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Hyperbolic mapping of human 
proximity networks
Marco A. Rodríguez‑Flores & Fragkiskos Papadopoulos*

Human proximity networks are temporal networks representing the close-range proximity among 
humans in a physical space. They have been extensively studied in the past 15 years as they are 
critical for understanding the spreading of diseases and information among humans. Here we address 
the problem of mapping human proximity networks into hyperbolic spaces. Each snapshot of these 
networks is often very sparse, consisting of a small number of interacting (i.e., non-zero degree) 
nodes. Yet, we show that the time-aggregated representation of such systems over sufficiently large 
periods can be meaningfully embedded into the hyperbolic space, using methods developed for 
traditional (non-mobile) complex networks. We justify this compatibility theoretically and validate it 
experimentally. We produce hyperbolic maps of six different real systems, and show that the maps 
can be used to identify communities, facilitate efficient greedy routing on the temporal network, 
and predict future links with significant precision. Further, we show that epidemic arrival times are 
positively correlated with the hyperbolic distance from the infection sources in the maps. Thus, 
hyperbolic embedding could also provide a new perspective for understanding and predicting the 
behavior of epidemic spreading in human proximity systems.

Understanding the time-varying proximity patterns among humans in a physical space is crucial for better 
understanding the transmission of airborne diseases, the efficiency of information dissemination, social behavior, 
and influence1–8. To this end, human proximity networks have been captured in different environments over 
days, weeks or months2,4,5,9–13. Such time-varying networks are represented as a series of static graph snapshots. 
Each snapshot corresponds to an observation interval or time slot, which typically spans a few seconds to several 
minutes depending on the devices used to collect the data. The nodes in each snapshot are people and an edge 
between two nodes signifies that they had been within proximity range during the corresponding slot. At the 
finest resolution, each slot spans 20 s and the proximity range is 1.5 m. Such networks have been captured by the 
SocioPatterns collaboration14 in closed settings, such as hospitals, schools, scientific conferences and workplaces, 
and correspond to face-to-face interactions9–13. At a coarser resolution, each snapshot spans several minutes 
and proximity range can be up to 10 m or more. Such networks have been captured in university dormitories, 
residential communities and university campuses4,5,15.

Irrespective of the context, measurement period and measurement method, different human proximity net-
works have been shown to exhibit similar structural and dynamical properties6,16. Examples of such properties 
include the broad distributions of contact and intercontact durations1–3,16, and the repeated formation of groups 
that consist of the same people17,18. Interestingly, these and other properties of human proximity systems can 
be well reproduced by simple models of mobile interacting agents18,19. Specifically, in the recently developed 
force-directed motion model18 similarities among agents act as forces that direct the agents’ motion toward other 
agents in the physical space and determine the duration of their interactions. The probability that two nodes are 
connected in a snapshot generated by the model resembles the connection probability in the popular S1 model 
of traditional (non-mobile) complex networks, which is equivalent to random hyperbolic graphs20–22. Based on 
this observation, the dynamic-S1 model has been recently suggested as a minimal latent-space model for human 
proximity networks22. The model forgoes the motion component and assumes that each network snapshot is a 
realization of the S1 model. The dynamic-S1 reproduces many of the observed characteristics of human proxim-
ity networks, while being mathematically tractable. Several of the model’s properties have been proven in Ref.22.

Our approach to map human proximity networks into hyperbolic spaces is founded on the dynamic-S1 model. 
Specifically, given that the dynamic-S1 can generate synthetic temporal networks that resemble human proximity 
networks across a wide range of structural and dynamical characteristics, can we reverse the synthesis and map 
(embed) human proximity networks into the hyperbolic space, in a way congruent with the model? Would the 
results of such mapping be meaningful? And could the obtained maps facilitate applications, such as community 
detection, routing on the temporal network, prediction of future links, and prediction of epidemic arrival times?
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Here we provide the affirmative answers to these questions. Our approach is based on embedding the time-
aggregated network of human proximity systems over an adequately large observation period, using methods 
developed for traditional complex networks that are based on the S1 model23. In the time-aggregated network, 
two nodes are connected if they are connected in at least one network snapshot during the observation period. We 
justify this approach theoretically by showing that the connection probability in the time-aggregated network in 
the dynamic-S1 model resembles the connection probability in the S1 model, and explicitly validate it in synthetic 
networks. Following this approach, we produce hyperbolic maps of six different real systems, and show that the 
obtained maps are meaningful: they can identify actual node communities, they can facilitate efficient greedy 
routing on the temporal network, and they can predict future links with significant precision. Further, we show 
that epidemic arrival times in the temporal network are positively correlated with the hyperbolic distance from 
the infection sources in the maps.

Results
Data.  We consider the following face-to-face interaction networks from SocioPatterns14. (i) A hospital ward 
in Lyon11, which corresponds to interactions involving patients and healthcare workers during five observation 
days. (ii) A primary school in Lyon10, which corresponds to interactions involving children and teachers of 
ten different classes during two days. (iii) A scientific conference in Turin9, which corresponds to interactions 
among conference attendees during two and a half days. (iv) A high school in Marseilles12, which corresponds 
to interactions among students of nine different classes during five days. And (v) an office building in Saint 
Maurice24, which corresponds to interactions among employees of 12 different departments during ten days. 
Each snapshot of these networks corresponds to an observation interval (time slot) of 20 s, while proximity was 
recorded if participants were within 1.5 m in front of each other.

We also consider the Friends & Family Bluetooth-based proximity network5. This network corresponds to 
the proximities among residents of a community adjacent to a major research university in the US during several 
observation months. We consider the data recorded in March 2011. Each snapshot corresponds to an observation 
interval of 5 min, while proximity was recorded if participants were within a radius of 10 m from each other. 
Thus proximity in this network does not imply face-to-face interaction. Table 1 gives an overview of the data.

S
1 and dynamic‑S1 models.  We first provide an overview of the S1 and dynamic-S1 models. In the next 

section we show that the connection probability in the time-aggregated network in the latter resembles the con-
nection probability in the former. Based on this equivalence, we then map the time-aggregated networks of the 
considered real data to the hyperbolic space using a recently developed method that is based on the S1 model.

S
1 model.  The S1 model20,21 can generate synthetic network snapshots that possess many of the common struc-

tural properties of real networks, including heterogeneous or homogeneous degree distributions, strong clus-
tering, and the small-world property. In the model, each node has latent (or hidden) variables κ , θ . The latent 
variable κ is proportional to the node’s expected degree in the resulting network. The latent variable θ is the 
angular similarity coordinate of the node on a circle of radius R = N/2π , where N is the total number of nodes. 
To construct a network with the model that has size N, average node degree k̄ , and temperature T ∈ (0, 1) , we 
perform the following steps. First, for each node i = 1, 2, . . . ,N , we sample its angular coordinate θi uniformly at 
random from [0, 2π] , and its degree variable κi from a probability density function ρ(κ) . Then, we connect every 
pair of nodes i, j with the Fermi-Dirac connection probability

In the last expression, χij is the effective distance between nodes i and j,

(1)p(χij) =
1

1+ χ
1/T
ij

.

Table 1.   Overview of the considered real networks. N is the number of nodes, τ is the total number of time 
slots (snapshots), n̄ is the average number of interacting (i.e., non-zero degree) nodes per snapshot, k̄ is the 
average node degree per snapshot, ˜̄k is the average degree in the time-aggregated network formed over the full 
observation duration τ , and parameter T is the network temperature used in the dynamic-S1 model to generate 
synthetic counterparts of the real systems (see “Methods”). The table also shows the number of observation 
days for each network.

Network Days N τ n̄ k̄
˜̄
k T

Hospital 5 75 17,376 2.9 0.05 30 0.84

Primary school 2 242 5846 30 0.18 69 0.72

Conference 2.5 113 10,618 3.3 0.03 39 0.85

High school 5 327 18,179 17 0.06 36 0.61

Office building 10 217 49,678 2.8 0.01 39 0.74

Friends and family 31 112 7317 58 1.5 57 0.48
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where �θij = π − |π − |θi − θj|| is the similarity distance between nodes i and j. Parameter µ in (2) is derived 
from the condition that the expected degree in the network is indeed k̄ , yielding

where κ̄ =
∫

κρ(κ)dκ.
The degree distribution P(k) in the resulting network has a similar functional form as ρ(κ) . Thus, the model 

can generate networks with any degree distribution depending on ρ(κ) . For instance, a power law degree dis-
tribution with exponent γ > 2 is obtained if ρ(κ) ∝ κ−γ , while a Poisson degree distribution with mean k̄ is 
obtained if ρ(κ) = δ(κ − k̄) , where δ(x) is the Dirac delta function20,25. Smaller values of the temperature T favor 
connections at smaller effective distances and increase the average clustering in the network21. The S1 model is 
equivalent to random hyperbolic graphs, i.e., to the hyperbolic H2 model21, after transforming the degree vari-
ables κi to radial coordinates ri via

where κ0 is the smallest κi and R̂ = 2 ln [N/(πµκ20 )] is the radius of the hyperbolic disk where all 
nodes reside. After this change of variables, the effective distance in  (2) becomes χij = e

1
2
(xij−R̂) , where 

xij = ri + rj + 2 ln (�θij/2) is approximately the hyperbolic distance between nodes i and j21. Therefore, we 
can refer to the degree variables κi as “coordinates” and use terms effective distance and hyperbolic distance 
interchangeably.

Given the ability of the S1/H2 model to construct synthetic networks that resemble real networks, several 
methods have been developed to map real networks into the hyperbolic plane, i.e., to infer the nodes’ latent 
coordinates r (or κ ) and θ , according to the model23,26–30. The hyperbolic maps produced by these methods have 
been shown to be meaningful, and have been efficiently used in applications such as community detection, greedy 
routing and link prediction26–35. Model-free mapping methods have also been developed36. Further, on a related 
note, there is a large body of work on embedding both static and temporal networks into Euclidean spaces, e.g., 
see Refs.37–39, and references therein. However, no prior work has considered embedding temporal networks into 
hyperbolic spaces, which provide a more accurate reflection of the geometry of real networks31.

Dynamic‑S1 model.  The dynamic-S1 model is based on the S1 model and has been shown to reproduce many 
of the observed structural and dynamical properties of human proximity networks22. The dynamic-S1 models a 
sequence of network snapshots, Gt , t = 1, . . . , τ . Each snapshot is a realization of the S1 model. Therefore, there 
are N nodes that are assigned latent coordinates κ , θ as in the S1 model, which remain fixed. The temperature 
T ∈ (0, 1) is also fixed, while each snapshot Gt is allowed to have a different average degree k̄t , t = 1, . . . , τ . The 
snapshots are generated according to the following simple rules: 

(1)	 at each time step t = 1, . . . , τ , snapshot Gt starts with N disconnected nodes, while k̄ in (3) is set equal to 
k̄t;

(2)	 each pair of nodes i, j connects with probability given by (1);
(3)	 at time t + 1 , all the edges in snapshot Gt are deleted and the process starts over again to generate snapshot 

Gt+1.

As shown in Ref.22, temperature T plays a central role in network dynamics in the model, dictating the distribu-
tions of contact and intercontact durations, the time-aggregated node degrees, and the formation of unique and 
recurrent components. Specifically, the contact and intercontact distributions are power laws with exponents 
2+ T and 2− T , respectively. These exponents lie within the ranges observed in real systems22. Further, larger 
values of T increase the connection probability at larger distances, which increases the time-aggregated node 
degrees. For the same reason, larger values of T increase the number of unique components formed, while 
decreasing the number of recurrent components. See Ref.22 for further details.

Hyperbolic mapping of human proximity networks.  Theoretical considerations.  Assuming that a 
sequence of network snapshots Gt , t = 1, . . . , τ , has been generated by the dynamic-S1 model, we show below 
that we can accurately infer the nodes’ latent coordinates κ , θ from the time-aggregated network, using exist-
ing methods that are based on the S1 model. This is justified by the fact that the connection probability in the 
time-aggregated network of the dynamic-S1 resembles the connection probability in the S1 . Indeed, in the time-
aggregated network two nodes are connected if they are connected in at least one of the snapshots. Assuming 
for simplicity that each snapshot has the same average degree k̄t = k̄ , the connection probability in the time-
aggregated network of the dynamic-S1 , is

where p(χij) is given by (1). Further, as shown in Ref.22, the expected degree of a node in the time-aggregated 
network, κ̃ , is related to the node’s latent degree κ , via

(2)χij =
R�θij

µκiκj
,

(3)µ =
k̄ sin(Tπ)

2κ̄2Tπ
,

(4)ri = R̂ − 2 ln
κi

κ0
,

(5)P(χij) = 1−
[

1− p(χij)
]τ
,
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where α = τT/Ŵ(1+ T) for τ ≫ 1 , and Ŵ is the gamma function. Equation  (6) is derived in the thermodynamic 
limit ( N → ∞ ), where there are no cutoffs imposed to node degrees by the network size. We can therefore 
rewrite (5) as

where

is the effective distance between nodes i and j in the time-aggregated network, while µ̃ = µ/α . The exponential 
approximation in (8) holds for sufficiently large τ . We also note that since T ∈ (0, 1) , 0.88 < Ŵ(1+ T) < 1 . At 
large distances, χ̃ij ≫ Ŵ(1+ T) , we can use the approximation e−x ≈ 1− x in (8), to write

where p(x) is given by (1), while C = Ŵ(1+ T)1/T , 0.56 < C < 1 . At small distances, χ̃ij ≪ Ŵ(1+ T) , the expo-
nential in (8) is much smaller than one, and we can write P(χ̃ij) ≈ 1 ≈ p(χ̃ij) . In other words, at both small and 
large effective distances χ̃ij , the connection probability in the time-aggregated network resembles the Fermi-
Dirac connection probability in the S1 model. Fig. 1 illustrates this effect in the time-aggregated networks of 
synthetic counterparts of real systems, whose snapshots can also have different average degrees k̄t , t = 1, . . . , τ 
(see “Methods”).

Given this equivalence, in Fig. 2 we apply Mercator, a recently developed embedding method based on the 
S
1 model23, to the time-aggregated network of the synthetic counterparts of the hospital and primary school. 

Mercator infers the nodes’ coordinates (κ̃ , θ) from the time-aggregated network (see “Methods”), and from κ̃ we 
estimate κ using (6). We also modified Mercator to use the connection probability in (7) instead of the connec-
tion probability in (1) (see Supplementary Information, Sect. VI). Fig. 2 shows that the two versions of Mercator 
perform similarly, inferring the nodes’ latent coordinates remarkably well. Similar results hold for the synthetic 
counterparts of the rest of the real systems (Supplementary Information, Sect. II). In the rest of the paper, we use 
the original version of Mercator as its implementation is simpler and does not require knowledge of parameter τ.

Aggregation interval.  As the aggregation interval τ increases, the time-aggregated network becomes denser, 
eventually turning into a fully connected network. This can be seen in (5), where irrespective of network size, at 
τ → ∞ , P(χij) → 1,∀i, j . Further, at τ → ∞ , α → ∞ , and by (9) χ̃ij → 0,∀i, j . Clearly, no meaningful infer-
ence can be made in a fully connected network as all nodes “look the same”. Thus for an accurate inference of the 
nodes’ coordinates the interval τ has to be sufficiently small such that the corresponding time-aggregated net-
work is not too dense. On the other hand, for intervals τ that are not sufficiently large there may not be enough 
data to allow accurate inference, as network snapshots are often very sparse in human proximity systems, con-
sisting of only a fraction of nodes (Table 1). This effect is illustrated in Fig. 3, where we quantify the difference 
between real and inferred coordinates as a function of τ in a synthetic counterpart of the primary school. We 
see in Fig. 3 that there is a wide range of adequately large τ values, e.g., 500 < τ < 10000 , where the accuracy of 

(6)κ̃ = ακ ,

(7)

P(χ̃ij) = 1−
[

1− p(αχ̃ij)
]τ

= 1−

{

1+
1

τ

[

Ŵ(1+ T)

χ̃ij

]1/T
}−τ

(8)
≈ 1− e

−

[

Ŵ(1+T)
χ̃ij

]1/T

,

(9)χ̃ij =
R�θij

µ̃κ̃iκ̃j
=

χij

α

(10)P(χ̃ij) ≈
C

χ̃
1/T
ij

∝
1

χ̃
1/T
ij

≈ p(χ̃ij),

Figure 1.   Connection probability in the time-aggregated network versus Fermi-Dirac connection probability. 
The results correspond to the synthetic counterparts of the hospital, high school and Friends & Family, 
constructed using the dynamic-S1 model as described in “Methods”. The blue circles show the empirical 
connection probabilities. The solid red and dashed black lines correspond to (1) and (7), respectively. The values 
of parameters T and τ in each case are as shown in Table 1, while α = τT/Ŵ(1+ T) . Similar results hold for the 
counterparts of the rest of the real systems (see Supplementary Information, Sect. I).
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inference for both κ and θ is simultaneously high, while as τ becomes too large or too small accuracy deteriorates. 
Similar results hold for the counterparts of the rest of the considered real systems (Supplementary Information, 
Sect. VII). The exact range of τ values where inference accuracy is high depends on the system’s parameters, e.g., 
sparser networks (lower average snapshot degree) allow aggregation over longer intervals, as it takes longer for 
the time-aggregated network to become too dense. Further, our results with the synthetic counterparts suggest 
that daily aggregation intervals should be sufficient for accurate inference in most cases. Indeed, in this work we 
embed the time-aggregated networks of the considered real systems formed over the full observation durations τ 
in Table 1, as well as corresponding time-aggregated networks formed over individual observation days, obtain-
ing in both cases meaningful results.

Hyperbolic maps of real systems.  In Fig. 4 we apply Mercator to the time-aggregated network of the real net-
works in Table 1 and visualize the obtained hyperbolic maps and the corresponding connection probabilities. We 
see that the embeddings are meaningful, as we can identify in them actual node communities that correspond 
to groups of nodes located close to each other in the angular similarity space. These communities reflect the 
organization of students and teachers into classes (Fig. 4b,c), employees into departments (Fig. 4d), while no 
communities can be identified in the hospital (Fig. 4a). In all cases, we see a good match between empirical and 
theoretical connection probabilities (Fig. 4e–h). Next, we turn our attention to greedy routing.

Figure 2.   Inference of latent coordinates (κ , θ) with the original and modified versions of Mercator. The top row 
corresponds to a synthetic counterpart of the hospital, while the bottom row to a synthetic counterpart of the 
primary school. Both versions of Mercator are applied to the corresponding time-aggregated network formed 
over the full duration τ in Table 1. (a,d) Inferred versus real θ . (b,e) Inferred versus real κ . For each node, κinferred 
is estimated as κinferred = κ̃/α , where κ̃ is the node’s inferred latent degree in the time-aggregated network, 
while α = τT/Ŵ(1+ T) , with τ as in Table 1 and T as inferred by each version of Mercator. (c,f) Connection 
probability as a function of the effective distance χ̃ in the time-aggregated network computed using the inferred 
coordinates (κ̃ , θ) . The solid grey and dashed black lines correspond to (1) with temperature T as inferred by 
each version of Mercator. For the two networks, the original version estimates T = 0.57 , the modified version 
estimates T = 0.78 and 0.77, while the actual values are T = 0.84 and 0.72. In general, the modified version 
estimates values of T closer to the actual values. However, both versions of Mercator perform remarkably well 
at estimating the nodes’ latent coordinates ( κ , θ ). We note that due to rotational symmetry of the model, the 
inferred angles can be globally shifted compared to the real angles by any value in [0, 2π].

Figure 3.   Inference accuracy vs. aggregation interval. The results correspond to a synthetic counterpart of the 
primary school constructed using the dynamic-S1 model. (a) Average difference between the inferred and real 
latent degrees as a function of the aggregation interval τ , Dκ (τ ) =

∑N
i=1 |κ

i
inferred

− κ i
real

|/N , where κ i
inferred

 
( κ i

real
 ) is the inferred (real) latent degree of node i. (b) Same as in (a) but for the average difference between 

the inferred and real angular coordinates, Dθ (τ ) =
∑N

i=1 |θ
i
inferred

− θ i
real

|/N . Before computing Dθ (τ ) , the 
inferred angles are globally shifted such that the sum of the squared distances between real and inferred angles 
is minimized (to this end, we apply a Procrustean rotation40, see Supplementary Information, Sect. VII for 
details). (c) Density of the time-aggregated network as a function of τ , d(τ ) = 2L/[N(N − 1)] , where L is the 
number of links in the network. The vertical dashed lines indicate the interval 500 ≤ τ ≤ 10000 . In this interval, 
Dκ (τ ) < 0.2 , Dθ (τ ) < 0.2 , and 0.06 < d(τ ) < 0.33.
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Human‑to‑human greedy routing.  A problem of significant interest in mobile networking is how to 
efficiently route data in opportunistic networks, like human proximity systems, where the mobility of nodes 
creates contact opportunities among nodes that can be used to connect parts of the network that are otherwise 
disconnected1–3,41. Motivated by this problem, and by the remarkable efficiency of hyperbolic greedy routing in 
traditional complex networks26,33,35, we investigate here if hyperbolic greedy routing can facilitate navigation 
in human proximity systems. To this end, we consider the following simplest greedy routing process, which 
performs routing on the temporal network using the coordinates inferred from the time-aggregated network.

Human‑to‑human greedy routing (H2H‑GR).  In H2H-GR, a node’s address is its coordinates (κ̃ , θ) , and each 
node knows its own address, the addresses of its neighbors (nodes currently within proximity range), and the 
destination address written in the packet. A node holding the packet (carrier) forwards the packet to its neigh-
bor with the smallest effective distance to the destination, but only if that distance is smaller than the distance 
between the carrier and the destination. Otherwise, or if the carrier currently has no neighbors, the carrier 

Figure 4.   Hyperbolic embeddings of human proximity networks. (a-d) Hyperbolic maps of the time-
aggregated networks of the hospital, primary school, high school and office building. In each case we consider 
the time-aggregated network formed over the full observation duration τ shown in Table 1. The nodes are 
positioned according to their inferred hyperbolic coordinates ( r, θ ) in the time-aggregated network [the radial 
coordinates r are computed using (4)]. The nodes are colored according to group membership information 
available in the metadata of each network. In the hospital, the nodes are administrative staff (Admin), medical 
doctors (Med), nurses and nurses’ aides (Paramed), and patients (Patient). In the primary school, the nodes are 
teachers and students of the following classes: 1st grade (1A, 1B), 2nd grade (2A, 2B), 3rd grade (3A, 3B), 4th 
grade (4A, 4B), and 5th grade (5A, 5B). In the high school, the nodes are students of nine different classes with 
the following specializations: biology (2BIO1, 2BIO2, 2BIO3), mathematics and physics (MP, MP*1, MP*2), 
physics and chemistry (PC, PC*), and engineering studies (PSI*). In the office building, the nodes are employees 
working in different departments such as scientific direction (DISQ), chronic diseases and traumatisms 
(DMCT), department of health and environment (DSE), human resources (SRH), and logistics (SFLE). (e-h) 
Corresponding empirical connection probabilities as a function of the effective distance χ̃ . The pink dashed 
lines correspond to (1) with temperatures T as inferred by Mercator, T = 0.99 , 0.47, 0.40 and 0.64, respectively. 
The maps for the conference and Friends & Family can be found in Supplementary Information, Sect. III. Daily 
hyperbolic maps for each real system can be found in Supplementary Information, Sect. V.
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keeps the packet. Clearly, a carrier delivers the packet to the destination if the latter is its neighbor. We note 
that there are no routing loops in H2H-GR, i.e., no node receives the same packet twice. Indeed, consider for 
instance a packet from a node i0 to a node in , which has followed the path {i0, i1, i2, . . . , in−1, in} . This means 
that χ̃i0in > χ̃i1in > χ̃i2in > . . . > χ̃in−1in , where χ̃ikin is the effective distance between nodes ik and in . A node 
ik in the path never forwards the packet to a node il with l < k , i.e., to a node that has seen the packet before, 
because χ̃il in > χ̃ik in . We also note that in the thermodynamic limit ( N → ∞ ), there is a non-zero probability 
that a packet constantly moves closer to the destination but never actually reaches it. This event could theoreti-
cally occur at N → ∞ , as there could be a countably infinite number of intermediate nodes with asymptotically 
closer effective distances to the destination. In reality such event can never occur since the number of nodes N 
is bounded.

For each network in Table 1, we simulate H2H-GR in one of its observation days. We consider the follow-
ing two cases: i) H2H-GR that uses the nodes’ coordinates inferred from the time-aggregated network of the 
considered day (current coordinates); and ii) H2H-GR that uses the nodes’ coordinates inferred from the time-
aggregated network of the previous day (previous coordinates). In the time-aggregated network of a day, two 
nodes are connected if they are connected in at least one network snapshot in the day. We compare these two 
cases to a baseline random routing strategy (H2H-RR), where the carrier first determines the set of its neighbors 
that have never received the packet before, and then forwards the packet to one of these neighbors at random. 
If the destination is a neighbor the carrier forwards the packet to it. The carrier keeps the packet if it currently 
has no neighbors, or if all of its neighbors have received the packet before. Thus, there are no routing loops in 
H2H-RR either.

Performance metrics.  We evaluate the performance of the algorithms according to the following two metrics: 
(i) the percentage of successful paths, ps , which is the proportion of paths that reach their destinations by the end 
of the considered day; and (ii) the average stretch over the successful paths, s̄ . We define the stretch as the ratio 
of the hop-lengths of the paths found by the algorithms to the corresponding shortest time-respecting paths42 
in the network.

The results are shown in Table 2. We see that H2H-GR that uses the current coordinates significantly out-
performs H2H-RR in both success ratio and stretch. The improvement can be quite significant. For instance, in 
the primary school the success ratio increases from 34% to 82%, while the average stretch decreases from 24.9 
to 3.9. Similarly, in the hospital the success ratio increases from 38% to 80%, while the average stretch decreases 
from 7 to 2.2. These results show that hyperbolic greedy routing can significantly improve navigation. However, 
the success ratio decreases considerably if H2H-GR uses the previous coordinates. This suggests that the node 
coordinates change to a considerable extend from one day to the next. In Supplementary Information, Sect. V, 
we verify that this is indeed the case. Nevertheless, H2H-GR that uses the previous coordinates still outperforms 
H2H-RR with respect to success ratio, while achieving significantly lower stretch similar to the stretch with the 
current coordinates (Table 2).

Table 3 shows the same results for the synthetic counterparts of the real systems, where we can make quali-
tatively similar observations. Further, we see that H2H-GR achieves higher success ratios using the inferred 
coordinates in the counterparts compared to the real systems. This is not surprising as the counterparts are by 
construction maximally congruent with the assumed geometric model (dynamic-S1 ). Also, H2H-GR that uses 
the previous coordinates maintains high success ratios in the counterparts. This is expected, as the coordinates 
in the counterparts do not change over time. Thus the coordinates inferred from the time-aggregated network 
of the previous day are quite similar (but not exactly the same) to the ones inferred from the time-aggregated 
network of the day where routing is performed (see Supplementary Information, Sect. V).

Table 2.   Success ratio ps and average stretch s̄ of H2H-GR and H2H-RR in real networks. H2H-GR uses 
the coordinates inferred either from the time-aggregated network of the considered day where routing 
is performed (current coordinates); or from the time-aggregated network of the previous day (previous 
coordinates). The considered days in the hospital, primary school, conference, high school and office building 
are observation days 5, 2, 3, 5 and 10, respectively. In Friends & Family, the considered day is the 31st of March 
2011. For a fair comparison with H2H-GR that uses the previous coordinates, we ignore during all routing 
processes the nodes that exist in the considered day but not in the previous day, since for such nodes we cannot 
infer their coordinates from the previous day. The percentage of such nodes is 17%, 3%, 7%, 6%, 14% and 3% for 
the hospital, primary school, conference, high school, office building and Friends & Family, respectively. In all 
cases, routing is performed among all possible source-destination pairs in the considered day that also exist in 
the previous day.

Real network H2H-GR (current coordinates) H2H-GR (previous coordinates) H2H-RR

Hospital ps = 0.80 , s̄ = 2.2 ps = 0.47 , s̄ = 2.0 ps = 0.38 , s̄ = 7.0

Primary school ps = 0.82 , s̄ = 3.9 ps = 0.65 , s̄ = 3.6 ps = 0.34 , s̄ = 24.9

Conference ps = 0.70 , s̄ = 2.2 ps = 0.35 , s̄ = 2.0 ps = 0.29 , s̄ = 7.9

High school ps = 0.29 , s̄ = 2.0 ps = 0.13 , s̄ = 1.9 ps = 0.07 , s̄ = 5.9

Office building ps = 0.15 , s̄ = 1.4 ps = 0.10 , s̄ = 1.4 ps = 0.06 , s̄ = 2.5

Friends and family ps = 0.45 , s̄ = 1.8 ps = 0.31 , s̄ = 2.0 ps = 0.21 , s̄ = 5.3
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The metrics in Tables 2 and 3 are computed across all source-destination pairs. In Figs. 5 and 6 we also com-
pute these metrics as a function of the effective distance between the source-destination pairs. We see that H2H-
GR that uses the current coordinates achieves high success ratios, approaching 100%, as the effective distance 
between the pairs decreases. As the effective distance between the pairs increases, the success ratio decreases. 
The average stretch for successful H2H-GR paths is always low.

Table 3.   Same as in Table 2 but for the synthetic counterparts of the real systems constructed with the 
dynamic-S1 model. The results in each case correspond to one temporal network realization, while H2H-GR 
uses inferred coordinates as in Table 2.

Synthetic network H2H-GR (current coordinates) H2H-GR (previous coordinates) H2H-RR

Hospital ps = 0.92 , s̄ = 2.2 ps = 0.78 , s̄ = 2.2 ps = 0.42 , s̄ = 9.2

Primary school ps = 0.98 , s̄ = 3.7 ps = 0.97 , s̄ = 3.8 ps = 0.53 , s̄ = 33.9

Conference ps = 0.85 , s̄ = 2.4 ps = 0.70 , s̄ = 2.4 ps = 0.31 , s̄ = 9.8

High school ps = 0.72 , s̄ = 2.7 ps = 0.59 , s̄ = 2.4 ps = 0.11 , s̄ = 7.8

Office building ps = 0.26 , s̄ = 1.5 ps = 0.17 , s̄ = 1.5 ps = 0.06 , s̄ = 3.0

Friends and family ps = 0.82 , s̄ = 2.2 ps = 0.70 , s̄ = 2.3 ps = 0.23 , s̄ = 5.4

Figure 5.   Success ratio ps of H2H-GR and H2H-RR as a function of the effective distance χ̃ between source-
destination pairs. The top row corresponds to the results of the hospital, primary school and conference in 
Table 2, while the bottom row to the results of their synthetic counterparts in Table 3. The success ratio for 
H2H-RR and H2H-GR that uses the previous coordinates is shown as a function of the effective distance 
between the pairs in the previous day. Similar results hold for the other real networks and their synthetic 
counterparts (Supplementary Information, Sect. IV).

Figure 6.   Same as in Fig. 5 but for the average stretch s̄ . Similar results hold for the other real networks and 
their synthetic counterparts (Supplementary Information, Sect. IV).
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H2H-RR also achieves considerably high success ratios for pairs separated by small distances (Fig. 5). This is 
because, even though packets in H2H-RR are forwarded to neighbors at random, the neighbors are not random 
nodes but nodes closer to the carriers in the hyperbolic space. Thus, packets between pairs separated by smaller 
distances have higher chances of finding their destinations. However, the stretch of successful paths in H2H-RR 
is quite high (Fig. 6). Further, we see that in real networks the success ratio of H2H-GR that uses the previous 
coordinates resembles in most cases the one of H2H-RR (Fig. 5a–c and Supplementary Fig. S4). However, the 
stretch in H2H-GR is always significantly lower than in H2H-RR (Figs. 6a−c and Supplementary Fig. S5).

Taken altogether, these results show that hyperbolic greedy routing can facilitate efficient navigation in human 
proximity networks. The success ratio for pairs separated by large effective distances can be low (Fig. 5). However, 
it is possible that more sophisticated algorithms than the one considered here could improve the success ratio for 
such pairs without significantly sacrificing stretch. Further, using coordinates from past embeddings decreases 
the success ratio. Even though the average stretch remains low, this observation suggests that the evolution of 
the nodes’ coordinates should also be taken into account. Such investigations are beyond the scope of this paper. 
Finally, we note that in Supplementary Information, Sect. IV, we consider H2H-GR that uses only the angular 
similarity distances among the nodes, and find that it performs worse than H2H-GR that uses the effective dis-
tances. This means that in addition to node similarities, node expected degrees (or popularities31) also matter in 
H2H-GR, even though the distribution of node degrees in human proximity systems is quite homogeneous22.

Link prediction.  In this section, we turn our attention to link prediction. We want to see how well we can 
predict if two nodes are connected in the time-aggregated network of a day, if we know the effective distances 
among the nodes in the previous day. To this end, for each pair of nodes i, j in the previous day that is also present 
in the day of interest, we assign a score sij = 1/χ̃ij , where χ̃ij is the inferred effective distance between i and j in 
the time-aggregated network of the previous day. The higher the sij , the higher is the likelihood that i and j are 
connected in the day of interest. We call this approach geometric. To quantify the quality of link prediction, we 
use two standard metrics: (i) the Area Under the Receiver Operating Characteristic curve (AUROC); and (ii) the 
Area Under the Precision-Recall curve (AUPR)43. These metrics are described below.

The AUROC represents the probability that a randomly selected connected pair of nodes is given a higher 
score than a randomly selected disconnected pair of nodes in the day of interest. The degree to which the AUROC 
exceeds 0.5 indicates how much better the method performs than pure chance. As the name suggests, the AUROC 
is equal to the total area under the Receiver Operating Characteristic (ROC) curve. To compute the ROC curve, 
we order the pairs of nodes in the descending order of their scores, from the largest sij to the smallest sij , and 
consider each score to be a threshold. Then, for each threshold we calculate the fraction of connected pairs that 
are above the threshold (i.e., the True Positive Rate TPR) and the fraction of disconnected pairs that are above 
the threshold (i.e., the False Positive Rate FPR). Each point on the ROC curve gives the TPR and FPR for the 
corresponding threshold. When representing the TPR in front of the FPR, a totally random guess would result 
in a straight line along the diagonal y = x , while the degree by which the ROC curve lies above the diagonal 
indicates how much better the algorithm performs than pure chance. AUROC = 1 means a perfect classification 
(ordering) of the pairs, where the connected pairs are placed in the top of the ordered list.

The AUPR represents how accurately the method can classify pairs of nodes as connected and disconnected 
based on their scores. It is equal to the total area under the Precision-Recall (PR) curve. To compute the PR 
curve, we again order the pairs of nodes in the descending order of their scores, and consider each score to be 
a threshold. Then, for each threshold we calculate the TPR, which is called Recall, and the Precision, which is 
the fraction of pairs above the threshold that are connected. Each point on the PR curve gives the Precision and 
Recall for the corresponding threshold. A random guess corresponds to a straight line parallel to the Recall axis 
at the level where Precision equals the ratio of the number of connected pairs to the total number of pairs. The 
higher the AUPR the better the method is, while a perfect classifier yields AUPR = 1.

The results for the considered real networks and their synthetic counterparts are shown in Table 4. The corre-
sponding ROC and PR curves are shown in Fig. 7. We see that geometric link prediction significantly outperforms 

Table 4.   AUROC and AUPR for geometric link prediction in real networks and their synthetic counterparts. 
The day of interest is day 3 in the hospital and day 2 in the rest of the networks. Geometric link prediction 
uses the effective distances among the nodes inferred from the time-aggregated network of the previous day. 
“AUPR chance” corresponds to link prediction based on pure chance in the real networks. It equals the ratio 
of the number of connected pairs to the total number of pairs in the time-aggregated network of the day of 
interest. AUPR chance values for the synthetic counterparts are similar as in the real networks and not shown 
for brevity.

Network AUROC real AUPR real AUROC chance AUPR chance AUROC synthetic AUPR synthetic

Hospital 0.78 0.70 0.5 0.43 0.90 0.77

Primary school 0.81 0.62 0.5 0.20 0.87 0.71

Conference 0.66 0.34 0.5 0.22 0.88 0.62

High school 0.89 0.40 0.5 0.05 0.94 0.59

Office building 0.71 0.12 0.5 0.05 0.90 0.41

Friends and family 0.86 0.60 0.5 0.10 0.93 0.72
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chance in all cases. These results constitute another validation that the embeddings are meaningful, and illustrate 
that they have significant predictive power. As can be seen in Table 4 and Fig. 7, link prediction is more accu-
rate in the synthetic counterparts. This is again expected since the counterparts are by construction maximally 
congruent with the underlying geometric space, while the node coordinates in them do not change over time.

We also compute the same metrics as in Table 4 but for a simple heuristic, where the score sij between two 
nodes i and j is the number of common neighbors they have in the time-aggregated network of the previous day 
(CN approach). The results are shown in Table 5. Interestingly, we see that the performance of the geometric and 
CN approaches is quite similar in real networks, suggesting that the latter is a good heuristic for link prediction 
in human proximity systems. The performance of the two approaches is also positively correlated in the synthetic 
counterparts (Tables 4 and 5). This is expected since the smaller the effective distance between two nodes the 
larger is the expected number of common neighbors the nodes have. However, as can be seen in Tables 4 and 
5, in the counterparts the geometric approach performs better than the CN approach. This suggests that the 
performance of the former could be further improved in real systems, if more accurate predictions of the node 
coordinates in the period of interest could be made.

Epidemic spreading.  Finally, we consider epidemic spreading. Here, predicting the arrival time of an epi-
demic is crucial for developing better containment measures for infectious diseases44,45. In the context of the 
global air transportation network, Brockmann and Helbing showed that the epidemic arrival time in a country 
can be well predicted by the effective distance between the country and the infection source country45. The effec-
tive distance between two countries is defined as the length of the shortest weighted path connecting the two 

Figure 7.   ROC and PR curves for geometric link prediction in real networks and their synthetic counterparts. 
(a–f) show the ROC curves, while (g–l) the PR curves, corresponding to the results in Table 4. The dashed black 
lines correspond to link prediction based on chance; these lines in (g–l) correspond to the AUPR chance values 
in Table 4.

Table 5.   Same as in Table 4 but for the CN approach.

Network AUROC real AUPR real AUROC synthetic AUPR synthetic

Hospital 0.75 0.79 0.85 0.69

Primary school 0.79 0.52 0.84 0.62

Conference 0.67 0.37 0.85 0.57

High school 0.88 0.44 0.89 0.52

Office building 0.73 0.10 0.86 0.35

Friends and family 0.85 0.54 0.89 0.64
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countries in the air transportation network, where the weight of a link is a decreasing function of the air traffic 
between the endpoints of the link45.

In a similar vein, here we show that in human proximity networks, the epidemic arrival time, i.e., the time 
slot at which a node becomes infected, is positively correlated with the hyperbolic distance between the node 
and the infected source node in the time-aggregated network. [We note that while in Ref.45 the effective distances 
are directly defined by observable (weighted) path lengths, the effective distances in our case are defined by the 
nodes’ latent coordinates that manifest themselves indirectly via the nodes’ connections and disconnections in 
the (unweighted) time-aggregated network.] To this end, we consider the Susceptible-Infected (SI) epidemic 
spreading model46. In the SI, each node can be in one of two states, susceptible (S) or infected (I). At any time 
slot infected nodes infect susceptible nodes with whom they are within proximity range, with probability β . 
Thus, the transition of states is S → I. To simulate the SI process on temporal networks we use the dynamic SI 
implementation of the Network Diffusion library47.

Figures 8 and 9 show the results for the considered real networks and their synthetic counterparts, respec-
tively. We see that the epidemic arrival times are significantly correlated with the hyperbolic distance from the 
infected source node. The correlation in each case is measured in terms of Spearman’s rank correlation coef-
ficient ρ (see “Methods”). These results indicate that hyperbolic embedding could provide a new perspective 
for understanding and predicting the behavior of epidemic spreading in human proximity systems. We leave 
further explorations for future work.

Conclusion
Individual snapshots of human proximity networks are often very sparse, consisting of a small number of inter-
acting nodes. Nevertheless, we have shown that meaningful hyperbolic embeddings of such systems are still 
possible. Our approach is based on embedding the time-aggregated network of such systems over an adequately 
large observation period, using mapping methods developed for traditional complex networks. We have justified 
this approach by showing that the connection probability in the time-aggregated network is compatible with the 
Fermi-Dirac connection probability in random hyperbolic graphs, on which existing embedding methods are 
based. From an applications’ perspective, we have shown that the hyperbolic maps of real proximity systems can 
be used to identify communities, facilitate efficient greedy routing on the temporal network, and predict future 
links. Further, we have shown that epidemic arrival times in the temporal network are positively correlated with 
the distance from the infection sources in the maps. Overall, our work opens the door for a geometric descrip-
tion of human proximity systems.

Our results indicate that the node coordinates change over time in the hyperbolic spaces of human proximity 
networks. An interesting yet challenging future work direction is to identify the stochastic differential equations 
that dictate this motion of nodes. Such equations would allow us to make predictions about the future posi-
tions of nodes in their hyperbolic spaces over different timescales. This, in turn, could allow us to improve the 

Figure 8.   Average infection time slot as a function of the hyperbolic distance from the infected source node 
in real networks. In each case we consider the inferred hyperbolic distances in the time-aggregated network 
formed over the full observation duration. The hyperbolic distance is binned into bins of size δ = 1 and the 
plots show the average infection time slot for nodes whose hyperbolic distance from the source node falls within 
each bin. The shaded area identifies the region corresponding to one standard deviation away from the average. 
Bins with less than 5 samples are ignored. The results are averaged over 10 simulated SI processes. Each process 
starts with a different infected source node selected at random, while the infection probability per time slot is 
β = 0.05 . Each plot indicates the average Spearman rank correlation coefficient ρ between the infection time 
slot and the hyperbolic distance across the 10 SI processes. In these plots we consider the hyperbolic distance 
instead of the equivalent effective distance χ̃ , as the former is more convenient for binning purposes.
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performance of tasks such as greedy routing and link prediction. This problem is relevant not only for human 
proximity systems, but for all complex networks where the hyperbolic node coordinates are expected to change 
over time, such as in social networks and the Internet28. Another problem is to extend existing hyperbolic embed-
ding methods so that they can refine the nodes’ coordinates on a snapshot-by-snapshot basis as new snapshots 
become available, without having to recompute each time a new embedding from scratch. Such methods could 
be based on the idea that a local change in the system (new connections or disconnections) should involve mostly 
the neighborhood (coordinates of the nodes) around the change. For this purpose, techniques based on quadtree 
structures as in Ref.48 appear promising. Further, one might want to penalize large displacements based on the 
idea that the coordinates should be changing gradually from snapshot to snapshot. To this end, Gaussian transi-
tion models for the coordinates as in Ref.37 seem appropriate. Methods for dynamic embedding in hyperbolic 
spaces should be useful not only for human proximity systems, but for temporal networks in general.

Methods
Generating synthetic networks with the dynamic‑S1 model.  For each real network we construct its 
synthetic counterpart using the dynamic-S1 model as in Ref.22. Specifically, each counterpart has the same num-
ber of nodes N and total duration (number of time slots) τ as the corresponding real network in Table 1, while the 
latent variable κi of each node i = 1, . . . ,N is set equal to the node’s average degree per slot in the real network. 
The average degree k̄t in each snapshot Gt , t = 1, . . . , τ , is set equal to the average degree in the corresponding 
real snapshot at slot t—Fig. 10 shows the distribution of k̄t . Finally, the temperature T is set such that the result-
ing average time-aggregated degree, ˜̄k , is similar to the one in the real network. Each “day” in each counterpart 
corresponds to the same time slots as the corresponding day in the real system. See Ref.22 for further details.

Mercator.  Mercator23 combines the Laplacian Eigenmaps (LE) approach of Ref.36 with maximum likelihood 
estimation (MLE) to produce fast and accurate embeddings. It can embed networks with arbitrary degree distri-
butions. In a nutshell, Mercator takes as input the network’s adjacency matrix. It infers the nodes’ latent degrees 
( ̃κ ) using the nodes’ observed degrees in the network and the connection probability in the S1 model. To infer 
the nodes’ angular coordinates ( θ ), Mercator first utilizes the LE approach adjusted to the S1 model, in order 
to determine initial angular coordinates for the nodes. These initial angular coordinates are then refined using 
MLE, which adjusts the angular coordinates by maximizing the probability that the given network is produced 

Figure 9.   Same as in Fig. 8 but for the synthetic counterparts (using inferred hyperbolic distances).

Figure 10.   Distribution of the average snapshot degree in the considered real networks.
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by the S1 model. Mercator also estimates the value of the temperature parameter T. The code implementing Mer-
cator is made publicly available by the authors of23 at https​://githu​b.com/netwo​rkgeo​metry​/merca​tor. We have 
used the code as is without any modifications.

As mentioned in the main text, we also considered a modified version of Mercator that replaces the connec-
tion probability of the S1 model in (1) with the connection probability in (7). This modification requires several 
changes to the original Mercator implementation that we describe in Supplementary Information, Sect. VI.

Epidemic arrival time and hyperbolic distance correlation.  To quantify the correlation between the 
time slot at which a node becomes infected and its hyperbolic distance from the infected source node, we use 
Spearman’s rank correlation coefficient ρ49. Formally, given n values Xi , Yi , the values are converted to ranks rgXi , 
rgYi , and Spearman’s ρ is computed as

where cov(rgX , rgY ) is the covariance of the rank variables, while σrgX , σrgY are the standard deviations of the rank 
variables. Spearman’s ρ takes values between − 1 and 1, and assesses monotonic relationships. ρ = 1 ( ρ = − 1 ) 
occurs when there is a perfect monotonic increasing (decreasing) relationship between variables X and Y, while 
ρ = 0 indicates that there is no tendency for Y to either increase or decrease when X increases.
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