIRE 
score [27], a TCR-pMHC binding energy function.

The TCRmodel2 tool is a web server developed by the Pierce Lab at 
the University of Maryland Institute for Bioscience and Biotechnology 
Research. It leverages the recent development of AF2 and includes sev-
eral modifications across the AF2 pipeline to improve the prediction for 
TCRpMHC complexes. First, the multiple sequence alignment (MSA) is 
modified to use an extensive database with all structures of TCRs and 
MHCs up to 2021. Next, TCRmodel2 searches for templates in PDB using 
only the TCR sequences rather than the entire MSA. Afterward, pMHC 
templates are selected from PDB, and customized template features are 
used. Finally, all models are scored with AF2 scoring functions, includ-
2941

ing the average predicted local difference distance test and the predicted 
templates score [2]. The inputs are the same as those in TCRpMHCmod-
els, and the modeling takes around 20 minutes per complex.

Unlike the aforementioned methods, AF2 [28] was initially devel-
oped as a general method for the structural prediction of monomeric 
proteins. Its methodology uses the most advanced deep learning algo-
rithms and heavily relies on information from the MSA. The MSA is used 
to identify correlations between residue positions that might contact 
each other in 3D space and select templates from the PDB. Their pipeline 
contains three modules. First is the input module, where AF2 searches 
for homologous sequences in the database to collect information on MSA 
and pairwise distance matrix. To this end, AF2 implemented several 
search tools, including JackHMMer, HHBlits, and HHsearch. The second 
module is called Evoformer, in which the output of the previous mod-
ule is used to create MSA representation and pair representation. The 
last is the structure module, in which pair representation and backbone 
frames are used to predict relative rotations and translations, leading 
to the prediction of angles and atoms’ positions, finally producing and 
ranking multiple structural models [28,32]. The modeling lasted more 
than 2 hours per complex.

2.3. Model processing and accuracy assessment

The numbering of atoms and amino acids is often inconsistent be-
tween the reference crystal structures and the models produced by dif-
ferent tools. Therefore, to prevent errors in subsequent analysis, the 
sequences of produced models were corrected as needed with the BioPy-
thon package (Fig. 3). First, the sample model was compared to a refer-
ence structure to identify differences in chain IDs, chain order, residue 
indices, and missing residues. If a mismatch was observed, the func-
tion PairwiseAligner was used to score the pairwise similarity between 
them. Based on the scores, we could relabel the chains of the sample 
structure according to those of the reference structure. In the case of 
crystal structures, heteroatoms, and water residues were also removed. 
Lastly, we fixed the residue indices in the target structure. Here, we used 
IS models as a reference for indexing.

For an initial overall assessment of model quality, we employed 
the normalized discrete optimized protein energy (DOPE) method [33], 
which was used to compute Z-scores. Subsequently, we utilized the 
nclash value from the CAPRI assessment [34] to determine the presence 
of clashes in the models (e.g., values higher than 1 indicate clashes).

To further evaluate model accuracy, we calculated the root mean 
square deviation (RMSD) values between models and crystal structures 

for five different groups of atoms: (i) all proteins, (ii) MHC, (iii) peptide, 
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Fig. 3. The process for correcting the residue labeling of TCRpMHC, TCRmodel2 models, and crystal structures. Models were first compared with reference to fix the 
chain order. Next, we removed the heteroatoms and fixed any duplicated residues and residue indices to ensure all models from the same structure had the same 

number of atoms.

Fig. 4. The hybrid modeling approach. First, AF2 models were aligned with the 
corresponding IS models (Reference). Then, the aligned TCR from AF2 and the 
pMHC from the IS are combined to create the hybrid model for each TCRpMHC 
complex.

(iv) TCR, and (v) CDR loops. These RMSD were calculated for C𝛼 atoms, 
using the class Superimposed in BioPython.

Additionally, we used four other metrics to evaluate different aspects 
of model accuracy. First, the CAPRI assessment involves the analysis of 
several critical parameters to evaluate the quality of a protein-ligand 
complex model. It includes the fnat and fnon-nat, which represent the 
fraction of receptor-ligand residue contacts in the model that are accu-
rately reproduced in the target structure and the fraction of contacts in 
the model that are not present in the target, respectively. Additionally, 
the root-mean-square (rms) displacement of the backbone atoms of the 
ligand (L-rms), as well as the misorientation angle (uL) and residual dis-
placement (dL) of the ligand are used to determine the global geometry 
of the model. Furthermore, the rms of interface backbone (I-rms) and in-
terface side-chain (S-rms) atoms are computed after superimposing the 
interface residues [35]. Second, the DockQ combines key parameters of 
the CAPRI assessment (i.e., fnat, L-rms and I-rms) into a unified scor-
ing system within the interval of 0 to 1. Finally, the TCR crossing angle 
and incident angle, as defined by TCR3d [36], were calculated with the 
TCR3d website and used to analyze the TCR orientation in all models. 
The crossing angle captures the “TCR twist” in relation to the pMHC. 
It is calculated by the angle formed between the plane separating the 
TCR domains and that of the MHC’s peptide-binding cleft (Fig. 1(c)). 
The incident angle captures the “TCR tilt” in relation to the pMHC. It is 
calculated by the angle between the normal vector of the MHC’s peptide-
binding cleft plane and the TCR interdomain axis of rotation (Fig. 1(d)).

In order to better explore our results and investigate the differences 
between the tailored protocol of TCRmodel2 and the baseline protocol of 
AF2, we also implemented a hybrid methodology combining steps from 
AF2 and IS (Fig. 4). In this protocol, the TCR chains from an AF2 model 
are aligned with the TCR chains in a corresponding IS model. Afterward, 
the TCR chain from IS is removed, and the hybrid TCRpMHC structure 
is saved to a PDB file for subsequent analysis.

2.4. Statistical analysis

We conducted a Tukey’s Honestly Significant Difference (HSD) test 
to pairwise compare the means of Root Mean Square Deviation (RMSD) 
across multiple methods. In this post hoc test, the null hypothesis is that 
the RMSD distributions underlying the methods all have the same mean, 
while the alternative hypothesis is that their means are different. Then, 
p-values and confidence intervals for mean differences were obtained 
with the tukey_hsd function in the Scipy.stats package [37]. The same 
statistical test was also used to assess the distributions of crossing angles 
2942

and incident angles of structures.
2.5. Computational resources

Modeling with TCRmodel2, TCRpMHCmodels, and IS was conducted 
in their respective web servers, as described in section 2.2. The AF2 
models were run on a high-performance computing (HPC) cluster at the 
University of Houston’s Research Computing Data Core (RCDC). Each 
computational run utilized 32 cores or two full nodes, with 3750 MB 
memory per CPU and 3 GPUs. The average run time for each execution 
was approximately two hours.

3. Results and discussion

3.1. Dedicated web servers outperform AlphaFold2 in TCRpMHC modeling

In this study, a dataset consisting of 87 TCRpMHC complexes (Ta-
ble 1) was employed to compare the predictive performance of four 
modeling approaches: AF2, IS, TCRmodel2, and TCRpMHCmodels. We 
first evaluated the quality of models by using the normalized DOPE 
z-score method and the nclash value from the CAPRI assessment. Mod-
els with positive Z-scores are anticipated to be inaccurate, while those 
with Z-scores below -1 are deemed more native-like. It’s noteworthy that 
none of our models yielded positive Z-scores. Nevertheless, we identi-
fied several models with Z-scores equal to or greater than -1, including 
three IS models, one AF2 model, two hybrid models, one TCRmodel2, 
and 47 TCRpMHCmodels. Besides, the CAPRI results revealed that mul-
tiple models contained clashes, including 7 IS models, one AF2 model, 
and 38 hybrid models.

In the initial phase of our analysis, we conducted an assessment 
of the root mean square deviation (RMSD) average across the entire 
TCRpMHC complex (e.g., “all protein” atom selection). This analysis 
provides a coarse evaluation of the overall accuracy of the modeled 
TCRpMHC complexes, considering both chain conformations and TCR 
docking orientation. In this comparison, IS had the lowest C𝛼 RMSD av-
erage (2 Å), followed by TCRpMHCmodels (2.4 Å) and TCRmodel2 (2.6 
Å). However, the differences between these averages were not statis-
tically significant. In contrast, all three dedicated methods performed 
significantly better than the general purpose AF2 implementation (7.3 
Å) (Fig. 5(a)).

To focus on the most challenging components of the system, we 
divided the TCRpMHC complexes into smaller groups of atoms and re-
peated the RMSD calculations. Again, the three dedicated web servers 
performed approximately equally across predicting the MHC, peptide, 
TCR, and CDR loops. As expected, AF2 generated good models for the 
highly conserved MHC structures (average C𝛼 RMSD of 0.8 Å) but failed 
to predict the peptide-ligand conformations (average C𝛼 RMSD of 5 Å). 
Note that modeling MHC-bound peptide conformations remains a per-
sistent challenge in the field [3,38], especially for non-template-based 
methods such as AF2 [28,39]. This is due to the fact that the peptide 
structure is determined mainly by the MHC cleft and not by the pep-
tide sequences [3,40]. It is important to note that AF2-derived MHC 
predictions were still statistically higher than those of dedicated meth-
ods, according to the ANOVA with Tukey post-hoc test. Surprisingly, 
AF2 models showed no significant difference in C𝛼 RMSD compared to 
other methods while predicting TCRs and the highly variable CDR loops 
(Fig. 5(d), 5(e)).

These results also showed that TCRmodel2 did a remarkably better 

job than the general purpose AF2 in predicting TCRpMHC complexes 
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Fig. 5. Carbon alpha root mean square deviation (C𝛼 RMSD) between models and reference crystal structures, computed for 87 TCRpMHC structures (“All dataset”). 
Models were produced using four methods: IS, TCRpMHCmodels, TCRmodel2, and AF2. The average C𝛼 RMSD values were computed from different groups of atoms: 
(a) all protein, (b) MHC, (c) peptide, (d) TCR, and (e) CDR loops.
(Fig. 5). In addition, TCRmodel2 produced functional models for all 87 
targeted complexes, while some issues were observed with the other 
methods. For instance, TCRpMHCmodels failed to generate a model for 
five complexes without providing additional information. And IS gen-
erated models for all 87 complexes, but 12 of the models had clashes 
or structural issues that would require further refinement. In two of the 
most concerning cases, a CDR loop was modeled in a way that its back-
bone was looping around a segment of the MHC or the peptide.

Surprisingly, no statistical difference was observed between TCR-
model2 and the different methods (IS and TCRpMHCmodels) regarding 
the RMSD values across the atom groups tested. This is despite TCR-
model2 leveraging the deep learning algorithms of AF2 and having been 
trained in a much larger (more recent) dataset of templates. TCRmodel2 
uses all TCRpMHC crystal structures published up to 2021, while the 
other methods used data before 2020 [27,26].

3.2. TCR docking orientation remains a significant challenge

Since our reference dataset overlapped with the datasets used to de-
velop these modeling tools, we decided to evaluate the extent to which 
this overlap could be biasing the results. To do that, we repeated our 
analysis in a subset of 20 structures published after 2021 (Table 1). 
Given their publication date, these structures have never been “seen” by 
the three modeling methods. This analysis confirmed the bias in favor of 
the dedicated web servers, reducing the gap in relation to AF2 results. 
The most significant performance reduction was observed for IS and 
TCRpMHCmodels, especially for TCR and CDR predictions. In this con-
text, AF2 outperforms IS and TCRpMHCmodels in the modeling of TCRs 
and CDRs, while presenting slightly higher averages than TCRmodel2. 
However, AF2’s poor performance for the “all protein” group persisted, 
and was driven by inaccurate predictions of the docking orientation of 
the TCR. This issue is also reflected in the impaired performance of TCR-
model2 in this “all protein” group (e.g., note the high standard deviation 
in Fig. 5(a)). Interestingly, the docking-based method used by IS pro-
duced the lowest RMSD average and the lowest standard deviation.

In order to better characterize the contribution of inaccurate TCR 
docking orientation to our “all protein” RMSD results, we conducted 
a series of additional evaluations using (i) the CAPRI assessment [34], 
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(ii) the DockQ score [41], and (iii) the measurement of the TCR angles 
with TCR3d [36]. Across the entire dataset, the “high” CAPRI accuracy 
fraction of AF2 models stands at approximately 5%, which is signif-
icantly lower than all other methods, for which it can reach around 
50-65% (Fig. 6(a)). Additionally, the “incorrect” fraction of AF2 models 
is the highest of the three, approaching 40%. Notably, TCRmodel2 was 
the method with the largest fraction of models within the “high” accu-
racy category, but it also had two models within the lower “acceptable” 
CAPRI accuracy, namely 1AO7 and 7N1E. IS and TCRpMHCmodels had 
similar fractions of models within the high and medium categories and 
had no models classified as acceptable or incorrect.

Furthermore, in the new dataset, for which all the structures are 
not included in the training sets of these web servers, we observed that 
TCRmodel2 still performed well, with approximately 60% of models 
achieving high CAPRI accuracy, while IS and TCRpMHCmodels failed 
to produce any models of this level. Nevertheless, all models from these 
two methods maintained a “medium” CAPRI classification. This out-
come is in line with the high variation in RMSD and DockQ scores, where 
we noticed a higher standard deviation for TCRmodel2 as compared to 
IS and TCRpMHCmodels (Fig. 5, 6(b)).

We then conducted another analysis to evaluate the predictive accu-
racy of methodologies in determining the crossing angle and incident an-
gle of the modeled TCRs. Our findings are consistent with prior research 
[28] showing that AF2 lags behind other methods in aligning docked 
complexes, including TCRs to pMHCs [42]. Furthermore, we observed 
no significant disparity between the IS, TCRmodel2, and TCRpMHCmod-
els in this context (Fig. 6(c), 6(d)).

3.3. Higher prediction consistency can prevent high accuracy prediction

After recognizing that inaccuracies in TCR docking orientation can 
be very detrimental to AF2-based predictions, we decided to test how 
much improvement over the baseline AF2 predictions could be achieved 
by simply improving the docking orientation of TCRpMHC models. For 
that, we implemented a hybrid protocol combining AF2 and IS methods 
(Fig. 4) and repeated all analyses to compare the models produced by 
this hybrid approach with those produced by the other methods. In-
terestingly, even this simplistic hybrid implementation outperformed 
AF2, IS, and TCRpMHCmodels, producing C𝛼 RMSD averages that ap-

proximate those of TCRmodel2 (Fig. 7). The hybrid method presented 
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Fig. 6. Model accuracy according to (a) CAPRI assessment, (b) DockQ score, (c) Crossing angle, and (d) Incident angle. Independent models were produced using 
four different methods (AF2, IS, TCRmodel2, and TCRpMHC). These analyses were conducted for a set of 87 TCRpMHC structures (“All dataset”), or a subset of 20 
structures published after 2021 (“New dataset”).

Fig. 7. Carbon alpha root mean square deviation (C𝛼 RMSD) of a subset of 20 structures published after 2021 (“new dataset”) modeled from different methods: AF2, 
IS, TCRpMHCmodels, TCRmodel2 and hybrid compared to crystal structures. The average RMSD was measured from different groups of atoms: (a) all protein, (b) 
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MHC, (c) peptide, (d) TCR chains, (e) CDR loops, and (f) line plots showing the variation in predicting different groups of all methods.
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Fig. 8. Docking orientation assessment of a subset of 20 structures published after 2021 (“new dataset”) modeled with 5 different methods: AF2, IS, TCRmodel2, 
TCRpMHC, and hybrid approach. (a) CAPRI assessment, (b)DockQ score, (c) crossing angles, and (d) incident angles.
a lower average and standard deviation than TCRmodel2 for the “all 
protein” group, demonstrating there is room for improvement in AF2-
based methods with regards to the TCR docking orientation [43]. There 
was also no significant difference between hybrid/AF2 and TCRmodel2 
on the prediction of CDR loops. Regardless, the RMSD results show 
TCRmodel2 is still significantly better than this hybrid approach when 
predicting the TCR, the MHC, and, most remarkably, the peptide con-
formations (Fig. 7(c)).

Next, all hybrid models were subject to evaluation using CAPRI, 
DockQ, and TCR angles to compare their performance against other 
methods. Leveraging IS’s docking-based method, the hybrid models ex-
hibited better results in DockQ scores and TCR angles than AF2. Within 
the CAPRI framework, the hybrid models consistently demonstrated 
“medium” performance levels across all models, resulting in a low stan-
dard deviation in RMSD and DockQ (Fig. 7-8). However, this increased 
consistency came with the cost of not producing models within the 
“high” accuracy category, which were obtained with AF2 and TCR-
model2. The improved performance of TCRmodel2 in the CAPRI assess-
ment, as compared to the hybrid approach, highlight additional benefits 
of the customized protocol, going beyond the improvement in TCR dock-
ing orientation in relation to AF2.

Finally, we utilized a variance graph to gain deeper insights into 
the diversity of TCR docking orientations across TCRpMHC complexes 
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(Fig. 9). Upon assessing the TCR crossing and incident angles for our 
selection of crystal structures (All Dataset), we noted a significant diver-
sity of TCR orientations. This happens in spite of a higher prevalence of 
HLA-A2 MHCs in our dataset (i.e., limited diversity of MHC restrictions) 
and the potential packing effects of the X-ray crystallography protocols. 
When comparing the variance of experimentally determined structures 
with that of the corresponding models, we see clear differences between 
the modeling methods. On one hand, the deep-learning approach of 
AF2 and TCRmodel2 produced much higher variance of incident angles 
when compared to crystals and “template-based” models (i.e., based on 
docking or homology modeling). This higher variance reflects greater 
flexibility of the modeling protocol, therefore allowing for the accurate 
prediction of less common TCR orientations. However, such flexibility 
comes with the cost of greater inconsistency of predictions, and the po-
tential to produce models that are very far from the reference crystal 
structure. On the other hand, IS and TCRpMHCmodels produce much 
more consistent predictions for incident angles, with a variance that is 
lower than that of the crystal structures. Unfortunately, this reflects a 
more rigid modeling protocol, which can often be unable to reproduce 
the TCR docking orientation with high accuracy. Another interesting 
finding is that the variance of incident angles is independent of the vari-
ance of crossing angles. For instance, IS and the Hybrid approaches show 
a pattern of crossing/incident variance that is more similar to that of 
crystal structures, with somewhat higher variance for crossing angles. 

AF2 models also show higher variance of crossing angles compared with 
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Fig. 9. Variance of TCR docking angles in all models produced by different methods, including AF2, IS, TCRmodel2, TCRpMHCmodels and hybrid, and their 
corresponding crystal structures, computed across 87 TCRpMHC structures (“all dataset”).
incident angles, but both at a level much higher than crystals, Hybrid, 
and IS models. Variance is also high for TCRmodel2 predictions, but the 
pattern is reversed. The customized implementation of TCRmodel2 re-
duced the variance of crossing angles to less than half of that calculated 
for AF2, but produced the highest variance of incident angles across all 
analyses. Finally, TCRpMHCmodels produced intermediate results, with 
crossing angle variance equivalent to TCRmodel2, and incident angle 
variance almost as low as that of IS and the Hybrid method.

4. Conclusion

The accurate and scalable structural modeling of TCRpMHC com-
plexes remains an open problem in immunoinformatics and computa-
tional oncology [27,44]. Although multiple methods have been pro-
posed for predicting the structures of pMHCs [38,45,40] and TCRs 
[2,29], resolving the TCRpMHC complex brings additional challenges, 
particularly regarding the TCR orientation.

In recent years, there has been a growing demand for more accu-
rate and efficient methods for the prediction of the 3D structures of 
TCRpMHC complexes, with particular interest in TCR engineering appli-
cations for cancer immunotherapy [27,44]. To meet this growing need, 
web servers like TCRpMHCmodels and ImmuneScape were developed. 
These web servers use sophisticated algorithms and tailored computa-
tional approaches to process the amino acid sequences of the individual 
protein chains and to predict the 3D structures of the full TCRpMHC 
complexes.

In parallel to these efforts tailored for immunology applications, a 
modeling revolution has been enabled by the combined use of multiple 
sequence alignment (MSA) data and advanced deep learning methods 
[46]. Compared to other methods, AlphaFold2 [28] has shown remark-
able accuracy in predicting individual protein structures but has strug-
gled to model some macromolecular complexes, particularly TCRpMHC 
structures. By incorporating target-specific customization, AF2-based 
methodologies can significantly improve the prediction of protein com-
plexes [47]. This development has paved the way for the creation of 
several other approaches using AF2 for customized applications, includ-
ing TCRmodel2 [2]. Overall, these recent developments have brought 
about a significant shift in the field of TCRpMHC complex prediction. 
With the help of these new tools and approaches, higher confidence 
prediction of TCRpMHC structures is becoming possible, although the 
current computational efficiency of AF-based methods might still repre-
sent a limiting factor for large-scale modeling.

Here, we evaluated the performance of these four alternative meth-
ods using a curated dataset of 87 experimentally determined structures 
of TCRpMHC complexes. Since some of these complexes were used to 
develop the modeling methods, we further evaluated the methods in a 
subset of 20 structures published after 2021. Our analysis indicates that 
one of the major challenges in modeling TCRpMHC complexes is the 
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high flexibility of the docking orientation between the TCR and pMHC. 
The TCR is known to have a preferred docking orientation (or “foot-
print”), with the TCR𝛼 chain mostly positioned on top of the MHC-I 
𝛼2 domain and the TCR𝛽 chain mostly situated above the 𝛼1 domain, 
in a preferred crossing angle [48,43,1]. However, an increasing diver-
sity of TCR docking orientations is been reported as more structures are 
resolved with experimental methods, including the occurrence of a com-
pletely reversed orientation [23,4]. Naturally, this greater diversity of 
possible docking orientations represents an even greater challenge for 
modeling methods.

In spite of the incredible diversity of TCRpMHC structures, both 
in terms of amino acid sequences and docking orientations, our re-
sults show that good approximations can usually be obtained with very 
efficient methods such as TCRpMHCmodels and IS, and even better 
results can be obtained with newer deep-learning approaches such as 
TCRmodel2, although with lower computational efficiency and greater 
variance of results. This last point was further demonstrated by our im-
plementation of a hybrid protocol combining the AF2 prediction of TCRs 
with the IS prediction of pMHCs and docking orientations. On one hand, 
these hybrid predictions were more consistent than those of TCRmodel2, 
preventing the generation of models that were further away from the 
corresponding crystal structures (e.g., acceptable models on the CAPRI 
assessment). Therefore, efforts to improve the TCR docking orientation, 
either as part of the modeling protocols or as additional refinement 
steps, have the greatest potential to advance our overall capacity to ac-
curately predict the structures of TCRpMHC complexes [49,50]. On the 
other hand, this cannot be achieved by simply imposing additional con-
straints to limit the diversity of predicted crossing/incident angles, since 
this will come with the cost of not reproducing most complexes with the 
highest possible accuracy.

Note that our analysis is naturally limited by the dataset used to 
evaluate the different methods. Experimentally determined structures 
of TCRpMHC complexes are still mostly limited to X-ray crystallogra-
phy studies, and available structural datasets are still small and biased, 
especially when considering only human class I MHCs. Our “All dataset” 
includes a diversity of peptide sequences but reflects the aforementioned 
bias with regards to the prevalence of HLA-A*02 alleles. As expected, 
limited diversity became an even bigger problem when considering the 
“New dataset”, in which we were limited to the analysis of structures 
made available after 2021. Despite these limitations our analysis pro-
vides clear insights into the differences between the methods, the high 
level of accuracy that is already available in terms of CDR and peptide 
prediction, and the remaining challenges regarding the accurate predic-
tion of TCR orientations. Future efforts to validate TCRpMHC modeling 
methods should leverage larger and more diverse datasets, potentially 
including class II MHCs, which should also be enabled by the increas-
ing use of cryogenic electron microscopy (Cryo-EM) [51] to resolve 
TCRpMHC complexes.

Finally, it is also important to note that the activation of CD8+ T cells 

is not entirely determined by the structural features of the TCRpMHC 
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complexes, but is also dependent on (i) several co-stimulatory signals 
mediated by essential molecules such as CD28, CD80, and CD86, and 
(ii) the influence of various cytokines, including IL-2 and IFN-𝛾 [52]. 
Therefore, future development of novel and improved T-cell-based im-
munotherapy approaches depends on both (i) the continued advance-
ment of computational methods for the modeling of TCRpMHC com-
plexes, potentially including more biophysically accurate refinement 
protocols to account for the dynamics and flexibility of TCRpMHC in-
teractions, and (ii) a broader understanding of the intricate interplay of 
other molecular signals driving CD8+ T cell activation, and its impacts 
driving target-specificity and off-target toxicity.
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