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Abstract. Mannose 6-phosphate-specific receptors 
with an apparent molecular mass of 215,000 are pres- 
ent in fibroblasts at the cell surface and in intracellular 
membranes. The cell surface receptors mediate en- 
docytosis of exogenous lysosomal enzymes and ex- 
change with the intracellular receptors, which function 
in the sorting of endogenous lysosomal enzymes. In 
the present study, several methods independent of 
receptor ligands were designed in order to examine the 
exchange of receptors under conditions where recep- 
tor-ligand complexes do not dissociate (weak bases 
and monensin) or where receptor-ligand complexes 
are not formed due to absence of endogenous ligands 
as a result of inhibition of protein synthesis. Weak 

bases and monensin reduce the concentration of recep- 
tors at the cell surface by 20-30% and free cell sur- 
face receptors were replaced by occupied receptors. 
The latter continued to be exchanged with internal 
ligand-occupied receptors and the rates of the ex- 
change were similar to the control values. The ex- 
change of receptors between the cell surface and inter- 
nal membranes was also not affected when the 
receptor ligands were depleted from the transport com- 
partments by treating the cells with cycloheximide for 
up to 10 h. We conclude from these results that move- 
ment of mannose 6-phosphate-specific receptors along 
the endocytosis and sorting pathways is constitutive 
and not triggered by binding or dissociation of ligands. 

I 
N many cell types targeting of lysosomal enzymes to 
lysosomes depends on mannose 6-phosphate-specific 
receptors. Two types of receptors with this specificity 

have been isolated to date (13). They are receptors with Mrs 
of 215,000 and 46,000 respectively. The smaller receptor re- 
quires divalent cations for binding. Most of the data cur- 
rently available refer to the larger receptor (referred to as 
MPR) 1, which is known to bind newly synthesized lyso- 
somal enzymes in the Golgi complex, to mediate their trans- 
port into a prelysosomal compartment, and to participate in 
endocytosis of exogenous lysosomal enzymes. Thus, MPR is 
present at the cell surface and in intracellular membranes. 
The two pools are in equilibrium, indicating that the sorting 
and the endocytosis pathways share at least one compartment 
(5, 25). 

Several observations suggest that the movement of MPR 
is affected by occupancy with lysosomal enzymes. In cells 
exposed to weak bases the acid pH-dependent dissociation 
of lysosomal enzyme-receptor complexes is inhibited. The 
inability of these cells to sort endogenous and to internalize 
exogenous lysosomal enzymes led to the hypothesis that 
ligand-occupied receptors are trapped at intracellular site, 
where the receptors and ligands normally separate (11). In 
hepatocytes treated with weak bases, accumulation of recep- 

1. Abbreviations used in this paper: MPR, mannose 6-phosphate-specific 
receptor, Mr 215,000; PMP-BSA, pentamannose 6-phosphate-substituted 
bovine serum albumin. 

tors in structures resembling endosomes or lysosomes was 
reported in a morphological study; whereas, in fibroblasts 
deficient in mannose 6-phosphate-containing ligands, the 
receptors were enriched in the Golgi complex (2-4). There- 
fore it has been proposed that the binding of lysosomal en- 
zymes triggers receptor movement from the binding site 
(Golgi complex) to the site of dissociation (endosomes/lyso- 
somes), and that dissociation of ligands promotes the move- 
ment of free receptors back to sites of ligand binding (3, 4). 

In the present study, the exchange of MPR between intra- 
cellular membranes and the cell surface was monitored in 
fibroblasts mostly by methods that were independent of 
receptor ligands. Little, if any, effect on exchange was ob- 
served when drugs that inhibit the formation or dissociation 
of receptor-lysosomal enzyme complexes were used. Al- 
though some of these drugs reduced the number of receptors 
at the cell surface. 

Materials and Methods 

Hansenula holstii phosphomannan was provided by Dr. M. Slodki (United 
States Department of Agriculture, Northern Regional Research Center, 
Peoria, IL). Chloroquine and monensin were obtained from Sigma Chemi- 
cal Co., St. Louis, MO. The source of ~hexosaminidase was an NI-hCI- 
induced secretion of human fibroblasts (25). 

Cells and Treatments 

Normal human fibroblasts were grown in 35-mm dishes to confluency under 
conditions that were described previously (10). Drugs were added to cells 
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from stock solutions of 1 mM monensin in (Me)2SO, 6 mM chloroquine 
or 1 M NI-I4CI in H2O to final concentrations of 60 gM chloroqnine, 10 
mM NH4CI, and 10 gM monensin. Cycloheximide was used at a concen- 
tration of 0.5 raM. 

Antibodies 
The afffinity-purified polyclonal rabbit antibodies against human liver MPR 
and human placental cathepsin D were those described (12, 25). The 
monoclonal antibody 2C2 against human liver MPR was prepared accord- 
ing to (8) using spleen cells from immunized BALB/c mice and X63-Ag 
8.653 myeloma cells. The 2C2 antibody belonged to the IgG class and was 
purified on a protein A-agarose column (Pharmacia Fine Chemicals, Pis- 
cataway, NJ). Fab fragments of 2C2 were prepared by papain (16) and 
purified on a protein A-agarose column. Iodination with Bolton-Hunter re- 
agent (81.4 TBq/mmol; New England Nuclear, Boston, MA) yielded Ig and 
Fab preparations with specific activities of 2,000-3,600 cpm/ng protein. 

Pentamannose 6-phosphate-Substituted 
Bovine Serum Albumin (PMP-BSA ) 
Pentamannose 6-phosphate was prepared from phosphomannan (1), con- 
vetted into the sodium salt by passage over DOWEX 50 (H +) (Serva, 
Heidelberg, FRG), and neutralized with NaOH. Coupling of pentamaunose 
6-phosphate (0.2 M) to bovine serum albumin (15 mg/ml) in 50 mM N,N- 
bis(2-hydroxyethyl)glycine, pH 9.0, and 160 mM NaCNBH3 (21) yielded 
PMP-BSA with an apparent M, of 100,000 in SDS PAGE and a carbohy- 
drate content of 30% as determined with anthrone (24). Iodination with the 
aid of iodogen (Pierce Chemical Co., Rockford, IL) according to Parker et 
al. (18) yielded [usI]PMP-BSA with a specific activity of 2,600 cpm/ng 
protein. 

Binding and Uptake of Anti-MPR uSI-Antibodies 
Fibroblasts were incubated for 1 h at 0°C (placed on ice water) or at 37°C 
in 0.5 ml Eagle's minimum essential medium containing 7.5 % fetal calf se- 
rum and 160-350 ng of the iodinated antibodies (9). After the incubation, 
the cells were washed six times with Hanks balanced salt solution and solu- 
bilized in 1 ml 10 mM sodium phosphate, pH 7.4, containing 0.15 M NaCI, 
1% NP-40, and 1% sodium deoxycholate. Cell protein was determined ac- 
cording to Peterson (19) with bovine serum albumin as standard. In some 
experiments, cell surface-associated L~I-antibodies were dissociated from 
the cells by incubation for 1 h at 0°C in 10 mM sodium phosphate, pH 7.4, 
containing 0.15 M NaCI and 0.1% pronase. All values represent the mean 
of duplicates and are not corrected for nonspecific binding and uptake, 
which was <5 % as assessed in the presence of an excess of unlabeled anti- 
bodies. 

Binding and Uptake of lu~I]PMP-BSA 
Fibroblasts were incubated for 1 h at 0 or 37°C with 9 nM [z251]PMP-BSA 
in 0.5 ml of Eagle's minimum essential medium supplemented with 7.5% 
fetal calf serum. For determination of cell surface-bound [t25I]PMP-BSA, 
cells were incubated two times at 0°C for 15 min with either Hank's balanced 
salt solution adjusted to pH 3.0 with 1 M citric acid or Hank's balanced salt 
solution containing 5 mM mannose 6-phosphate. Both procedures solubi- 
lized 85-95 % of the cell surface-associated radioactivity. Unless otherwise 
stated all values represent the mean of duplicates. Nonspecific uptake was 
<5 % as determined in the presence of 5 mM mannose 6-phosphate or an 
excess of PMP-BSA. The apparent equilibrium binding constant at 0 and 
37°C and the uptake constant at 37°C for [u5I]PMP-BSA were 0.5, 3, and 
7 nM, respectively. For the determination of the apparent equilibrium bind- 
ing constant, maximal binding, uptake constant, and maximal uptake, the 
cells were incubated in the presence of 0.01-20 nM ligand and double 
reciprocal plots were constructed. 

Determination of F~S]MPR 
Metabolic labeling of fibroblasts with [35S]methionine (42 TBq/mmol, 
Amersham Corp., Arlington Heights, IL), harvesting, preparation, and 
solubilization of the membrane fraction, and quantitative immunoprecipita- 
tion of [35S]MPR from the membrane extracts was performed as described 
(9, 25). Where indicated the cells were exposed after labeling and before 
harvesting to antireceptor Ig, drugs, and cycloheximide for the time indi- 
cated. For determination of cell surface-associated MPR, fibroblasts were 

labeled for 16 h with [35S]methionine, chased for 30 min at 37°C in the 
presence or absence of the indicated drugs, and then placed on ice water. 
The cells were then incubated for 90 min at 0°C with 0.6 ml medium con- 
taming 10 gl anti-MPR antiserum and the drugs. After incubation, the cells 
were washed five times with Hanks balanced salt solution, harvested by 
scraping, and suspended in 0.8 ml, 0.1 M sodium acetate, pH 6.0, containing 
0.2 M NaCl and 1 mM EDTA and unlabeled fibroblasts (2 mg protein). The 
cells were sonicated and subjected to centrifugation for 25 min at 50,000 
g. The pellet was solubilized by ultrasonication in a buffer containing 1% 
Triton X-100 and 0.5% sodium deoxycbolate (26). After centrifugation for 
6 min at 12,000 g, immune complexes in the supernatant were collected with 
0.5 mg Immuno-Precipitin (Bethesda Research Laboratories, Karlsrohe, 
FRG) as described (26). 

Other Procedures 
Treatment of labeled fibroblasts with 0.1% trypsin and subsequent isolation 
of cell-associated [3~SIMPR was performed as described (26). Elec- 
trophoretic separation of immunoprecipitated [35S]MPR before and after 
reduction in the presence of sodium dodecyl sulfate was carded out in 
12.5% polyacrylamide gel according to Laemmli (1.5). Radioactivity in 
MPR was quantified by dansitometry of the fluorograms. Iwanunoprecipita- 
tion and quantification of [35S]cathepsin D was done as described (10). The 
activity of I~-hexosaminidase was as determined previously (25). 

Results 

Distribution of MPR between the Cell Surface 
and Internal Membranes 
Under saturating conditions, cultured human fibroblasts 
bound (at 0°C) 8.3 ng × (106 cells) -1 and internalized (at 
37°C) 177 ng x (106 cells) -1 x h -1 [~25I]PMP-BSA. The 
binding was determined in cells that were treated with man- 
nose 6-phosphate at 0°C in order to uncover occupied recep- 
tors (see Materials and Methods). From these data we calcu- 
lated that an average cell contains 19,000 binding sites at the 
surface and that this number of binding sites is internalized 
and replaced every 2.8 min. The binding sites at the cell sur- 
face correspond to a minor proportion of the total MPR. This 

Figure 1. Cell surface-associated MPR.  Fibroblasts that had been 
labeled for 16 h with [3sS]methionine were chased for 30 rain in 
absence or  presence of  chloroquine. The  cells were analyzed for to- 
tal M P R  (T) or  cell surface-associated M P R  (CS). Total M P R  was 
immunoprecipitated f rom the extract corresponding to one-fifth of  
a dish. The amount of  cell surface-associated M P R  in percent  o f  
total M P R  is given below the fluorogram. Fibronectin binds to 
Immuno-Precipi t in  and it cannot be eliminated by preadsorpt ion in 
the isolation of  the cell surface MPR.  
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Figure 2. Recovery of [35S]MPR after exposure of fibroblasts to 
anti-receptor Ig. Fibroblasts that had been labeled for 16 h with 
[35S]methionine were chased for 2.5 h in the presence of chloro- 
quine, NI-hCI, or monensin. Anti-receptor Ig was added to the 
medium 30 min after the beginning of the chase period. The radio- 
activity recovered in MPR after immunoprecipitation and SDS- 
PAGE under reducing conditions was quantified and is given below 
the fluorograrns as percent of MPR in cells not exposed to anti- 
receptor Ig. 

is shown in an experiment in which, after metabolic labeling, 
the cell surface MPR was tagged by incubating the cells with 
polyclonal anti-MPR antibody at 0°C, and collected as im- 
mune complexes with Staphylococcus cell wall protein A in 
the presence of an excess of unlabeled receptor. The fraction 
of [35S]MPR accessible to antibodies at 0°C accounted for 
9% of the total [35S]MPR in the cell lysate (Fig. 1). 

Weak Bases and Monensin Reduce the Number of 
Receptors at the Cell Surface 

By immunoprecipitation of [35S]MPR accessible to antibod- 
ies at 0°C we could show that the cell surface MPR de- 
creased by 35 %, when the cells were incubated for 30 min 
at 37°C with chloroquine (Fig. 1). In a control experiment 
(not shown) no difference in the amount of total MPR was 
observed between cells that were incubated for 2 h at 37°C 
without or with the drug. 

Weak bases and monensin also decreased the binding of 
125I-labeled anti-MPR Ig and Fab (Table I). After a preincu- 
bation with the drugs at 37°C, the binding was decreased by 
13-29%. The binding of the antibody to the cell surface 
MPR was affected neither by the drugs nor by endogenous 
ligands (not shown). To demonstrate the latter, 5 mM man- 
nose 6-phosphate was added to the medium to displace en- 
dogenous ligands from surface MPR. The decrease in the 
amount of the MPR antigen at the cell surface in the presence 

Table II. Effect of a Preincubation with Weak Bases 
and Monensin on the Apparent and Total 
Binding Capacity for [~25I]PMP-BSA 

Binding sites (percent of control) 

Frec 
preincubation Total 

Addition 0.5 h 5 h 0.5 h 5 h 

Chloroquine 66 11 80 63 
NH4C1 83 12 82 56 
Monensin 80 27 93 95 

Fibroblasts were incubated at 37"C for the indicated time in the absence or 
presence of the drugs and chilled on ice. Before the incubation with 
p2sI]PMP-BSA, the cells were subjected to two incubations for 15 rain each 
with ice-cold Hank's buffered solution containing the drugs (mannose 
6-phosphate, 5 raM, was added to the Hank's solution, when total binding sites 
were determined) and four washes with unsubstituted Hank's solution. The free 
and total binding capacities of the control cells in the experiments with the 
0.5-h preincubation were 3.2 and 4.9 ng ligand per nag protein. In experiments 
with a 5-h preincubation the average binding capacities were 4.0 and 5.1 ng 
ligand per nag protein. All values represent means from two (5-h preincuba- 
tion) or three (0.5-h preincubation) experiments. 

of the drugs was paralleled by a similar decrease in total 
PMP-BSA binding sites (Table H). Our data show that 
fibroblasts treated with chloroquine, NI-I4C1, and monensin 
have decreased amounts of MPR on the cell surface. This 
change must be due to a redistribution of MPR to an intracel- 
lular pool, because these drugs affect neither the binding of 
PMP-BSA to MPR (not shown) nor the total amount of MPR 
(see above). A comparison of the decrease in the binding 
sites at the cell surface after incubation periods of 0.5 and 
5 h (Tables I and H) indicated that most of the MPR was 
redistributed within the first half hour. In contrast to the 
slight decrease in the number of total surface binding sites, 
the number of free binding sites at the cell surface was 
decreased by incubation with chloroquine, NI-I4CI, and 
monensin for 5 h to 11-27 % of control (Table H). The differ- 
ence between free and total binding sites suggests that re- 
ceptors occupied with ligands accumulate at the cell surface 
of treated cells. This could result from transport of ligand- 
receptor complexes from internal compartments to the cell 
surface or from formation of the complexes at the cell sur- 
face. The latter possibility appears to be unlikely. In spite of 
the increased secretion of lysosomal enzymes in the presence 
of weak bases, the concentration of MPR ligands in the me- 
dium is too low to account for the occupation of more than 
70% of the cell surface MPR. 

Table L Binding of Anti-Receptor 125I-Ig and 12SI-Fab-2C2 
in Cells Treated with Weak Bases and Monensin 

Binding (percent of control) 

125I-Ig 125I-Fab-2C2 

Chloroquine 71.5 + 9.2 73.8 + 9.8 (82) 
NI-LC1 75.8 + 20.7 73.5 + 10.3 (72) 
Monensin 76.3 -t- 10.0 87.5 + 17.7 (76) 

Cells were pretreated for 0.5 h at 37°C with the drugs. Controls bound 
5.9 + 2.9 ng ~25I-Ig and 5.1 + 2.5 ng ~2SI-Fab-2C2 per mg cell protein, 
respectively. The mean and the standard deviation of five independent experi- 
ments using two different cell lines are given. The numbers in brackets give 
the binding of ~2SI-Fab-2C2 by cells pretreated for 5 h at 37°C with the drugs. 

Table IlL Uptake of [125I]PMP-BSA in the Presence 
of Weak Bases and Monensin 

Addition 

Uptake (,percent of control) 
[~25 I]PMP-BSA* 

Preincubation 

0.5h 5 h  

Chloroquine 21 3 
NI-LCI 26 4 
Monensin 34 12 

* Cells were pretreated for 0.5 or 5 h with the drugs. Controls internalized 
68.3 ng [~25I]PMP-BSA/mg cell protein in 1 h at 37°C. 
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Weak Bases and Monensin Do Not Prevent the 
Exchange of  MPR between the lntracellular Pool 
and the Cell Surface 

The uptake of PMP-BSA in cells treated for 0.5 or 5 h with 
weak bases or monensin was greatly reduced (Table III). 
From a comparison of Table H and Table HI it is evident that 
the uptake of PMP-BSA was decreased more profoundly than 
its binding, irrespective of the length of preincubation with 
the drugs. The ratio of internalized versus bound ligand was 
17:21 in controls and 7:13 in treated cells. This may suggest 
that the drugs increase the cycling time of receptors engaged 
in endocytosis of PMP-BSA. Alternatively, the presence of 
ligands during the uptake experiment (PMP-BSA was pres- 
ent in the medium at a concentration threefold higher than 
the apparent equilibrium binding constant) may accelerate 
the decrease of free receptors at the surface of treated cells. 

Since weak bases and monensin affected the occupation of 
receptors with ligands, it was not possible to use ligands for 
measuring the exchange of surface receptors with internal 
receptors in treated cells. For the assessment of the exchange 
we used several ligand-independent approaches. In the first 
approach uptake of anti-MPR antibodies was measured. The 
second approach was based on the observation that exposure 
of fibroblasts to divalent anti-MPR antibodies results in for- 
mation of antibody-receptor complexes that cannot be recov- 
ered in soluble extracts and thereby mimics a loss of recep- 
tors (9). In the third approach, fibroblasts were exposed to 
trypsin at 37°C. Such incubation results in fragmentation of 
MPR, and the kinetics of the loss of receptor are related to 
the rate of exchange of the receptors between intracellular 
membranes and the cell surface (9, 25). Finally, we mea- 
sured the reappearance of internalized ligand-MPR com- 
plexes at the cell surface. 

Previously, to study the binding and internalization of 
anti-MPR antibodies, we characterized the interaction of 
the latter with the ligand binding site in MPR. The data pre- 
sented in Table IV show that the polyclonal antibody blocked 
the binding of 13-hexosaminidase to MPR. In contrast, the 
binding was not affected by the monoclonal antibody. Unlike 
the polyclonal antibody, the monoclonal antibody 2C2, 
when added to the medium of cells, inhibited neither target- 
ing of endogenous lysosomal enzymes to lysosomes nor en- 
docytosis of lysosomal enzymes (for experimental details 
and the effects of the polyclonal antibody see references 9 and 

Table IV. Binding of [3-Hexosaminidase 
to MPR-Antibody Complexes 

MPR form Enzyme bound 

mU 
I MPR  free 0.85 

II MPR-Ig (polyclonal) 0.09 
HI MPR-2C2 (monoclonal) 0.84 

MPR, 1 Ixg, was incubated overnight with buffer alone (I) or with 10 Itg of 
polyclonal lID or monoclonal (HI) anti-receptor antibody. Then 6 mU of 
13-hexosaminidase were added. After 2 h at 4°C, 10 ltg of rnonoclonal antibody 
(I) or buffer flI and m )  were added and another 2 h later the immune complexes 
were collected with the aid of 3 nag Immuno-Precipitin. All incubations were 
performed at 4"C. The precipitates were washed twice with buffer and assayed 
for 15-bexosaminidase activity. All values were corrected for the 13-hexosamin- 
idase activity bound in the presence of 5 mM mannose 6-phosphate. The buffer 
used for incubation and washing contained 10 mM sodium phosphate, pH 6.5, 
0.15 M NaCI, and 0.1% Triton X-100. 

Table V. Uptake of Anti-Receptor [1251]-1g 
and [12SI]Fab-2C2 in the Presence of Weak Bases 
and Monensin 

Uptake (percent of control) 

Addition 12Sl-Ig 12~I-Fab-2C2 

Chloroquine 70.0 5 :14 .5  75 (66) 
NI-LC1 69.1 5 :15 .3  72 (53) 
Monensin 80.2 5 :11 .3  79 (66) 

Cells were pretreated for 0.5 h at 37°C with the drugs. Controls internalized 
36.7 :t: 13.8 ng ~z~I-Ig and 16.2 + 6.5 ng I:SI-Fab-2C2 per mg cell protein in 
1 h, respectively. The mean and the standard deviation of eight independent 
experiments for 12~I-Ig and two for t2SI-Fab-2C2 using two different cell lines 
are given. The numbers in brackets indicate the uptake of ~2SI-Fab-2C2 by 
cells pretreated for 5 h at 37°C with the drugs. 

25). To further minimize unwanted effects of the antibodies 
on the receptor, such as cross-linking, Fab fragments were 
prepared. The following results were obtained with the poly- 
clonal antibody and Fab fragments of the monoclonal anti- 
body 2C2. Where examined, the same results were obtained 
with the Fab fragments of the polyclonal antibody and with 
the monoclonal antibody 2C2. 

Uptake of the polyclonal anti-receptor L~5I-Ig and mono- 
clonal ~25I-Fab-2C2 by fibroblasts was inhibited by 20-30% 
in the presence of either chloroquine, NH4CI, or monensin. 
The extent of the inhibition was the same after pretreatment 
for 0.5 or 5 h (Table V) and the uptake was linear with time 
for at least 4 h (not shown). Most of cell-associated radio- 
activity (80-85 %) was resistant to solubilization when cells 
were incubated for 1 h at 0°C in the presence of 0.1% 
pronase, indicating an intracellular localization. It is prob- 
able that in control and in treated cells the antibodies were 
internalized together with MPR, and the cell surface MPR 
was replenished from an intracellular pool. In control cells 
the replenishment rate was 6.2 h -1 for the polyvalent anti- 
body and 3.2 h -~ for the monoclonal Fab fragment. A com- 
parison of the data given in Tables I and V showed that weak 
bases and monensin decreased the binding (Table I) and the 
uptake (Table V) of receptor antibodies to a similar extent. 
This indicated that the rate with which receptors at the cell 
surface of treated cells are replenished from internal com- 
partments was similar to that in control cells. 

For the second approach to examination of the exchange 
of cell surface and internal MPR in the presence of the drugs, 
fibroblasts were labeled for 16 h with [35S]methionine and 
then incubated for 2 h in the presence of anti-receptor Ig. De- 
pending on the concentration of Ig, up to 93 % of the meta- 
bolically labeled MPR formed nonextractable MPR-Ig com- 
plexes. Chloroquine, NI-hC1, and monensin did not affect 
the formation of these MPR-Ig complexe s. In chloroquine- 
treated cells the rate of complex formation followed first or- 
der kinetics and was indistinguishable from the kinetics ob- 
served in control fibroblasts (25). These results suggested 
that the kinetics, with which (internal) receptors were trans- 
ported to the site of complex formation with antibodies (cell 
surface) was not measurably affected by chloroquine, NI-LCI, 
and monensin. 

Exposure of cells to trypsin at 37°C was assumed to frag- 
ment mainly the MPR exposed at the cell surface. In cells 
incubated at 37°C for 1 h the fragmentation encompassed 
nearly 90% of the total MPR. As shown in Fig. 3, MPR was 
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Figure 3. Fragmentation of 
MPR by trypsin. Fibroblasts 
labeled for 16 h with [35S]me- 
thionine were chased for 2 h in 
the absence (o) or presence 
(o) of monensin. Fibroblasts 
were then incubated at 37°C 
for up to 1 h in the presence of 
0.1% trypsin. After inactiva- 
tion of trypsin, MPR was iso- 
lated (left) and radioactivity of 
the intact MPR polypeptide 
quantified (right). 

not spared from degradation if monensin was included in the 
incubation mixture. When cells were treated for 2 h at 37°C 
with 10 mM NI-I4C1 and then exposed for 30 min at 37°C to 
trypsin in the presence of NI-hCl, 33 % of MPR remained 
intact as compared with 25 % in controls (not shown). Al- 
though we cannot exclude that trypsin becomes internalized 
and is active in intracellular compartments, these data sup- 
port our notion that weak bases and monensin do not prevent 
MPR or ligand MPR complexes from moving to the cell 
surface. 

More direct evidence for the translocation of MPR-ligand 
complexes from internal compartments to the cell surface in 
the presence of weak bases or monensin was provided by our 
fourth approach (Table VI). Fibroblasts were first treated for 
30 min with weak bases or monensin and they were then al- 
lowed to endocytose for 1 h [mI]PMP-BSA in the presence 
of drugs. Subsequently cell surface-bound [mI]PMP-BSA 
was removed by an acid pH wash at 0°C (see Materials and 
Methods). The cells were then incubated for 40 min at 37°C 
in a chase medium containing the drugs. During this period 
controls released 4 % and treated cells 14-27 % of the inter- 
nalized [~25I]PMP-BSA as TCA-insoluble material into the 
medium. Presence of 5 mM mannose 6-phosphate during the 
chase induced the secretion in controls of 8 % and in treated 
cells of 36-59 % of the cell-associated radioactivity as TCA- 
insoluble material. The secreted material behaved in SDS 
PAGE as authentic [t25I]PMP-BSA. 

The fraction of PMP-BSA secreted in the presence of man- 
nose 6-phosphate did not increase further in controls upon 
prolongation of the chase period. In cells treated with chloro- 
quine, NI-I4C1, and monensin, between 70 and 80 % of the 
internalized radioactivity was secreted as PMP-BSA during 
a chase for 3 h. This indicates that in cells treated with these 
drugs, more than 70% of the internalized ligand resides in 
compartments from which it can return to the cell surface. 
The effect of mannose 6-phosphate indicates that 50% or 

more of the ligand returns to the cell surface as MPR-ligand 
complex. 

Exchange of Receptors in Cells Depleted 
in Transport Forms of Lysosomal Enzymes 

Fibroblasts were depleted of MPR ligands by inhibiting the 
protein synthesis with cycloheximide. The course of the 
depletion was determined by investigating the time necessary 
for conversion of the precursor of cathepsin D into the ma- 
ture enzyme in cells that were subjected to a pulse labeling 
and a chase in the presence of cycloheximide (Fig. 4). After 
a 30-min pulse, most of the precursor molecules were local- 
ized proximally to the sorting organelle (9). Within 4 and 8 h 
chase periods the proportion of the precursor (i.e., unsorted 
enzyme) dropped to 22 and <3% in cycloheximide-treated 
cells (Fig. 4). Although the processing (and therefore, possi- 

Table VI. Release of lnternalized [12~I]PMP-BSA in the 
Absence and Presence of Mannose 6-Phosphate 

Trichloroacetic-insoluble 
1251 material released 
during chase 

Addition during Internalized 
uptake and chase [125I]PMP-BSA -M6P +M6P 

cpm 

None 15,526 583 1,240 
Chloroquine 3,872 526 1,681 
NI-hC1 4,284 1,175 1,536 
Monensin 5,600 1,199 3,347 

Fibroblasts were incubated for 0.5 h with the drugs and then for 1 h in the 
presence of [t~I]PMP-BSA and the drugs. After removal of cell surface- 
bound [t~I]PMP-BSA by exposure to pH 3.0, the cells were harvested for the 
determination of internalized [t25I]PMP-BSA or incubated for 40 min at 370C 
in medium containing the drugs with or without 5 mM mannose 6-phosphate 
as indiea~d. The values are taken from one of three independent experiments 
yielding identical results. 
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Figure 5. Effect of cycloheximide on recovery of [35S]MPR in 
fibroblasts exposed to anti-MPR Ig. Control and I cell fibroblasts 
were labeled for 16 h with [35S]methionine. Cells were then sub- 
jected to a chase incubation for 10 h. Cycloheximide, 0.5 mM, was 
added at the beginning of the chase incubation or 4 h later. At this 
concentration cycloheximide inhibited synthesis of trichloroacetic 
acid-insoluble material >97%. Anti-MPR Ig (10 Bg/ml) was added 
2 h before the end of the chase incubation as indicated. The amount 
of [35S]MPR recovered in cells exposed to anti-MPR Ig is given 
below the fluorograms in percent of controls. 

Figure 4. Proteolytic maturation of cathepsin D in the presence of 
cycloheximide. Fibroblasts that had been labeled for 0.5 h with 
[35S]methionine were harvested immediately or after a chase incu- 
bation in the absence or presence of 0.5 mM cycloheximide. The 
precursor (P) and mature (M) forms of cathepsin D are indicated. 

bly also the transport) of newly synthesized cathepsin D was 
slightly delayed by cycloheximide, it was clear from this ex- 
periment that treatment for 8 h with cycloheximide was 
sufficient to deplete the lysosomal pathway from MPR 
ligands. Treatment of fibroblasts for up to 8 h with cyclohexi- 
mide had no effect on the binding and uptake of anti-receptor 
L~5I-Ig (Table VII). After treatment with cycloheximide, the 
integration of MPR into nonextractable MPR-Ig complexes 
was reduced from 95 % in controls to 72 and 79 % in treated 
cells (Fig. 5). Cycloheximide caused the same decrease in 
the integration of MPR into nonextractable MPR-Ig com- 

Table VII. Binding and Uptake of Anti-Receptor 1251 
Antibodies in Cycloheximide-treated Fibroblasts 

125I-Ig 
Cycloheximide 
(preincubation) Cell surface bound Internalized 

h ng/mg cell protein ng/mg cell protein 

- 6.3 17.3 
4 6.1 15.2 
8 6.9 19.2 

Fibrnblasts were incubated for 4 or 8 h in the presence of 0.5 mM cyclohexi- 
mide and then assayed for binding and uptake of anti-receptor t2sI-Ig in the 
absence or presence of cycloheximide. 

plexes in I cell fibroblasts (Fig. 5), which are deficient in 
ligands for MPR due to their inability to phosphorylate 
lysosomal enzymes. Therefore, the reduced integration of 
MPR into nonextractable MPR-Ig complexes in cyclohexi- 
mide-treated cells was unrelated to the depletion of MPR 
ligands from the lysosomal pathway. 

Discussion 

In the present work, we have determined the distribution and 
movement of MPR between the surface and interior in cul- 
tured fibroblasts. Our data do not permit differentiation be- 
tween the intracellular compartments of MPR. As in previ- 
ous studies with other cells (7, 20) we found that in human 
fibroblasts 9 % of MPR is present at the cell surface. From 
our data on binding of [125I]PMP-BSA we calculated that 
these cells contain, on average, 19,000 binding sites at their 
surface and that these sites are replaced every 2.8 min. Using 
[3-glucuronidase, Gonzalez-Noriega et al. (11) estimated that 
the pool of cell surface MPR is replaced every 5 min. Like 
others we found that the distribution of MPR is affected by 
weak bases. Weak bases have been reported to decrease the 
number of cell surface binding sites for 13-glucuronidase (11). 
Using immunocytocbemistry, Farquhar and associates (2-4) 
reported that in cells depleted of free receptors (due to treat- 
ment with chloroquine or NFLC1), or of ligands (due to I 
cell mutation or treatment with tunicamycin) MPR accumu- 
lates in endosome-like structures or near the Golgi complex, 
respectively. Since weak bases interfere with the acidifica- 
tion of intracellular compartments and prevent dissociation 
of MPR-ligand complexes (6, 11), it was postulated that the 
cycling of MPR between the binding (Golgi complex) and the 
delivery (endosome/lysosome) sites is triggered by the bind- 
ing (3) and dissociation (4, 11) of a ligand. 

However, our data suggest a different interpretation of the 
effects seen in cells treated with weak bases or depleted from 
ligands. In the presence of chloroquine, NHaC1, and mon- 
ensin, the uptake of antibodies recognizing the MPR was re- 
duced by 20-30% (Table V). This reduction was similar to 
the decrease in number of cell surface MPR (Table I). There- 
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fore the rate at which the cell surface MPR exchanged with 
MPR from internal compartments was not measurably af- 
fected. The possibility that the internalization of MPR was 
induced by antibodies appears unlikely, since the relative 
rates of uptake of a polyclonal antibody blocking the man- 
nose 6-phosphate-binding site in MPR and of the Fab frag- 
ment of a monoclonal antibody that did not block the binding 
site of MPR were similar in treated and untreated cells (Table 
IV). Furthermore, neither the integration of MPR into non- 
extractable MPR-Ig complexes during exposure of cells to 
antibodies recognizing the receptor (Fig. 2) nor the fragmen- 
tation of the receptor in cells exposed at 37°C to trypsin (Fig. 
3) were measurably affected by the drugs. These results indi- 
cate that like the experiments on the uptake of receptor anti- 
bodies, the exchange of internal MPR with surface MPR was 
not affected by weak bases and monensin. 

Weak bases and monensin induced at the cell surface the 
replacement of free receptors by occupied receptors (Table 
II). Therefore, our assumption of a continuous exchange of 
surface with internal receptors implies that MPR-ligand 
complexes are transported from internal compartments to 
the cell surface. This was supported by the release of inter- 
nalized PMP-BSA into the medium, when cells were ex- 
posed to the drugs in the presence of mannose 6-phosphate 
(Table VI). 

It was noted in the present study that, in cells exposed to 
weak bases and monensin, the uptake of ligands was more 
profoundly decreased than the binding of ligands. Under 
conditions where the dissociation of receptor-ligand com- 
plexes is inhibited, the conversion of free to occupied recep- 
tors will depend on the relative rates of synthesis for the 
receptors and ligands. If exogenous ligands are present, as 
during the uptake experiments, the conversion of free to oc- 
cupied receptors will be accelerated. Therefore, the number 
of free binding sites, which is measured after treating the 
cells with the drugs in the absence of exogenous ligands, will 
decrease more slowly in treated cells than the uptake. 

In addition to chloroquine and NI-hC1, we have also stud- 
ied the effect of primaquine on the transport of MPR and 
lysosomal enzymes. Primaquine directly inhibited the bind- 
ing of PMP-BSA to MPR at the cell surface and appeared to 
impede the flow of membranes, rather than that of particular 
membrane constituents (Braulke, T., unpublished observa- 
tion). This indicates that not all effects of weak bases can be 
ascribed to the perturbation of pH gradients. Another exam- 
ple of a pH-independent effect of a weak base is the decrease 
in the rate of dissociation of MPR-ligand complexes caused 
by chloroquine (22). 

In cells depleted of ligands in the presence of cyclohexi- 
mide, neither the uptake of ligands nor the integration of 
MPR into nonextractable MPR-Ig complexes was affected. 
Therefore, it is unlikely that trafficking of MPR is sig- 
nificantly altered in the absence of ligands. We may mention 
that in (ligand-deficient) I cell fibroblasts the amount of MPR 
per cell and the number of cell surface binding sites for PMP- 
BSA is severalfold higher than in normal fibroblasts and that 
the number of cell surface binding sites is hardly affected by 
weak bases or monensin (Braulke, T., unpublished obser- 
vation). 

In summary, our results on receptor exchange in cells ac- 
cumulating ligand-occupied receptors and in cells that are 
deficient in ligands support the concept that MPR is constitu- 

tively trafficking between the cell surface and the intracellu- 
lar compartments, independent of the status of ligand oc- 
cupancy. Since all receptors recycle to the cell surface (9, 25) 
this indirectly implies that movement of receptors between 
internal compartments is also constitutive. Moderate changes 
in the transport rates of MPR, rather than a block in move- 
ment, may cause the changes in the steady-state distribution 
of MPR between different compartments that have been ob- 
served by others (3, 4) and were noted for cell surface MPR 
in this study. 

Several receptors have been thought to recycle in a ligand- 
independent manner. For example, in rat adipocytes, insulin 
receptor that was covalently labeled with a derivative of insu- 
lin was subject to internalization and recycling that was only 
partially sensitive to chloroquine or monensin (14). The 
transport of the IgA receptor from the basolateral to the api- 
cal surface of polarized cells does not depend on ligand bind- 
ing (17). In K562 cells, monensin halved the number of cell 
surface receptors, enhanced the number of Golgi-associated 
transferrin receptors, and allowed the recycling of ferric 
transferrin complexes from at least one intracellular pool 
(23). 
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