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Transcriptional enhancers commonly work over long genomic distances to precisely regulate spatiotemporal gene expres-

sion patterns. Dissecting the promoters physically contacted by these distal regulatory elements is essential for understand-

ing developmental processes as well as the role of disease-associated risk variants. Modern proximity-ligation assays, like

HiChIP and ChIA-PET, facilitate the accurate identification of long-range contacts between enhancers and promoters.

However, these assays are technically challenging, expensive, and time-consuming, making it difficult to investigate enhanc-

er topologies, especially in uncharacterized cell types. To overcome these shortcomings, we therefore designed

LoopPredictor, an ensemble machine learning model, to predict genome topology for cell types which lack long-range con-

tact maps. To enrich for functional enhancer-promoter loops over common structural genomic contacts, we trained

LoopPredictor with both H3K27ac and YY1 HiChIP data. Moreover, the integration of several related multi-omics features

facilitated identifying and annotating the predicted loops. LoopPredictor is able to efficiently identify cell type–specific en-

hancer-mediated loops, and promoter–promoter interactions, with a modest feature input requirement. Comparable to ex-

perimentally generated H3K27ac HiChIP data, we found that LoopPredictor was able to identify functional enhancer loops.

Furthermore, to explore the cross-species prediction capability of LoopPredictor, we fed mouse multi-omics features into a

model trained on human data and found that the predicted enhancer loops outputs were highly conserved. LoopPredictor

enables the dissection of cell type–specific long-range gene regulation and can accelerate the identification of distal disease-

associated risk variants.

[Supplemental material is available for this article.]

Developmental gene regulatory networks rely on cis-regulatory el-
ements, like enhancers, to drive gene expression patterns in both
space and time in a cell type–specific fashion. Enhancer evolution
also plays an important role in driving morphological divergence
(Prescott et al. 2015). Moreover, enhancers play a role inmaintain-
ing cell identity and responding to external stimuli, like injury and
infection. Many enhancers work over long genomic distances
through the formation of topological loops to promoters to regu-
late gene expression (Levine 2010). Moreover, the majority of
identified disease-associated genetic variants uncovered through
genome-wide association studies (GWAS) reside in noncoding
intergenic regions that often can be ascribed enhancer activity.
Hence, identifying the promoters looped to these variants in a
cell type–specific manner is important for determining their path-
ological roles (Pennacchio et al. 2006; Zinzen et al. 2009; The
ENCODE Project Consortium 2012).

In the past decade, high-throughput-based Chromosome
Conformation Capture (3C) techniques have been developed
to understand genome architecture (Dekker et al. 2002). High-
throughput Chromosome Conformation Capture (Hi-C) (Rao
et al. 2014) identifies physical genomic interactions in a ge-
nome-wide fashion but requires deep sequencing to achieve

high resolution, which is costly and difficult to apply on a
large-scale. Chromatin Interaction Analysis with Paired-End Tag
sequencing (ChIA-PET) aims to detect the specific long-range in-
teractions associated with a protein of interest (Fullwood et al.
2009). However, ChIA-PET requires a large number of cells as input
(Fullwood et al. 2009). Recently, HiChIP, a protein-centric chroma-
tin conformationmethodwas developed, which requires lower in-
put and also achieves a larger number of conformation-
informative reads compared to traditional ChIA-PET protocols
(Mumbach et al. 2016). HiChIP has been used to produce contact
data for a number of key chromatin binding factors, including
YY1, and cohesion (Mumbach et al. 2016, 2017; Weintraub et al.
2017). H3K27ac, an active enhancer- and promoter-associated his-
tonemark, distinguishes active enhancers from inactivate enhanc-
ers (Heintzman et al. 2007; Creyghton et al. 2010; Rada-Iglesias
et al. 2011). In addition,H3K27acHiChIP data identifies high-con-
fidence functional enhancer-promoter interactions (Mumbach
et al. 2017). Similarly, YY1 binds to active enhancers and promot-
er–proximal elements and acts as a structural regulator of enhanc-
er-promoter interactions to facilitate gene expression, making it a
suitable marker for identifying distal acting enhancer-promoter
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pairs (Weintraub et al. 2017). However, HiChIP, like other 3C
methodologies, still requires specialized reagents, equipment,
and high-depth sequencing, making it difficult to perform on a
large scale. We therefore constructed an ensemble machine learn-
ingmodel, LoopPredictor, to predict enhancer-mediated loops in a
genome-wide fashion across different cell lines and species.

Results

Identifying active enhancer-promoter loops with H3K27ac

and YY1 HiChIP

We analyzed H3K27ac HiChIP loops from K562 cells and found
that the majority of loops were enhancer-mediated (for the iden-

tification of HiChIP loops and annotation of loop anchors, see
Supplemental Methods), with a small percentage of promoter-
promoter interactions (Fig. 1A). Next, we called super-enhancers
from K562 H3K27ac ChIP-seq data and found that super-enhanc-
ers account for 5.6% of all enhancers that overlap H3K27ac
HiChIP anchors (Fig. 1B; Supplemental Methods). Gene
Ontology (GO) analysis of these super-enhancer anchors indicat-
ed that they contribute to the cell identity of K562 cells, confirm-
ing the suitable quality of this data set (Fig. 1C). We then carried
out motif analysis on H3K27ac HiChIP loop anchors (Fig. 1D).
The results indicated that the YY1 motif is significantly enriched
(−log2[P-value] < 100) in loop anchors and is also highly ex-
pressed in K562 cells. We hypothesized that H3K27ac and YY1
co-occupied enhancer-promoter loops should overlap favorably
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Figure 1. H3K27ac and YY1 HiChIP demarcate active enhancer loops. (A) Proportion of annotated loop types for K562-H3K27ac HiChIP data. Each loop
identifiedwith an FDR<0.05 and pair-end tag number≥ 2. ChromHMMwas used to annotate the anchors, with only enhancer and promoter type anchors
being retained. Themajority of loops are enhancer-mediated (79.7%). (B) Super-enhancer plot for anchors in K562-H3K27ac HiChIP data. Slope threshold
was set at 1000. A total of 880 super-enhancers were found, which accounted for 5.6% of all enhancers. Super-enhancer signal derived from H3K27ac
ChIP-seq data. (C) GO analysis for super-enhancer anchors in K562-H3K27ac HiChIP data (binomial P-value < 1 ×10−10). (D) De novo motif enrichment
analysis on K562-H3K27ac loops. Transcription factors ranked by normalized gene expression. The size of each point indicates the motif enrichment
P-value. The transcription factors with high motif enrichment (–log2[P-value] > 100) and gene expression are shown. The YY1 motif was significantly en-
riched (−log2[P-value] = 306). (E) Diagram depicting the putative co-enrichment of H3K27ac and YY1. (F ) Top: Venn diagram showing the intersect of
K562-YY1 and K562-H3K27ac HiChIP data sets. Bottom: Proportion of each annotated loop category from the overlapping H3K37ac and YY1 HiChIP loops
(n=132,928). The majority of the overlapping loops were enhancer-associated (86.4%). (G) Genome browser tracks showing H3K27ac and YY1 ChIP-seq
signals and topological interactions.
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and represent a high-confidence set of active distal enhancers
(Fig. 1E). Indeed, the majority of YY1 HiChIP loops (86%) over-
lapped with H3K27ac loops. Moreover, the overlapping set of dis-
tal interactions were primarily enhancer-mediated loops (Fig. 1F).
For example, the CLIP2 locus showed similar H3K27ac and YY1
ChIP-seq profiles with both H3K27ac and YY1 enriched topolog-
ical interactions present between distal elements and the promot-
er (Fig. 1G). Together, these results indicated that H3K27ac and
YY1 HiChIP data could be combined to comprehensively charac-
terize the full suite of highly active enhancer-promoter pairs pre-
sent in a cell type of interest.

An ensemble machine learning model to predict

enhancer-mediated loops

To overcome the shortcomings associated with large-scale HiChIP,
Hi-C, and ChIA-PET experiments, we developed an ensemble ma-

chine learning model, named LoopPredictor, to predict enhancer-
mediated loops frommulti-omics features (Fig. 2A). The algorithm
core of LoopPredictor was constructed, which consists of two com-
ponents: Anchor type Predictor (ATP) and Confidence Predictor
(CP). ATP is a minimal classifier, based on Random Forest (RF)
(Breiman 2001) and multitask frameworks, that uses a minimum
numberof features to get optimal prediction power, and then iden-
tifies the possible conformation between genomic regions. For
ATP, HiChIP loops are analyzed with ChromHMM (Ernst and
Kellis 2017) to annotate the chromatin state of each anchor. The
annotations of anchors were regarded as targets.We collected a va-
riety of multi-omics data for the feature generator, which used a
standard scaler for normalization and batch effect removal (for
the procedures relating to multi-omics data sets and feature gener-
ation, see Supplemental Methods). After training, data sets of in-
terest are used as input (e.g., H3K27ac ChIP-seq peaks) into the
ATP model to generate the possible anchor pairs and predict the
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Figure 2. LoopPredictor, an ensemble machine learning model. (A) The LoopPredictor algorithm. H3K27ac and YY1 HiChIP data sets and multi-omics
features (e.g., ChIP-seq, RNA-seq, ATAC-seq, and RRBS) were first processed and then integrated to train themodel. Targets were defined from the extract-
ed HiChIP anchors via ChromHMM annotation. Next, the trained model and the functional genomics data of interest get put through Anchor type
Predictor (ATP), which then identifies the putative topological interactions existing between active genomic regions. The anchor type output from ATP,
the newly generated features, and targets of anchor pairs (enhancers and promoters) then get imported into our Confidence Predictor (CP) following
Gradient Boosted Regression Trees (GBRTs)-based training. Finally, CP assigns a confidence metric to each predicted chromatin loop, which can be utilized
for the filtering of the final LoopPredictor output (Supplemental Methods). (B) Distribution of general HiChIP loop scores after merging four HiChIP data
sets (K562-H3K27ac, K562-YY1, HCT116-YY1, and GM12878-H3K27ac). (C) Diagram depicting the loop-associated regions used to gather features in
Confidence Predictor.
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type of anchors for loop prediction (for the preparation of training
sample, see Supplemental Methods).

The second component of the algorithm core is CP, which is a
powerful regressor based on Gradient Boosted Regression Trees
(GBRT). The possible conformation and the corresponding loop
type generated by ATP were imported into CP to predict the confi-
dence level as a loop score.We found that the scores of loops obeya
gamma distribution (Fig. 2B), so we used the density function to
identify high-confidence loops and then normalized the scores
for target generator. Next, we integrated more features for CP
from different genomic scales, including the flanking regions of
two anchors, the distance between two anchors (window), and
the neighboring regions outside of each anchor (Fig. 2C;
SupplementalMethods). The anchor type fromATP and the newly
generated features and targets of anchor pairs were imported into
GBRT for training. Finally, we used CP to predict chromatin loops
with scores indicating the confidence of the topological
interaction.

The performance of Anchor type Predictor

Before determiningwhich classifier to be used inATP,we tested the
F1-score of four standard classifiers: LinearSVC (Pedregosa et al.
2012), LogisticRegression (Pedregosa et al. 2012; Schmidt et al.
2017), KNeighbors (Pedregosa et al. 2012), and Random Forest
(Breiman 2001; Pedregosa et al. 2012). The classifiers were trained
with four different HiChIP data sets (K562-YY1, K562-H3K27ac,
HCT116-YY1, and GM12878-H3K27ac). The evaluation of the
F1-score and precision-recall rate showed that Random Forest out-
performs other standard methods (Fig. 3A; Supplemental Fig. S1).
Similarly, the Receiver Operating Characteristic (ROC) curves
(Fan et al. 2006) of these four classifiers in K562-YY1 HiChIP data
indicated that RF achieved the best results in the prediction of
different kinds of loops (promoter–enhancer, promoter–promoter,
enhancer–enhancer) (Fig. 3B) (for ROC curve evaluation, see
Supplemental Methods). Therefore, we integrated RF into ATP to
generate the possible anchor pairs and predict the type of anchors.

To obtain the minimum input for optimal performance of
ATP, we tested the F1-score with an increasing number of features
(total n=24). A feature is a multi-omics data set (e.g., H3K4me1
ChIP-seq). The performance with 12 features was close to optimal,
so we chose this number of features to use as input for RF (Fig. 3C).
To determine the correlation between features, Pearson’s correla-
tion and hierarchical clustering analysis were used for all 24 fea-
tures (Fig. 3D; Supplemental Methods). We found that ELF1
ChIP-seq was highly correlated with YY1. ELF1 is a lymphoid tran-
scription factor known to regulate the expression of MEIS1 (in
K562 cells), another transcriptional master-regulator associated
with leukemic hematopoiesis whose motif was found to be en-
riched in H3K27ac anchors (Xiang et al. 2010). Analysis of YY1
and ELF1 ChIP-seq data confirmed the colocalization of the two
factors (Fig. 3E,F; Supplemental Methods). Thus, the correlations
uncovered here are likely to be functionally relevant. The feature
correlations of all HiChIP data sets were similarly clustered
(Supplemental Fig. S2). We then investigated the importance of
our top 12 ranking features from the K562-YY1 HiChIP data set us-
ing a fivefold cross-validation procedure. The data showed that the
H3K27ac ChIP-seq signal within two anchors was themost impor-
tant feature, followed by the distance from anchors to transcrip-
tion start sites (TSSs) and chromatin accessibility (Fig. 3G). The
feature importance of other HiChIP data sets was similar to
K562-YY1 HiChIP (Supplemental Fig. S2).

The performance of Confidence Predictor

To characterize the general profile of all the features in different
loop-associated regions, we quantified each individual feature sig-
nal on a z-score normalized scale (Jain et al. 2005) (for the quanti-
fication of features, see SupplementalMethods). The feature signal
of the inter-anchor window region was highest and most variable,
while the outer neighbor regions presented the lowest intensity
(Fig. 4A). Here, we trained CP with four individual HiChIP data
sets and four integrated data sets. To interpret the contribution
and correlation of features in the prediction, we calculated an im-
portance score for each feature with fivefold cross-validation, and
then filtered the features whose importance score was greater than
0.001 for Pearson’s correlation analysis and hierarchical clustering
(Fig. 4B; Supplemental Fig. S3). The data showed that features are
correlated well by loop-associated regions, and the size of window
was the most important factor for the prediction, which was con-
sistent across the cell lines analyzed.

To evaluate the performance of CP, we calculated the adjusted
R-square value andmean absolute error (MAE) for different predic-
tion cases, and then assessed actual values versus predicted obser-
vations (Fig. 4C; Supplemental Methods). For the prediction of
four individual data sets, CP achieved an adjusted R-square from
0.72 to 0.77, while for the integrated data sets, the adjusted
R-square values of CP were all larger than 0.85. Moreover, the in-
tegration of K562∗ (YY1+H3K27ac), GM12878, and HCT116 out-
performed the others (Fig. 4C). Specifically, the distribution of
actual loop scores and predicted loop scores are consistent
(Supplemental Fig. S4A–D). These results suggest that the integrat-
ed data sets are more favorable for the training of CP.

We next assembled the ATP and CPmodules together into an
adaptable model, which were trained with the integrated HiChIP
data sets. Next, the adaptable model and multi-omics features
from different cell types were fed into LoopPredictor to predict en-
hancer-mediated interactions. One concern with utilizing our
multicellular multi-omics trained adaptive model is a loss of cell
type–specific loops and a potential enrichment for common regu-
latory genomic interactions. To evaluate the performance of our
adaptive training model for predicting cell type–specific observa-
tions, we fed multi-omics features from three different cell lines
separately (Fig. 4D). We identified thousands of unique loops for
each input cell line. To determine the regulatory characteristics
of these unique loops, we extracted the predicted anchors and
overlapped themwith cell line-specific accessible chromatin peaks
(ATAC-seq and DNase-seq) (Fig. 4E). The highest enriched motifs
from these three trimmed anchor sets were extracted and ranked
by gene expression to produce a list of cell line-specific transcrip-
tion factors (Fig. 4F). Indeed, we identified GATA1 activity in
K562 cells, enrichment for IRF factors in GM1212878 loops, and
NRF2 binding in HCT116 cells, consistent with the literature
(Huang et al. 2004; Li et al. 2009; Mariani et al. 2017). Hence,
our comprehensive adaptive training model is a powerful tool
for predicting cell type–specific enhancer-promoter loops.

Functional validation of predicted enhancer-mediated

interactions

To investigate the degree towhich the predicted loops output from
LoopPredictor matched with experimentally measured enhancer-
promoter loops, we compared the predicted loops from K562 cells
with H3K27ac HiChIP performed in K562 cells. Only 4.1% of all
loops were K562-H3K27acHiChIP-specific (Fig. 5A). To investigate
the distribution of loops by distance, we binned the loops by 100-
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Figure 3. The performance of Anchor type Predictor. (A) F1-score of ATP evaluated using four standard classifiers across four HiChIP data sets. (B) ROC
curves of ATP in K562-YY1 HiChIP data (Supplemental Methods). (C) The F1-score performance of ATP in four HiChIP data sets with increasing number of
top-ranked features by fivefold cross-validation. The vertical line indicates point at which ATP achieved close to optimal performance with amodest input of
12 features. (D) Pearson’s correlation combined with hierarchical clustering for K562 cell features. The colored bars on the right side indicate the identity of
each hierarchical cluster. Colored bars at the bottom mark the feature correlation coefficient, R. (E) Heat map displaying YY1 and ELF1 ChIP-seq signals
across YY1 peaks (n=3142). (F) Comparison of YY1 and ELF1 ChIP-seq peaks signals by distance from YY1 peak summit. (G) Feature importance for
the top 12 features in K562-YY1 HiChIP data set with fivefold cross-validation. Error bars indicate the standard deviation.
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Figure 4. The performance of Confidence Predictor. (A) Quantification of features across different loop-associated regions. The signals of features were
normalized by z-score. (B) Pearson’s correlation and hierarchical clustering for the features of K562∗(YY1 +H3K27ac). The colored bars on the right side
indicate hierarchical clusters. Colored bars at the bottom demarcate the feature correlation coefficient, R. (C ) Prediction performance evaluation for CP
in four individual data sets (upper) and four integrated data sets (lower). (D) Evaluation of LoopPredictor for identifying cell type–specific loops. Our adaptive
model and the multi-omics features derived from three individual cell lines were fed into LoopPredictor to perform predictions. The results from each cell
type were marked by different colors in the Venn diagram. The number of predicted cell type–specific (K562, GM12878, HCT116) loops were 369,904,
62,982, and 17,933, respectively. (E) Diagram for trimming anchors with ATAC-seq peaks to identify loop binding transcription factors. (F ) Transcription
factor enrichment analysis for cell type–specific predicted loops. Cell type–specific loops identified in D. Transcription factors were ranked by normalized
gene expression. The size of each point indicates themotif enrichment P-value. The color of each point codes for the normalized expression of the indicated
transcription factor. The threshold of motif enrichment was −log2(P-value) > 500, and the threshold for gene expression was set to log2(FPKM) >2.
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Figure 5. Functional validation of predicted enhancer-mediated interactions. (A) Venn diagram showing the overlap of K562 predicted loops and K562-
H3K27ac HiChIP loops. Overall, 306,148 loops were detected by both LoopPredictor and HiChIP experiments, which accounted for 95.9% of the HiChIP
loops; 4.1% (12,922 loops) were HiChIP-specific loops. (B) Proportional loop counts per distance for predicted and K562-H3K27ac HiChIP loops. Loops
were binned by 100 kb to calculate the proportion. (C) Differences between predicted and K562-H3K27ac HiChIP loops. Loops with a P-value≥0.05 (blue
dots) were classified as nonsignificant, loops with a P-value < 0.05 (brown dots) were labeled significant, and differences with a P-value < 0.01 (yellow dots)
weremarked highly significant. The vastmajority of loops showed no significant differences between the two sets of loops. (D) Validation of predicted loops
by focused CRISPRi integration (Fulco et al. 2016). Seven previously validatedMYC enhancers with strong H3K27ac ChIP-seq signals (blue track) were an-
notated as e1 through e7 (red track). The predicted loops contacted these published CRISPRi loops. (E) Validation of predicted loops by high-throughput
CRISPRi screening integration (Gasperini et al. 2019). A total of 459 high-confidence gene-enhancer loop pairs were overlapped with predicted loops as
well as H3K27ac loops. In total, 52% of the high-confidence loop pairs were identified by LoopPredictor. Only 38% of these high-confidence loop pairs
were recovered from K562-H3K27ac HiChIP loops. (F) Genome browser tracks for validated enhancer loops identified in E. Validated CRISPRi high-confi-
dence pairs are shown in red; H3K27ac ChIP-seq in blue; predicted loops in purple. (G) Promoter contacts of CRISPRi loops for predicted loops and
H3K27ac HiChIP loops. Distribution of aggregated loop numbers by distance of loops from E. The distribution was calculated by ± 4-kb distance from TSS.
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kb windows. The resulting loop propor-
tions were consistent between the pre-
dicted universal interactions and the
observed H3K27ac HiChIP interactions
(Fig. 5B). Differential analysis of loop
scores also indicated that most loops
were not significantly different (Fig. 5C).
Moreover, we found that predicted loops
output from LoopPredictor behaved
similarly with respect to topologically
associated domain (TAD) boundaries
when compared to HiChIP-derived loops
(Supplemental Fig. S4E; Supplemental
Methods).

We next wanted to validate our pre-
dicted loops by comparing them to func-
tionally validated enhancer-promoter
pairs identified in K562 cells. Previously,
7 MYC enhancers were identified via a
systematicCRISPR interference (CRISPRi)
screen, which were annotated as e1
through e7 (Fulco et al. 2016). We found
that the predicted loops output from
LoopPredictor proximal to MYC were in
accordance with these published loops
(Fig. 5D). Recently, 664 enhancer-gene
loops were identified from a large-scale
multiplex enhancer-gene pair screening
effort in K562 cells (Gasperini et al.
2019). From this study, we identified the
high-confidence enhancer-gene loops (n
=470 pairs) for comparison with our pre-
dicted K562 loops. Fifty-two percent of
the functionally validated enhancer
loops overlapped with our predicted
loops, compared to just 38% overlap
with K562-H3K27ac HiChIP loops (Fig.
5E,F; (Mumbach et al. 2017). Within
these overlapping loops, the predicted
observations had stronger enrichment
of loop counts proximal to the TSSs com-
pared toH3K27acHiChIP loops (Fig. 5G).
Hence, LoopPredictor is capable of pre-
dicting functional enhancer-gene loops
with high sensitivity.

Predicting chromatin interactions

in a model organism

LoopPredictor can predict the topologi-
cal interactions for any cell type which
lacks 3D genomic information and,
because it is trained on highly conserved
mammalian gene regulatory features, it
should also be able to predict enhancer-
promoter interactions for other mamma-
lian species (Cheng et al. 2014).We gath-
ered multi-omics features from the
murine NIH3T3 myofibroblasts cell line and the aforementioned
adaptable model trained on human cell lines to feed into
LoopPredictor (Fig. 6A). After the prediction, we obtained 59,708
loops as output, the proportional loop counts by distance showed

a high coincidence between the predicted loops and published
NIH3T3 HiChIP loops (Fig. 6B; Xiao et al. 2019), and the differen-
tial analysis showed that most of the loops had no significant dif-
ference (Supplemental Fig. S4F,G). To interpret the component

E

F

BA

C

D

Figure 6. Cross-species long-range chromatin loop predictions. (A) Diagram for cross-species chroma-
tin predictions. The adaptive trainingmodel implemented previously and trained on human cell lines was
combined with multi-omics data from murine NIH3T3 myofibroblasts as input for LoopPredictor. (B)
Proportional loop counts per distance for predicted and NIH3T3 HiChIP loops. Loops were binned by
100 kb to calculate the proportion. (C ) Venn diagrams depicting the amounts of predicted-specific loops
(22,584), overlapping loops (37,124), and NIH3T3-specific HiChIP loops (16,830). The common loops
accounted for 48.5% of the total loops. The bar plots shown below indicate the composition of anchor
types from each loop set. (E) Enhancer type, (P) promoter type (P), (O) other type. (D) Heat map for
H3K27me3 ChIP-seq signal over O-type anchors in NIH3T3 HiChIP-specific and predicted-specific loops
found in C. The number of O-type anchors in NIH3T3 HiChIP-specific and predicted-specific sets are
7222 and 1200, respectively. ChIP-seq signals were visualized across a 5-kb window. (E) Violin plots of
conservation scores across anchor types. Anchor regions derived from C. (F ) Boxplot for conservation
scores by anchor type derived from C.

Tang et al.

1842 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.264606.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.264606.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.264606.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.264606.120/-/DC1


differences between predicted loops andNIH3T3HiChIP loops, we
annotated the anchor types by ChIP-seq data and the distance
from anchors to TSSs (Fig. 6C). The anchors were classified into
three types: Enhancers (E), Promoters (P), and Other (O).
Annotation results showed that enhancer anchors accounted for
the majority of anchors in all loop sets. In addition, the overlap-
ping HiChIP and predicted loop anchors were comprised entirely
of enhancer and promoters, while there were 41.7% O-type loops
in the NIH3T3-specific HiChIP loops, which was higher than the
LoopPredictor-specific loops (6.4%) (Fig. 6C). We hypothesized
that NIH3T3-specific non-enhancer-promoter anchors may lie
within inactive heterochromatic regions, so we analyzed NIH3T3
H3K27me3 CUT&RUN data over these O-type anchors (Fig. 6D).
NIH3T3 HiChIP-specific and LoopPredictor-specific O-type loops
both displayed high H3K27me3 signals, suggesting that these an-
chors primarily lie in inactive genomic regions. Thus, the loops
output from LoopPredictor are primarily active loops with de-
creased heterochromatin composition compared to H3K27ac
HiChIP-specific loops.

As we conducted a cross-species comparison, we next investi-
gated the degree of conservation between human and mouse over
the LoopPredictor-specific, NIH3T3 HiChIP-specific, and overlap-
ping loops (Fig. 6E). The mean conservation score of overlapping
loop anchors was greatest among the three groups (Fig. 6E) (for se-
quence conservation analysis, see Supplemental Methods).
Moreover, the promoter anchors were the most conserved anchor
type (Fig. 6F). This is consistent with previous large-scale regulato-
ry studies, which found that the binding of orthologous trans-
cription factors to promoters is more highly conserved than
binding to distal regulatory sequences (Cheng et al. 2014). Thus,
LoopPredictor is capable of performing cross-species loop predic-
tions with improved sensitivity over running H3K27ac HiChIP
alone.

LoopPredictor compares favorably with other loop

prediction tools

With the rapid increases in genomics data, several computational
methods have been developed for predicting enhancer-gene inter-
actions. TargetFinder is a reliable machine learning-based method
for reconstructing topological loops (Whalen et al. 2016).We com-
pared LoopPredictor with TargetFinder, using the same data sets.
The results showed LoopPredictor achieved lower recall scores
but higher accuracy and precision scores (Supplemental Fig.
S5A). A newer algorithm, known as 3DPredictor, predicts chroma-
tin interaction frequencies using gene expression and CTCF-bind-
ing information (Belokopytova et al. 2020). To compare
LoopPredictor with 3DPredictor fairly, we tested the performance
of two different parametric modes of CP; the regression results
showed that the ensemble CP achieved the highest adjusted R-
square value, and MAE (Supplemental Fig. S5B). To further evalu-
ate the robustness of LoopPredictor, we trained LoopPredictor
and 3DPredictor with the same histone mark ChIP-seq and chro-
matin accessibility data sets derived from H9 human embryonic
stem cells. Next, wewanted to assess ability of each set of predicted
loops to identify active embryonic regulatory elements. We then
overlaid the predicted loops with 32,353 highly active embryonic
stem cell enhancers identified via ChIP-STARR-seq (Barakat et al.
2018) and found that LoopPredictor could predict more embryon-
ic enhancer-mediated loops (39.3%) than 3DPredictor (10.5%)
(Supplemental Fig. S5C).

Discussion

Enhancer-mediated interactions play important roles in gene ex-
pression, evolution, disease, and development. Currently, it is a
significant challenge to investigate the genome topology for all
cell types across species. Therefore, we generated LoopPredictor,
an ensemblemachine learningmodel to predict the genome topol-
ogy for any cell typewhich lacks a 3D profile. LoopPredictor incor-
porates H3K27ac/YY1 HiChIP data sets and an assembly of multi-
omics features to learn active long-range enhancer-mediated loop-
ing characteristics. Users need only to provide multi-omics data
sets as input, alongside our adaptive training model, into
LoopPredictor to generate a list of predicted loops ranked by con-
fidence and comprehensively annotated.

The adaptive training model we incorporated for predicting
loops was generated using many multi-omics data sets derived
from several distinct cell lines. Despite the diverse cellular input
underlying our model, we were able to isolate cell type–specific
gene regulatory networks from among three different cancer cell
lines. The vast complexity of diverse cancers is well-known.
Efforts in the field of cancer genomics have already been directed
toward incorporating multi-omics data sets and whole-genome se-
quencing to help predict clinical phenotypes for the purposes of
personalized medicine (Wang et al. 2015). Knowledge of the
gene regulatory networks active in a certain cancer cell would in-
form clinicians about drug resistance, genomic instability, EMT
status, and/or metastatic properties. Future work incorporating
such approaches as the Cancer Hallmark Network with
LoopPredictor may improve our understanding of the gene regula-
tory networks driving tumorigenesis and improve future personal-
ized medical analysis.

Sophisticated computational methods, like TargetFinder, in-
corporate diverse multi-omics features to predict enhancer-pro-
moter interactions with improved accuracy compared to using
only the closest gene (Whalen et al. 2016; Hong et al. 2019;
Moore et al. 2020). Indeed, the predictive importance of genomics
features output fromTargetFinder were similar when directly com-
pared with LoopPredictor. One important distinction between
TargetFinder and LoopPredictor is the use of Hi-C data as opposed
to H3K27ac- and YY1-HiChIP data, respectively. The majority of
loops identified from Hi-C data are thought to be large structural
CTCF and cohesion anchored loops (Mumbach et al. 2016).
However, the HiChIP loops incorporated into LoopPredictor are
enriched for YY1- and H3K27ac-bound regions and should thus
have a higher proportion of active enhancer-mediated loops and
subsequently a decreased amount of background CTCF-associated
interactions (Mumbach et al. 2016). The differences in 3C-based
technologies incorporated may explain why LoopPredictor’s
near-optimal performance was achieved with 12 features, while
TargetFinder required approximately 16. Further, our model offers
several other advantages over existing predictive tools, including
the ability to detect enhancer-enhancer, enhancer-promoter,
and promoter-promoter interactions on a genome-wide scale.

The ensemble model implemented by LoopPredictor consists
of two core components, ATP and CP. For the classification step
performed by ATP, we tested performancewith the F1-score for dif-
ferent cell lines and different classifiers, and the results indicated
that Random Forest performed the best in all data sets. We also
found that HiChIP data quality is crucial for the optimal perfor-
mance of LoopPredictor, as HiChIP data sets with greater ChIP ef-
ficiencies produced the best results. The classification capability of
ATPwas optimal with an input of 24 features; however, 12 features
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is recommended for standard use. In addition, while any type of
multi-omics data can be used as features, LoopPredictor performs
best when the input data sets are more representative of active
transcription (e.g., RNA-seq, ATAC-seq, H3K27ac, H3K4me2,
H3K4me1, and transcription factor ChIP-seq). Input feature series
with a higher composition of heterochromatin-associated data sets
will not perform as well with our adaptive model (Supplemental
Fig. S6A,B). The normalized quantification results of features at dif-
ferent regions indicated the inter-anchor window region was most
informative, as mentioned above, while the signal derived from
the outer anchor regions was lowest. Moreover, most of the fea-
tures were correlated well by window or anchor regions, while
the features of two neighbors were scattered with no obvious asso-
ciation. The enrichment for feature signal between anchors is
somewhat to be expected since the genomic regions between an
active regulatory loop may contain more active enhancers, bound
transcription factors, and highly accessible gene promoters. In
contrast, genomic regions which are outside of anchors will
more likely contain heterochromatic regions and 3′ genic regions.
Future studies aimed at dissecting the components of active en-
hancer-promoter loops could benefit from performing a similar
analysis and assessing these regions individually.

LoopPredictor has the ability to identify functional 3D en-
hancer loops. Here, we found that, after training our adaptive
model and inputting several multi-omics features derived from
K562 cells, LoopPredictor predicted loops that were highly consis-
tent with a published set of H3K27ac HiChIP loops derived from
K562 cells. From this predicted loop set, we found an overlap for
distal regulatory interactions between theMYC locus and seven en-
hancers which have been previously validated via CRISPRi screen-
ing (Fulco et al. 2016). Moreover, a high-throughput gene-
enhancer pair screen performed in K562 cells identified several
hundred high-confidence enhancer pairs which overlapped
more favorably with the predicted loops compared to the experi-
mental H3K27ac HiChIP loops (Mumbach et al. 2017). An expla-
nation for these differences may be that the predicted loops,
which are the result of a set of several combined functional geno-
mic features andHiChIP loops,maybemore sensitive thanHiChIP
alone. Our findings suggest that the predictive power achieved
through incorporating multi-omics data with HiChIP loops is
able to overcome dropouts of enhancer interactions from HiChIP
data sets, which may be due to technical shortcomings of the as-
say, like GC content, length of interaction, sequencing depth, or
chromatin composition. Alternatively, the result may be attribut-
able to basic probability given that there were a greater number
of observed predicted loops than experimental HiChIP loops.

The wide-spread availability of high-throughput, low-input,
and low-cost multi-omics profiling technologies has increased
the number of cell type–specific functional genomics data sets.
Hence, there is a burgeoning need for tools to predict meaningful
distal regulatory features with cell type–specific accuracy.
LoopPredictor makes it theoretically possible to predict active reg-
ulatory topologies with high accuracy and sensitivity in all cell
types that lack topological data.

Methods

Classifier selection for Anchor type Predictor

We tested the F1 scores of four standard classifiers: LinearSVC,
LogisticRegression, KNeighbors, and RandomForest in four
HiChIP data sets; four classifiers were constructed by using scikit-

learn (Pedregosa et al. 2012) with default parameters.
RandomForest outperformed the other classifiers and was selected
for the construction of ATP.

A hybrid Random Forest classifier based on multitask framework

In this study, we combined the feature selection ability of Group
LASSO and the prediction power of Random Forest to construct a
hybrid classifier (Berzal et al. 2004). Then, we built the hybrid
Random Forest classifier on the framework of multitask. First,
Group LASSO was used to explore the sparsity constraints of pre-
diction; we defined the general classification task asVi=miFi; i rep-
resents the number of subtasks. For the i-th task, Vi is the labels
vector for the task, mi is the regression coefficient for i-th task,
and Fi is the featurematrix of task i.We assume there areN subtasks
in total, andM represents aN′∗Nmatrix, inwhichN′ is the number
of common features among all the tasks; the objective function is
defined as

M̂ =
∑N

i=1

‖Vi −miFi‖22 + l‖M‖1/2.

We applied the feature selection module before fitting
Random Forest, and the multitask framework was implemented
by scikit-learn. Then, the hybrid classifier was integrated in ATP,
and we tested the performance of ATP in four HiChIP data sets
by fivefold cross-validation.

An adaptable Gradient Boosted Regression Trees regressor

The additive model of GBRT was built in greedy function
(Friedman 2001).

Fm(x) = Fm−1(x)+ ngmhm(x).

The tree newly added in each step was represented by hm,
which tried to minimize the loss L, and GBRT used a type of neg-
ative gradient loss function for the current model Fm−1; γm was
step length, which was calculated by line search

gm = arg min =
∑n

i=1

L yi, Fm−1(xi)− g
∂L(yi, Fm−1(xi))

∂Fm−1(xi)

( )
,

and υ was used to scale step length, which called learning rate;
learning rate impacted the training error cooperating with the
number of weak learners. In addition, GBRT considered the strat-
egy of stochastic gradient boosting (Friedman 2002), which com-
bined gradient boosting with bagging; for each iteration, GBRT
trained the base model on a fraction of the training sample, and
the value of the fraction also impacted the performance of regres-
sion. Therefore, it is crucial to determine the combination of learn-
ing rate, weak learner number, and subsample fraction. Our
problem is how to tune the model parameters for four different
HiChIP data sets, while automatically adapting to the unknown
data sets input by users. To solve the problem, we developed an
adaptable module for GBRT to generate different combinations
of parameters to fit themodel iteratively, then selected the optimal
one to train the data set and perform prediction.

Software availability

The source code of LoopPredictor and its execution instruction
are available at GitHub (https://github.com/bioinfomaticsCSU/
LoopPredictor). We have also made the source code available in
the Supplemental Code.
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