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Orexins (OxA and OxB) also termed hypocretins are hypothalamic neuropeptides

involved in central nervous system (CNS) to control the sleep/wake process which is

mediated by two G protein-coupled receptor subtypes, OX1R, and OX2R. Beside these

central effects, orexins also play a role in various peripheral organs such as the intestine,

pancreas, adrenal glands, kidney, adipose tissue and reproductive tract.In the past few

years, an unexpected anti-tumoral role of orexins mediated by a new signaling pathway

involving the presence of two immunoreceptor tyrosine-based inhibitory motifs (ITIM) in

both orexin receptors subtypes, the recruitment of the phosphotyrosine phosphatase

SHP2 and the induction of mitochondrial apoptosis has been elucidated. In the present

review, we will discuss the anti-tumoral effect of orexin/OXR system in colon, pancreas,

prostate and other cancers, and its interest as a possible therapeutic target.
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INTRODUCTION

Since its discovery in 1998 (1, 2), the role of orexins also named hypocretins has been extensively
studied in the central nervous system (CNS) (3). Literature analysis revealed that about 2,000
articles have been published (Pubmed source, 1978 articles on July, 2018) demonstrating the great
interest of “orexin” field in its role in the central nervous system. In contrast, the study of orexins
in peripheral systems has been much less investigated, with only a hundred of articles published
(Pubmed source, 103 articles on July, 2018). This great interest in central action of orexins was
directly associated to their discovery in hypothalamus (1, 2). Orexins (OxA/hypocretin-1 and
OxB/hypocretin-2) are two neuropeptides isoforms produced by the same prepro-orexin precursor
(2). These two peptides have been shown to be involved in multiple CNS processes, including
energy homeostasis, reward seeking, and drug addiction and the regulation of the sleep/wakefulness
state which represents the major central effect of orexins, (4, 5). In human, narcolepsy type 1 (also
known as narcolepsy with cataplexy) is the main pathology associated to a misregulation of orexins
production caused by the loss of orexin neurons and characterized by a decreased ability to regulate
sleep/wake cycles (6, 7). As mentioned above, orexins also play a role in various peripheral organs
such as the intestine, pancreas, kidney, reproductive tract, adipose tissue and adrenal glands (8),
although their roles remain controversial (9). Expression of orexins in peripheral tissues has been
investigated using immunohistochemistry and/or RT-PCR techniques. Orexin have been detected
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in gastrointestinal tract, including colon (10), and pancreas
(11), adrenal glands (12), kidney (11), adipose tissues (12) and
reproductive tract including testis (13), and prostate (14). It
should be noted that the analysis of literature related to orexins
expression in peripheral tissues, revealed a large variability
in term of orexins level and/or none expression. This could
be related to the used tools, in particular the specificity of
antibodies and/or RT-PCR, which reflected only the presence of
preproorexin transcripts. The determination of basal circulating
orexins concentration indicated a range of 2–45 pM (15, 16)
which was about 1,000 times less in term of concentration than
the IC50 of orexin receptors estimated to few 10 nM (17).

Orexins mediate their biological effects by interaction with
two G-protein coupled receptors (GPCRs) subtypes, OX1R, and
OX2R (also named Hcrtr-1 and Hcrtr-2, respectively) (18, 19),
leading to the intracellular calcium releasing involving the Gq
pathway (Figure 1). Although stimulation of orexin receptors
predominantly leads to an increase in intracellular free calcium
ions level, other signaling second messengers/pathways, i.e.,
cAMP, MAPK-Erk1/2, PI3K-Akt and JNK are also involved in
orexins actions (19).

GPCRs characterized by seven α-helices transmembrane
domains, belongs to the largest family of cell surface receptors
with over 800members in the human genome which are involved
in the mainly pathophysiological actions (20). Classically, it
was admitted that their major physiological actions were
mediated “exclusively” by the G-protein signaling pathway,
including effector stimulation and/or inhibition, desensitization
and cellular internalization (21, 22). However, since several years,
it has seen an increasing trend that many GPCRs action can
also be mediated by other transduction mechanisms leading
to a rich set of new physiopathological functions (20). Among
their new roles, GPCRs are often overexpressed/underexpressed
in tumor cells and also involved in the progression and/or
initiation of cancer by inhibiting or stimulating proliferation
and/or apoptosis (23, 24). In this review, we focus on the
expression and anti-tumoral properties of OX1R in different
cancers as gastrointestinal cancers (colon and pancreatic cancers)
and prostate cancer, including their potential roles as therapeutic
targets.

COLON CANCERS

Colorectal cancer is the third most common cancer in men
and the second most common in women, represents almost
10% of the annual global cancer incidence (25). Incidence
rates of colorectal cancer show a strong positive gradient with
an increasing level of economic development. Approximately
60% of patients with colorectal will present liver metastases
during the course of disease (26). The only option to fight
against the appearance of hepatic metastases of the colorectal
cancers is the surgical resection. However, the rate of second
recurrence stays of 75 % after metastasectomy (27). The patient’s
survival is dependent on the stage at diagnosis. It is positive
for the premature lesions (Stage I), intermediate for stages II
and III and poor for the metastatic stages. A post-operative

FIGURE 1 | Pro-apoptotic signaling pathway induced by orexins. Interaction

of orexins with OX1R or OX2R leads to promote the dissociation of

heterotrimer Gq into αq and β/γ subunits. The canonical Ca2+ signaling

pathway stimulated by orexins results of phospholipase C (PLC) activation

mediated by αq subunit (Left). Apoptosis induced by orexins is mediated,

independently of canonical Ca2+ signaling pathway, by the recruitment of the

phosphotyrosine phosphatase SHP2 leading to the activation of p38 cascade

and activation of caspases-3 and -7 via the mitochondria apoptosis pathway

(Right). All structures were obtained in Protein Data Bank (PDB).

chemotherapy is proposed for stages II and III. In the case
of the rectal cancer, the association of a chemotherapy and
a radiotherapy strongly reduced the relapse incidences and
prolonged patients’ survival (27). Since the 1980s, the global
survival of the metastatic diagnosed patients increased by the
use of new cytotoxic molecules (i.e., oxaliplatin, irinotecan),
combined with anti-angiogenic and anti-EGFR molecules (28).
To date, this survival was strongly increased by the combination
of the three most effective chemotherapeutic agents (fluorouracil,
irinotecan and oxaliplatin) (29).

Tumor-suppressor genes and oncogenes was identified as key
genes whose mutations or altered expression are associated with
colorectal cancer (30). Colon cancer initiation and progression,
which are under these genes control, are also regulated by
growth factors or hormones present in the tumor environment
which action are mediated trough tyrosine kinase receptors or
G protein-coupled receptors (GPCRs) (31). Many GPCRs were
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similarly expressed in normal colon epithelial cells, others are
overexpressed and some of them are ectopically expressed in
cancer cells (31–36). The peptide hormones mediated-growth
effects such as gastrin (34) or neurotensin (33), serine proteases
such as thrombin (35) or trypsin (37) or lipids such as
lysophosphatidic acid (38) or prostaglandin E2 (39) are promoted
through GPCRs. Activation of these GPCRs activation leads
tumoral growth via G protein transduction pathways and/or
by transactivating the tyrosine kinase epidermal growth factor
receptor (EGFR) (40, 41). The environment of primary colon
tumors is rich in growth factors, however the existence of growth
inhibitory factors for colon cancer is not well documented. In
order to determine these inhibitory factors, the screening of
the ability of different peptide hormones and neuropeptides to
inhibit colon cancer growth was investigated (42). Twenty-six
peptides were tested, including orexins which were present in
few peripheral tissues including the gastrointestinal tract (10).
The screening, using the human colon cancer cell line HT-29
grown in standard trophic conditions shows that only the two
related peptides OxA and OxB was able to inhibit tumoral cell
growth (42). Orexins do not modify cell cycle and proliferation,
but activate cell death by apoptosis with a plasma membrane
phosphatidylserine externalization, chromatin condensation and
DNA fragmentation (42–44). Only OX1R, and not OX2R,
is expressed in HT-29 cells and is involved in the orexin-
induced apoptosis. Orexins promote cell death described by a
mitochondrial cytochrome c release and caspase-3 and caspase-
7 protease activations (42, 44). The ability of orexins to activate
a robust apoptosis has been shown in 9/10 (90%) different
human colon cancer cell lines (44). Conversely, orexins do
not trigger apoptosis in explant cultures of human normal
colonic mucosa demonstrating that the orexin-induced apoptotis
appeared during the colonic epithelial cell oncogenesis (44).
However, preproorexin and OxA has been detected in normal
total colon (10, 11). In contrast, no detection of preproorexin
was observed in normal and tumoral colonic epithelia (44).
Moreover, in preclinical models, the tumoral development of
xenografted tumor from HT-29 cells which expressed OX1R or
HCT-116 cells which do not expressed OX1R were identical (44).
These observations indicate that endogenous OxA, present in
colon but not in colonic epithelium, have no impact on tumoral
development.

The drug resistance occurrence is a primary cause of
chemotherapy failure. The 5-fluorouracil (5-FU) represents the
“gold standard” molecule used in treatment of colon cancer. The
OX1R expression was investigated in the HT-29-FU colon cancer
cell line model, developed after a long-term 5-FU exposure
clonal cells resistant against the drug (45). The OX1R expression,
orexins-induced apoptosis and subsequent growth inhibition
were similar in resistant HT-29-FU cells and sensitive initial
HT-29 cells (44), suggesting that orexins-induced apoptosis
persists in resistant cells (44). Moreover, OX1R is expressed
in 100% of primary colorectal tumors resected from patients
(38 different colorectal cancers) whatever their stages and in
10 hepatic metastases and in human colon cancer cell lines
established from lymph nodes, ascite, and lung metastases
tested (44).

The efficiency of in vivo orexin treatment was addressed
using human colon cancer cells xenografted in nude mice.
When human colon cancer cells were xenografted in nude mice,
daily OxA administration strongly slowed the tumor growth
and even reversed the development of established tumors when
administered 7 days after cell inoculation. After a 15-days orexins
treatment, the tumor volume is decreased by 80% (Figure 2)
(44). It was shown that orexins treatment reduces tumor growth
in vivo by promoting apoptosis, through activation of caspase-3
(44).

The OX1R-driven apoptosis even though calcium pathway
could not be explained only by the classical Gq-mediated calcium
response. Two tyrosine-based motifs (ITIM) were identified in
OX1R which have a crucial role in OX1R-driven apoptosis
(Figure 1) (43, 48). The ITIM is not considered to be a GPCRs’
signature, but represents a hallmark of immune inhibitory
receptors (49). After activation of OX1R by orexins, the two
ITIMs are phosphorylated on tyrosine residue (43, 48). It
should be noted that the classical Gq-mediated activation of
phospholipase C is not involved in this process. When orexins
promoted tyrosine phosphorylation of ITIMs, OX1R recruits
and activates the phosphotyrosine phosphatase SHP2 which is
crucial in the orexin-induced apoptosis process (43, 48). The
intracellular signaling pathway downstream of SHP2 includes the
p38 mitogen-/stress activated protein kinase phosphorylation,
which leads to the proapoptotic protein Bax translocation in
the mitochondria, the apoptosome formation, caspase-3 and
caspase-7 activation and cell death (Figure 1).

PANCREAS CANCER

Pancreatic ductal adenocarcinoma (PDAC) is the tenth most
common cancer sites in terms of frequency and is the fifth
cause of cancer mortality (50, 51). Moreover, the projection
cancer incidence and deaths in 2030 indicate that this cancer
could become the second cause of cancer-related death (52).
Invasive PDAC which carries a very poor prognosis (5-
year survival rate < 8%), is rarely surgically resectable and
<20% of patients undergoing a curative surgery. In addition,
PDAC is one of the most chemotherapeutic drug-resistant
tumors (53). The high therapeutic resistance of PDAC can be
explained by immunodepression, hypoxic microenvironment
and a pronounced fibrotic reaction consisting of proliferating
stromal cells together with collagen-rich extracellularmatrix (53).
This fibrotic stroma can account for more than 80% of the tumor
mass (54), has been shown to limit the delivery of therapeutics,
and contribute to tumor progression and drug resistance (55).
Despite increased knowledge in the etiology of PDAC, successful
therapeutic strategies are still very poor.

Recently, the OX1R expression was detected in 70/73 human
PDAC (96 %) and in 83/103 human pancreatic neuroendocrine
tumors (46). It should be noted that OX1R was not expressed
in normal pancreas (acini and ducts) except in the Langerhans
islets (Figure 3A) in which orexins could play a role in
insulin secretion (8). This expression in tumoral tissue was
independent of patient age, gender, tumor size, and lymph
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FIGURE 2 | Anti-tumoral effect of OxA in preclinical mouse models. (A) Nude mice were xenografted with the colon adenocarcinoma cell line, HT-29 and then, treated

by 1 µmoles of OxA/Kg intraperitoneally (ip) injected. The tumor development was determined by measurement. (B) Nude mice were xenografted with the pancreatic

adenocarcinoma cell line, AsPC-1, and ip injected with 1 µmoles of OxA/Kg. (C) Nude mice were xenografted with the prostate cancer cell line, DU145 and treated

with 1 µmoles of OxA/Kg. (•), control mice injected with PBS; (◦), treated mice injected with OxA. The sources of graphs were based on Voisin et al. (44), Dayot et al.

(46), and Chartrel et al. (47).

node metastasis (46). The use of AsPC-1 cell line derived from
human PDAC revealed that OxA was able to strongly inhibit
cell growth by the SHP2-induced apoptosis (46). Moreover,
the treatment by OxA of tumor slices obtained from patients
and maintained in culture, induced the activation of caspases-
3 in tumoral tissue demonstrating that OxA was able to induce
apoptosis in PDAC (46). In preclinical model consisting in
sub-cutaneous xenografted AsPC-1 cells in nude mice, OxA
reduced significantly the tumor growth (Figure 2B). This tumor
regression was also observed in tumors established 14 days
prior OxA treatment (46). For translational studies, the patient-
derived xenograft (PDX) model was frequently used. In such
models, the tumoral fragments, or the isolated cells from the
patient’s cancer were implanted in immunodeficient mice, OxA
was also able to drastically reduce the tumor growth derived
from PDAC indicating its potential therapeutic interest (46).
Previously report revealed the expression of OxA in endocrine
pancreas (11). However, the presence of endogenous OxA does
not seem to be involved in anti-tumoral effect of exogenous
OxA since the tumoral development of xenografted tumor from
AsPC-1 cells which expressed OX1R or HPAF-II cells which
do not expressed OX1R were very similar (46). Moreover, the
concentration of circulating orexins was very low (about 40 pM)
to functionally activate OX1R.

As mentioned in the introduction, orexins and their receptors
have been extensively studied in CNS notably in sleep regulation.
In this context, many academic and pharmaceutical laboratories
have focused their researches in the development of molecules
able to improve sleeping regulation, in particular, in insomnia
(57, 58). A lot of antagonists were developed and sub-divided into
two classes named single orexin-receptor antagonists (SORAs)
and dual orexin-receptor antagonists (DORAs). Among them,
the SORA small molecule SB-408124 or SB-334867 was shown to
be specific of OX1R (59, 60) and JNJ-42847922 specific of OX2R
(61). However, the main molecule development, in particular
antagonists, was related to the sleep-wakefulness actions of

orexins leading to the design of DORA such as SB-649868,
almorexant (ACT-078573) (62) and suvorexant (MK-4305) for
which the U.S. Food and Drug Administration (FDA) approved
the use for the treatment of insomnia (63). In parallel, the
development of OXR agonists was substantially much lower.
Despite some attempts, no OX1R agonist was actually available
(64) and only few OX2R agonists have been developed such as
the non-peptidicmolecules YNT-185 (65), OX2R-agonist 26 (66),
and the peptide agonist SB-668875 (67) but these molecules are
poorly documented.

Surprisingly, the use of suvorexant or almorexant on PDAC
cell line, AsPC-1 revealed that these molecules inhibited
the cellular growth by apoptosis induction (46). Almorexant
appearing to be more potent than suvorexant to induce
this inhibitory effect. Moreover, intraperitoneal injections of
almorexant in xenografted mouse model, induced a significant
reduction in tumor size (>50%) similar to the anti-tumoral
effect of OxA in the same conditions (46). As shown in
Figure 1, OxA and OxB activated two signaling pathways,
including: (1) the canonical intracellular Ca2+ release effect
mediated by the Gq protein which was totally inhibited
in the presence of SORA and/or DORA (46) and; (2) the
recruitment of SHP2 mediated by the phosphorylation of
ITIM sites leading to the intrinsic apoptosis mediated by
the p38 signaling pathway which was not affected by DORA
(46). Recently, structure-function relationship analysis of OxB
evidenced that some residues of the peptide discriminated
between proapoptotic and calcium pathways (17). Likewise,
almorexant which binds to OX1R with the similar affinity
than OxA could discriminate these two signaling pathways
demonstrating the existence of two independent molecular
activation of the OX1R. These observations, suggest that
almorexant (and also suvorexant) belong to ligand-biased family
(68). Therefore, OX1R antagonists, which was prescribed for
insomnia could be used in the anti-tumoral therapy as full
agonist.
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FIGURE 3 | Immunohistochemical expression of OX1R in PanIN, dysplastic colonic polyp, pancreatitis and ulcerative colitis (UC). (A) OX1R was not detected in the

normal pancreas either in normal duct and acinar cells. (B) OX1R was not detected in colonic mucosa. (C) OX1R was expressed in PanIN lesions. (D) OX1R was

expressed in dysplastic cells present in colonic polyps. (E) OX1R immunostaining of colonic mucosa from patients with pancreatitis. (F) OX1R immunostaining of

colonic mucosa from patients with UC. Arrows indicated the OX1R expression. Bar = 50µm for (A, B C, E, F); Bar = 100µm for (D). The sources of graphs were

based on Voisin et al. (44), Dayot et al. (46), and Messal et al. (56).

PROSTATE CANCER

With about 71,000 new cases of prostate cancer in France each
year, this cancer represents the most commonly diagnosed
malignant tumor for men in the Western world, far ahead lung
cancers and colorectal cancers (69). Despite the progress in

screening, prostate cancer is the second cause of cancer-related
mortality (70) and is associated with resistance to chemo-
hormonal therapy in the metastatic setting. It should be noted
that, more one in nine men will disclose a prostate cancer during
his life. Because androgens stimulate the tumor growth, androgen
ablation therapy represents the first line of treatment of advanced
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cancer inducing an effective tumoral regression (71). However,
over the years an androgen resistance named castration-resistant
prostate cancer (CRPC) develops. The cause of this resistance
remains still unclear, but some investigations revealed an
overexpression/amplification of androgen receptors (AR), a
gain-of-function of AR, a production of AR variants having
constitutive properties, an overexpression of co-factors of AR
and an intra-tumoral production of androgen (72). In addition
to the major role of the androgen/AR system in prostate cancer,
various GPCRs are involved in the development and progression
of prostate cancer (73). These GPCRs include gonadotropin
hormone receptors [luteinizing hormone receptor (LHR)
and follicle-stimulating hormone receptor (FSHR), peptide
receptors neurotensin receptor (NTR), bombesin receptor
(BBR), endothelin-1 receptor (ETR), oxytocin receptor (OXTR),
and ghrelin receptor (GHSR)], protease receptors [thrombin
receptors (PARs)] and neuropeptide receptors [neuropeptide
Y receptor (NPYR)], vasoactive intestinal peptide receptor
(VPAC), and pituitary adenylyl cyclase activating peptide
(PAC1). This partial list of GPCRs and their ligands promoted
proliferation, migration, invasion, mitogenic signaling, and
neuroendocrine differentiation of prostate cancer cells (73–81).
Moreover, GPCRs expressed and/or overexpressed in prostate
cancer are able to engage a cooperative crosstalk with growth
factor receptors such as epidermal growth factor receptor
(EGFR) (82). This transactivation mediated by GPCRs such as
PAR receptors leads to the cleavage of EGF-like transmembrane
ligands [EGF, transforming growth factor α (TGFα) . . . ] by
cancer cells. Thereby, a soluble biologically active growth
factor was produced and induced mitogenic effects mediated
by EGFR (40). In contrast, few GPCRs were involved in the
inhibition of growth and/or in apoptosis of prostate cancer
cells. The gonadotropin-releasing hormone receptor (GnRH)
was expressed in human malignant prostate tumors where
its activation induced an anti-tumoral activity mediated by
p38 MAPK and protein tyrosine phosphatase (73). However,
nothing is known about neuropeptides and their receptors in
anti-tumoral properties in prostate cancer. OX1R but not OX2R
was highly expressed in high grade advanced prostate cancer
(CaP) whereas this expression was much lower in low grade
cancer (83). Inversely, in benign prostatic hyperplasia (BPH),
OX1R expression was mostly absent and mainly confined in
scattered cells (83). It should be noted that OX2R seemed to
be expressed in BPH, which was associated with a decrease
of OxA serum concentration (84). The expression of OxA
and its precursor was found in “fiber-like” stroma of prostate
cancer tissues which did not correspond to nerve and smooth
muscle fibers (83). In normal tissue, OxA was expressed in
follicular exocrine epithelium (14) and also in hyperplastic
epithelium. However, large areas of prostate epithelium were
not immunoreactive (14). Moreover, the presence of OxA was
never detected in cancerous foci whatever the cancer grade
(83). Taken together these observations suggested that OX1R
which is expressed in cancer cells was probably not activated
by endogenous OxA produced by the prostate stroma and/or
delivered by the blood circulation (83). OX1R was expressed in
androgen-unresponsive cell line, DU145 in which OxA or OxB

induced a significant apoptosis (83). In addition, OX1R was also
expressed in androgen-responsive cell line LNCaP in which OxA
induced an up-regulation of OX1R gene expression and inhibited
cell survival (85). In vivo studies using xenografted mouse model
with DU145 cells revealed that daily intraperitoneally injection of
OxA induced a strong reduction of tumor volume (Figure 2C).

OTHER CANCERS

Like the peripheral biological role of orexins that remains still
under discussion (86), OXR expression and orexins actions
in cancer have been poorly documented (87). Several lines
of evidence indicated that OX1R/OX2R were expressed in
various cancer cells, but their actions depended on the cancer
types. It should be noted that the OXR expression was mainly
determined using a great variety of antibodies (produced by
various manufacturers) some of them have been identified as
non-specific, in particular for anti-OX2R antibody which also
recognized OX1R. In the same manner, the use of antibodies to
detect the presence of OxA and/or OxB peptides in tissues was
also questionable. Nevertheless, the possibility of OXR expression
by other solid tumors is always under investigation. OX1R was
expressed in neuroblastoma in which orexins treatment induced
apoptosis (42). OX1R was also identified in cortical adenomas
but its relation to apoptosis was not investigated (88, 89). In
human hepatocellular carcinoma tissues (90), in gastric cancer
cell lines, SGC-7901 and BGC-823, OxA seemed to enhance
the proliferation and inhibited the apoptosis which is mediated
by the ERK or AKT signaling pathway (91, 92), respectively.
Moreover, OxA and cholecystokinin (CCK) inhibited the
migration of colorectal cancer cell line, HT-29 mediated by
heterodimerization of OX1R and CCK1R (93). In addition,
OX2R was expressed in human pheochromocytomas and PC12
cells in which OxA and OxB stimulated (94) or inhibited
(95) catecholamine secretion, in endometrial endometrioid
carcinoma in which OxA and OxB had no effect on proliferation
and/or apoptosis (96), and in human adrenocortical NCI H295R
cells where OxA induced the phosphorylation of ERK1/2 and
p38 (88). Taken together these observations indicated that OX1R
and OX2R were expressed in various cancers. In contrast, in
the corresponding healthy tissues such as colonic epithelium
and pancreatic acini, OX1R was not expressed [Figure 3 and
(49)]. It may be noted that OX1R is expressed in Langerhans’s
islets (Figure 3). In this context, an important question arises:
is OX1R expressed at early stages of cancer development? As
shown in Figure 3, the dysplastic cells present in colon polyps
or pancreatic intraepithelial neoplasia (PanIN) lesions highly
expressed OX1R indicating that the expression of the receptor
occurred at a very early stage (46). Chronic inflammation,
including intestinal bowel disease (IBD), pancreatitis, hepatic
fibrosis. . . or metabolic syndrome which is close to chronic
inflammation, represent a high-risk factor in the development
of cancer (97). What is the role of OX1R expression in inflamed
tissues? Various studies have demonstrated that orexins exercised
neuroprotection effects and reduced cerebral neuroinflammation
associated to post-stroke trauma (98, 99). Recently, Ogawa
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et al. demonstrated that OxA alleviated the survival of mice
with endotoxin shock characterized by a systemic inflammation
(100). Some reports revealed a relationship between orexinergic
system and metabolic syndrome disorder (101). In ulcerative
colitis (UC) and pancreatitis, OX1R was highly expressed in
inflamed areas (Figure 3). Moreover, OxA was able to induce
an anti-inflammatory effect in mice models reproducing UC
or pancreatitis (56, 102). A recent study indicates a higher
prevalence of immunopathological diseases, including purpura,
multiple sclerosis, systemic lupus erythematosus, psoriasis,
Crohn’s disease, or ulcerative colitis, in narcoleptic patients (103).
Besides, the anti-tumoral properties of OXR/orexins system,
orexins could play an important role in chronic inflammation.

CONCLUSION

These last two decades, orexins/OXR system has been
extensively studied in CNS in particular in the regulation
of sleep/wake. These intensive and fruitful investigations
lead to development of therapeutic molecules which are
prescribed to treat insomnia. Beside this innovative research
in CNS, the orexins/OXR system has a potential benefit in
peripheral physiopathology, especially in cancer, and chronic

inflammatory diseases. These promising perspectives open

up new fields of application in the development of new
therapeutic agonist molecules (including peptides, small non-
peptidic molecules, and functional agonist antibodies) and/or
the use of molecules already developed such as almorexant,
suvorexant. . . . In the future decade, the orexins/OXR
system could constitute a crucial curative target in human
cancers.
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