
Ecology and Evolution. 2019;9:10055–10066.	 		 	 | 	10055www.ecolevol.org

1  | INTRODUC TION

In 2016, the longest El Niño event recorded to date resulted in mass 
bleaching events of coral reefs worldwide (Claar, Szostek, McDevitt‐
Irwin, Schanze, & Baum, 2018). Increases in sea surface tempera‐
tures caused tropical corals to experience thermal stress beyond 
their tolerance (Lough, Anderson, & Hughes, 2018). When corals 
experience extreme and prolonged heat stress, their symbiotic re‐
lationship with the algae of the family Symbiodiniaceae (previously 
classified as the genus Symbiodinium (LaJeunesse et al., 2018)) is 
affected and can ultimately break down, a process widely known 
as coral bleaching (Hughes et al., 2003). The algae provide most of 
the energetic requirements of the coral host (Muscatine, Falkowski, 
Porter, & Dubinsky, 1984), enabling them to effectively calcify and 
become the foundation of modern reefs. Symbiodiniaceae loss 
within the host results in energetic deficit that can eventually lead to 
the coral's death. In the last two decades, the observed loss of sym‐
bionts and bleaching response to heat stress has been extensively 

studied. Yet, the underlying molecular mechanisms of host and sym‐
biont heat stress response are still not fully understood (Blackstone 
& Golladay, 2018). The following review discusses the development 
of this field, from initial observations in the early 1900s to today's 
modern uses of ‐omics tools.

A century ago, the importance of symbionts to corals, and hence 
the biological significance of bleaching, was vastly underappreciated. 
Early hypotheses on the nutritional relationship between corals and 
algae varied (Boschma, 1925; Mayer, 1915), but the concept of pho‐
tosynthetic product exchange from symbiont to host was quickly 
acknowledged (Gardiner, 1931). The complexity of this relationship 
was recognized by perceiving the coral as an ecological unit—a ho‐
lobiont (Knowlton & Rohwer, 2003; Odum & Odum, 1955). Toward 
the turn of the 20th century, a clearer understanding of coral stress 
responses was developed. Early research showed declines in sym‐
biont density coincided with the loss of chlorophyll pigments, de‐
creased photosynthesis rate, and increased respiration in the host. 
Additionally, coral protein, lipid, carbohydrates, and calcification rate 
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Abstract
The global loss and degradation of coral reefs, as a result of intensified frequency and 
severity of bleaching events, is a major concern. Evidence of heat stress affecting 
corals through loss of symbionts and consequent coral bleaching was first reported 
in the 1930s. However, it was not until the 1998 major global bleaching event that the 
urgency for heat stress studies became internationally recognized. Current efforts 
focus not only on examining the consequences of heat stress on corals but also on 
finding strategies to potentially improve thermal tolerance and aid coral reefs sur‐
vival in future climate scenarios. Although initial studies were limited in comparison 
with modern technological tools, they provided the foundation for many of today's 
research methods and hypotheses. Technological advancements are providing new 
research prospects at a rapid pace. Understanding how coral heat stress studies have 
evolved is important for the critical assessment of their progress. This review summa‐
rizes the development of the field to date and assesses avenues for future research.
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were also reduced as a direct consequence of symbiosis breakdown 
(Goreau, 1959; Muscatine & Lenhoff, 1965; Muscatine, 1967; Coles, 
Jokiel, & Lewis, 1976; GGlynn, 1985, Glynn, 1993; Hoegh‐Guldberg 
& Smith, 1989; Porter, Friedland, Wojnarowska, & Ledingham, 1989; 
Glynn & D’Croz, 1990; Jokiel & Coles, 1990). Interest in coral bleach‐
ing and temperature stress ignited in the late 1990s when the first 
evidence of mass bleaching was recorded after a series of El Niño 
events.

The El Niño Southern Oscillation (ENSO) incident of 1998 was 
the first mass bleaching event recorded by the Hotspot program 
of the US National Oceanic and Atmospheric Administration (Liu 
et al., 2014; Strong, Barrientos, & Duda, 1996). The program pre‐
dicted, weeks in advance, which geographical regions would expe‐
rience bleaching due to increased sea surface temperatures. These 
findings supported the growing evidence that climate change was 
having severe impacts on marine ecosystems, fueling the need for 
a better understanding of coral symbiotic relationships. The cu‐
mulative observations of the ENSO events in the 1980s and 1990s 
revealed that the consequences of temperature stress and coral 
bleaching were much greater than imagined. These consequences 
include increased mortality, decreased reproduction, reduced reef 
productivity, and changes in community structure (Hoegh‐Guldberg, 
1999). Nonetheless, growing reef monitoring efforts have revealed 
potential adaptation and acclimatization strategies of corals and 
their symbionts, providing hope for their survival under a changing 
climate. This has moved scientists into a new avenue of research and 
provided a novel outlook on coral conservation.

The growing recognition of coral reefs’ high socioeconomic 
importance (Black & Bloom, 1984; Carte, 1996; Hoegh‐Guldberg, 
1999; Jameson, McManus, & Spalding, 1995) has propagated inter‐
est in understanding reef systems, their functions, and how to aid 
in their survival. Our understanding of coral–algal symbiosis and 
environmental stress responses has progressed significantly, with 
rapid technological advancement enabling further insight into the 
complex dynamics of this relationship. While physiological mea‐
surements were, and are, fundamental in understanding coral's 
responses to stressors, understanding underlying molecular mech‐
anisms of coral symbiosis, acclimatization, and adaptation is critical 
if we want to aid coral reef survival. This review assesses coral heat 
stress studies and their development over time. Based on the past 
and present progress, we provide suggestions on the future direc‐
tions of this field.

2  | WHERE ARE WE NOW?

The studies of the early 1990s revealed the importance of 
Symbiodiniaceae to the overall thermotolerance of the holobi‐
ont. Symbiodiniaceae associations assist the holobiont through 
the following: plasticity in response to temperature and irradi‐
ance (Lesser, 1997; Lesser, Stochaj, Tapley, & Shick, 1990), down‐
regulation of photosynthesis (Brown, Ambarsari, et al., 1999), 
shuffling of symbiont clades in the host to those better adapted 

to the stressors (Buddemeier & Fautin, 1993; Hoegh‐Guldberg, 
Jones, Ward, & Loh, 2002; Rowan, Knowlton, Baker, & Jara, 1997), 
and xanthophyll cycling (Brown, Dunne, Ambarsari, Le Tissier, & 
Satapoomin, 1999). Studies on both partners have increasingly 
shown the inherent complexity of the holobiont stress response; 
coral and algae determine holobiont tolerance (R. O. B. Baker, 
Starger, McClanahan, & Glynn, 2004; Iglesias‐Prieto & Trench, 
1994; Rowan et al., 1997; Rowan & Powers, 1991). However, 
thermotolerance is variable between and within coral species. 
Understanding mechanisms and indicators of thermal susceptibil‐
ity has thus been a central focus of coral heat stress studies. The 
early development of stress response biomarkers enabled a moni‐
toring system and provided a basis for comparison.

2.1 | Proteins: the first molecular insights

The first biomarkers to be confidently established in coral heat 
stress studies were heat‐shock proteins (HSPs). Prior heat stress 
studies in other cnidarians, such as Hydra (Bosch, Krylow, Bode, 
& Steele, 1988), Anemonia viridis (Miller, Brown, Sharp, & Nganro, 
1992), and the jellyfish Aurelia aurita (Black & Bloom, 1984), showed 
the presence and the increased abundance of HSPs in thermal stress 
response. The first 70‐kDa HSP homologue in corals was charac‐
terized in Goniopora dijboutiensis (Sharp, Miller, Bythell, & Brown, 
1994). Additional studies on other coral and anemone species ex‐
tended the repertoire of HSP homologues, establishing them as vi‐
able biomarker candidates (Black, Voellmy, & Szmant, 1995; Branton, 
MacRae, Lipschultz, & Wells, 1999; Wiens et al., 2000).

Thermal stress has also been shown to increase reactive ox‐
ygen species (ROS) in corals and algal symbionts, consequently 
triggering antioxidant mechanisms. Antioxidant pathways control 
cell‐level toxicity and, thus, cellular stress and damage during stress 
events. Antioxidant‐related protein's ability to maintain ROS levels 
at nontoxic levels made them interesting targets for biomarker de‐
velopment. Although proteins such as superoxide dismutase (SOD), 
catalase (CAT), and ascorbate peroxidase (ASPX) had been shown 
to play critical roles in coral's antioxidative stress response (e.g., 
Dykens, Shick, Benoit, Buettner, & Winston, 1992; Lesser & Garcia, 
1997; Lesser, 1996; Lesser et al., 1990), their use as biomarkers only 
developed in the early 2000s.

Proteins known to be important for antioxidant mechanisms 
such as B‐crystallin, copper/zinc SOD (Cu/ZnSOD), manganese 
SOD (MnSOD), ubiquitin, lipid peroxide (LPO), and total glutathi‐
one (GSH) were detected and measured in O. faveolata (Downs, 
Mueller, Phillips, Fauth, & Woodley, 2000). Proteins showed a 
higher abundance in heat‐ and light‐stressed corals under labora‐
tory conditions as well as during natural bleaching events (Downs 
et al., 2000; Lesser, 1996). These findings confirmed the coral host 
was experiencing oxidative stress, as a consequence of the symbi‐
onts’ damaged photosystem II (PSII). Additionally, ROS was shown 
to compromise host cell integrity and consequently induce bleach‐
ing (Hoegh‐Guldberg, 1999). Follow‐up studies showed that oxi‐
dative stress caused by symbionts also triggered host nitric oxide 
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production through the activation of NF‐kB, leading to cell death 
and bleaching (Perez & Weis, 2006).

An increased repertoire and understanding of these biomarkers 
enabled the comparison of stress responses between coral species. 
Interspecies comparisons revealed ambient HSP70 levels differed 
between two species and multi‐HSP expression was an indicator 
of improved thermal response (Robbart, Peckol, Scordilis, Curran, 
& Brown‐Saracino, 2004). However, variations in thermal tolerance 
were observed not only between species but also within species and 
even within single colonies (Brown, Downs, Dunne, & Gibb, 2002; 
Brown, Dunne, Goodson, & Douglas, 2000; Cook, Logan, Ward, 
Lcukhurst, & Berg, 1990; Goreau & Macfarlane, 1990; Jokiel & 
Coles, 1990). A single coral colony can grow into a large structure 
where parts of the colony may experience differences in compe‐
tition, light regime, and temperature. Thus, single large corals can 
often experience a variety of conditions. Use of both HSP and ox‐
idative stress‐related biomarkers showed that large coral colonies 
had significant differences in thermal stress experience across sec‐
tions (Brown et al., 2002). Further studies focused on understanding 
tissue‐specific expression of biomarkers (Richier et al., 2003), their 
general characterization (Plantivaux et al., 2004), and potential role 
in symbiosis (Richier, 2005). These studies contributed to the gen‐
eral understanding of selected biomarkers’ functions and their vari‐
abilities in corals.

Protein biomarkers have facilitated a deeper understanding of 
the underlying mechanisms driving tolerance variations observed 
within and between species. Comparing response patterns and es‐
tablishing viable biomarkers based on protein abundances became 
a well‐accepted method in coral heat stress studies. However, the 
use of protein‐based analyses changed when new technological 
advancement enabled expression analysis of various mRNA tran‐
scripts, simultaneously.

2.2 | The rise of transcriptomics

Understanding of the coral heat stress response experienced a sig‐
nificant leap forward in 2005, when the first coral cDNA microarray 
was published (Edge, Morgan, Gleason, & Snell, 2005), pioneering 
transcriptomics in coral research. Microarrays were the first form 
of transcriptome expression studies in which reverse‐transcribed 
and fluorescently labeled mRNAs (cDNA) were hybridized to known 
complementary DNA targets and quantified based on their fluores‐
cent intensity. The cDNA fragments, or expressed sequence tags 
(EST), on the first coral microarray represented 32 different cDNAs 
from Acropora cervicornis and Orbicella faveolata, which showed re‐
sponses to different environmental stressors in prior studies. For the 
first time, pathways related to ribosomal RNA (protein biosynthe‐
sis), ferritin, thioredoxin (oxidative stress), and carbonic anhydrase 
(skeletal growth) were shown to have roles in the coral heat stress 
response. This basic array was quickly superseded by a more exten‐
sive version, with 10,368 features from Anthopleura elegantissima 
(Rodriguez‐Lanetty, Phillips, & Weis, 2006). This new array was used 
to examine transcriptome‐wide responses to temperature and UV 
stress (Richier, Rodriguez‐Lanetty, Schnitzler, & Weis, 2008). The 
study confirmed previous observations by Edge et al. (2005) and 
provided insight into new pathways involved in heat stress response 
and stress mitigation, such as actin (cytoskeleton structure), ferri‐
tin (oxidative stress), ribosomal proteins (protein biosynthesis), and 
Rab7 (membrane trafficking). With the combined efforts of these 
initial microarray studies, genes were identified from a variety of 
cellular pathways, providing evidence that the breakdown of sym‐
biosis was a result of multiple interactions (Dunn, Schnitzler, & Weis, 
2007). Nonetheless, microarrays had their limitations in that only a 
number of known sequences could be studied. The development of 
next‐generation sequencing (NGS), which allowed the total mRNA 

F I G U R E  1   Number of publications on cnidarian heat stress response using ‐omics tools. Publication records with keywords were 
recorded from Web of Knowledge and plotted according to year of publication (https ://apps.webof knowl edge.com/). Since the development 
of the first cnidarian microarray in 2005 and technological advancement of various molecular sequencing platforms, the application 
of ‐omics tools has increased steadily. Keywords used to determine studies were separated into independent variables (or) within three 
categories donated by (and). The keywords used were as follows: “heat stress or temperature stress or thermal stress” and “coral or anemone 
or anthozoan” and “gene expression or transcriptome or transcriptomics or proteomics or genomics or genome”

https://apps.webofknowledge.com/
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content of an organism (the transcriptome) to be sequenced, over‐
came these shortcomings and provided new insight into the molecu‐
lar layers of organisms.

Whole‐genome, transcriptome, and proteome sequencing, 
collectively known as ‐omics tools, have opened the field to new 
possibilities, hypotheses, and information regarding heat stress resil‐
ience of coral holobionts. The possibility of whole‐mRNA sequenc‐
ing propelled transcriptome studies in a variety of corals (Meyer et 
al., 2009; Schwarz et al., 2008; Traylor‐Knowles et al., 2011) as well 
as in Symbiodiniaceae species (Barshis, Ladner, Oliver, & Palumbi, 
2014; Bayer et al., 2012; Rosic et al., 2015). Though not compre‐
hensively discussed in this review, a growing number of studies 
are applying proteomics in cnidarians (Barneah, Benayahu, & Weis, 
2006; Cziesielski et al., 2018; Drake et al., 2013; Oakley et al., 2016; 
Ramos‐Silva et al., 2013). Omics methods were previously only uti‐
lized in a handful of studies, but are currently one of the most com‐
mon tools applied in the field (Figure 1) and thus the primary focus 
of the following sections.

2.3 | Transcriptomics and coral's molecular stress 
response mechanisms

Applications of transcriptomics have rapidly expanded, and with it 
our understanding of coral molecular stress responses. Studies on 
important reef‐building species, such as O. faveolata (DeSalvo et 
al., 2008) and Acropora palmata (DeSalvo, Sunagawa, Voolstra, & 
Medina, 2010), have revealed an assortment of crucial heat stress 
genes in cnidarians, such as peroxidasin, C/EBP, EF‐hand, and calmo‐
dulin. The use of microarrays to compare heat stress responses pro‐
vided the first validations of the accuracy at which biomarkers could 
be confidently used across species. Biomarkers such as NF‐kB, cas‐
pase‐3, TNF receptor‐associated factor 3 (TRAF3), and Cu/ZnSOD 
are commonly increased during heat stress across species (DeSalvo, 
Sunagawa, Fisher, et al., 2010). Extensive research over the years 

and the standardization of transcriptomics not only lead to a bet‐
ter understanding of thermotolerance mechanisms but also revealed 
common patterns. Temperature‐stressed cnidarians experienced (a) 
increased HSP expression, (b) increased antioxidant expression, (c) 
decreased Ca2+ homeostasis, (d) restructured ECM, (e) rearrange‐
ment of actin cytoskeleton, (f) decreased ribosomal protein expres‐
sion, and (g) pro‐apoptotic responses (Abrego, Ulstrup, Willis, Van, & 
Oppen, 2008; Barshis et al., 2013; DeSalvo, Sunagawa, Fisher, et al., 
2010; Fitt et al., 2009; Kenkel, Meyer, & Matz, 2013; Maor‐Landaw & 
Levy, 2016) (Figure 2). These response patterns are not only limited 
to adult colonies, but heat stress studies on larvae and larval devel‐
opment have also shown similar cellular responses (Negri, Marshall, 
& Heyward, 2007; Polato et al., 2010; Portune, Voolstra, Medina, & 
Szmant, 2010; Rodriguez‐Lanetty, Harii, & Hoegh‐Guldberg, 2009; 
Voolstra et al., 2009). The consistency in the expression of critical 
heat stress pathways showed the existence of common response 
mechanisms across cnidarians. The shared responses, and selected 
associated genes, can be considered the core cnidarian heat stress 
response (Cziesielski et al., 2018).

2.4 | More than just a coral: understanding the 
holobiont's thermotolerance

The expansion of ‐omics tools has allowed functional insight into ther‐
motolerance and the proposed role of the symbionts in coral bleach‐
ing resilience, as Symbiodiniaceae strain‐specific thermal resistance 
has repeatedly indicated improved host stress response (Berkelmans 
& van Oppen, 2006; Howells, Abrego, Meyer, Kirk, & Burt, 2016; 
Oliver & Palumbi, 2011; Palumbi, Barshis, Traylor‐Knowles, & Bay, 
2014; Pinzón et al., 2015; Polato et al., 2010; Silverstein, Cunning, 
& Baker, 2015). Symbiodiniaceae research continues to uncover 
complex interactions and response mechanisms, often relating to 
oxidative stress (ROS and NO stress (Abrego et al., 2008; Bouchard 
& Yamasaki, 2008; DeSalvo, Sunagawa, Fisher, et al., 2010; Hume 

F I G U R E  2   Summary of coral 
heat stress responses. Increasing 
temperatures trigger calcium release 
from the endoplasmic reticulum, which 
leads to various changes in cell function 
(e.g., cytoskeleton rearrangement, cell 
adhesion disruption) through disruption 
of calcium homeostasis. Meanwhile, the 
metabolic rate is also increased, causing 
an increase not only in reactive oxygen 
species (ROS) but also in nitric oxide 
(NO). Consequently, oxidative stress from 
ROS and NO is experienced by the coral, 
which can ultimately lead to apoptosis or 
necrosis. Symbiodiniaceae have their own 
temperature tolerance and responses but 
also produce ROS under stress, which 
can leak into the host and exacerbate 
oxidative stress
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et al., 2015; Hume et al., 2016; Levin et al., 2017; Littman, Bourne, 
& Willis, 2010; Middlebrook, Hoegh‐Guldberg, & Leggat, 2008)), 
nutrient exchange, and metabolic compatibility (Davy, Allemand, & 
Weis, 2012; Rädecker et al., 2018; Suggett, Warner, & Leggat, 2017; 
Wiedenmann et al., 2012).

Although research endeavors have mainly focused on the cni‐
darian host and algal symbiont, there has also been growing recog‐
nition of another important holobiont component: the microbiome. 
Prior research on coral microbiomes were primarily associated with 
disease response and immunity (Bourne & Munn, 2005; Cooney et 
al., 2002; Pantos et al., 2003; Rosenberg, Koren, Reshef, Efrony, & 
Zilber‐Rosenberg, 2007). Recent studies have provided sufficient 
evidence that microbiomes could contribute to the holobiont's tem‐
perature tolerance and potentially provide resilience (Diaz et al., 
2016; Glasl, Herndl, & Frade, 2016; Littman, Willis, & Bourne, 2011; 
Reshef, Koren, Loya, Zilber‐Rosenberg, & Rosenberg, 2006; Thurber 
et al., 2009; Ziegler, Seneca, Yum, Palumbi, & Voolstra, 2017). Today, 
the probiotic theory of corals (Reshef et al., 2006), describing the 
dynamic relationship between symbiotic microorganisms and envi‐
ronmental conditions to create the most advantageous holobiont, is 
an expanding focus of coral heat stress studies.

Evidently, thermal resilience cannot solely be attributed to only 
one of the members of the holobiont. However, since this review 
focuses on the cnidarian host, we have only briefly touched on the 
other members. Growing evidence suggests that the host genotype 
is capable of local adaptation and acclimation (Bellantuono, Hoegh‐
Guldberg, & Rodriguez‐Lanetty, 2012; Hawkins, Krueger, Wilkinson, 
Fisher, & Davy, 2015). Host genotype response variability is particu‐
larly important, as studies have shown improved tolerance in corals 
with previous exposure, indicating that resilience may be heritable 
(Dixon et al., 2015; Howells et al., 2016). The concept of pre‐expo‐
sure has gained increasing attention in recent years, as it may pro‐
vide a crucial platform for coral survival in light of global change.

2.5 | Learning from experience: Life 
history and pre‐exposure to stress provide platforms 
for coral resilience

Environmental history can significantly impact coral's response 
to elevated temperatures and their overall tolerance to extreme 
events (Hawkins & Warner, 2017; Krueger et al., 2017; Rivest, 
Kelly, DeBiasse, & Hofmann, 2018). The hypothesis that prior heat 
exposure could improve a coral's response to follow‐up stress 
events was proposed early on (Coles & Jokiel, 1978; Jokiel & Coles, 
1977; Middlebrook, Anthony, Hoegh‐Guldberg, & Dove, 2010; 
Middlebrook et al., 2008). Experiencing sublethal doses of thermal 
stress can provide a new acclimated baseline for subsequent stress 
events, by setting in place physiological and molecular mechanisms 
crucial in heat stress response (Ainsworth et al., 2016; Berry & Gasch, 
2008). These observations indicate corals’ potential to acclimatize to 
new environmental conditions. A recent large‐scale observational 
study, based on a model of the Great Barrier Reef's sea surface tem‐
peratures (SST), showed that prestress events occurred prior to the 

main stress, serving as a physiological preparation (Ainsworth et 
al., 2016). This study further validated its observations with in situ 
heat stress studies on Acropora aspera, reporting significant differ‐
ences in gene expression profiles between pre‐exposure and control 
conditions. Not only can preconditioned corals show transcriptional 
differences (Barshis et al., 2013; Bellantuono, Granados‐Cifuentes, 
Miller, Hoegh‐Guldberg, & Rodriguez‐Lanetty, 2012; Bellantuono, 
Hoegh‐Guldberg, et al., 2012), but they also have the capacity to 
maintain higher Symbiodiniaceae densities under stress (Bay & 
Palumbi, 2015; Palumbi et al., 2014). Additionally, some studies sug‐
gest that preconditioned corals could potentially utilize the same 
genes but achieve larger magnitude in gene expression change (Bay 
& Palumbi, 2015; Kenkel & Matz, 2016).

A growing number of studies suggest that epigenetic mecha‐
nisms may play critical roles in the acclimatization process of corals. 
Epigenetic modifications such as DNA methylation, the addition of 
methyl groups to specific sites on a genome, and histone modifica‐
tions, packaging proteins that bind DNA to condense it into chromo‐
somes, are currently severely understudied in corals (Eirin‐Lopez & 
Putnam, 2019). Differential expression of transcripts can be a con‐
sequence of changes in DNA methylation distribution in response 
to stressors (Dixon et al., 2015). Hence, changes in DNA methyla‐
tion sites have been linked to transcriptional plasticity, which may 
facilitate response mechanisms to a previously encountered stressor 
(Dimond & Roberts, 2016; Liew et al., 2018; Putnam, Davidson, & 
Gates, 2016). Although complex gene regulation through histone 
modifications is conserved in cnidarians (Schwaiger et al., 2014), 
knowledge regarding the role of histones in coral acclimatization and 
adaptation is lacking. Epigenetics and preconditioning appear to be 
promising mechanisms for coral adaptation and survival. However, it 
requires a significantly greater understanding before these mecha‐
nisms can be successfully utilized to their full potential.

3  | WHERE SHOULD WE GO?

Potential directions for future work are plentiful. Living in the ‐omics 
age also means continuous possibilities to venture into new research 
avenues. Nonetheless, considering the past and present progress of 
coral heat stress studies, certain subjects stand out, which will re‐
quire significant attention if we hope to increase our understanding 
of coral thermotolerance, and aid in their survival.

3.1 | Reference genomes and model organisms

High‐quality reference genome assemblies are the key to informa‐
tive molecular genetic studies. In general, the availability of refer‐
ence genomes will also promote venturing into new fields of interest 
such as comparative genotyping and epigenetics. Hydra magnipapil‐
lata (Chapman et al., 2010) and Nematostella vectensis (Sullivan et 
al., 2006) genomes have been stable reference points, providing 
many evolutionarily conserved cnidarian genes that could be uti‐
lized in transcriptomic studies. However, unlike corals, neither of 
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these two cnidarians associate with endosymbionts of the fam‐
ily Symbiodiniaceae. Thus, it was necessary to develop high‐qual‐
ity genomes for corals. The first coral genome of Acropora digitifera 
(Shinzato et al., 2011) initiated studies on conserved mechanisms 
and an estimation of the depth of divergence between corals and 
other cnidarians. However, A. digitifera lies in the complex clade 
of the scleractinians, thus only representing a portion of corals. 
Phylogenetic analyses of robust and complex corals indicated that 
these clades separated at least 245 mya (Simpson, Kiessling, Mewis, 
Baron‐Szabo, & Müller, 2011), leaving enough time for divergence 
and the evolution of clade‐specific traits and adaptations. For some 
time, there was a severe lack in robust clade coral genomes that was 
only recently remedied. The Stylophora pistillata genome provided 
the first genomic resource for the robust clade (Voolstra et al., 2017). 
Reference genomes of a diverse range of corals will provide further 
insight into their biology and enable the development of new mo‐
lecular tools. Yet, only four fully sequenced genomes are currently 
available (Acropora digitifera (Shinzato et al., 2011), Acropora mille‐
pora (Ying et al., 2019), Pocillopora damicornis (Cunning, Bay, Gillette, 
Baker, & Traylor‐Knowles, 2018), and Stylophora pistillata (Voolstra 
et al., 2017)). The Reef Future Genomics Consortium (Voolstra et 
al., 2015) recognized the urgency of this problem. They defined a 
set of 10 coral species for which to investigate physiological dif‐
ferences and identified a framework of molecular datasets that are 
anticipated to provide new insight into coral's adaptive capabilities. 
Although development of new reference genomes is required, the 
progress of these needs to occur simultaneously with the optimi‐
zation and development of genetic tools for existing sequenced 
genomes.

While there is a strong interest in making more coral genomes 
available (Liew, Aranda, & Voolstra, 2016), there is also the proposi‐
tion of a coral model organism (Baumgarten et al., 2015), such as the 
small sea anemone Aiptasia pallida (sensu Exaiptasia pallida). Having 
a model organism allows stronger international efforts to gain an in‐
tegrative understanding of cnidarian biology by allowing studies to 
be combined and directly comparable. Additionally, working on the 
same established model organism could speed up the development 
of molecular tools.

3.2 | Integrative analysis and secondary validation

There is no doubt that transcriptomics has provided invaluable in‐
sight into stress response in corals. However, the main limitation of 
transcriptomics is that it does not necessarily reflect the physiologi‐
cal response. Hence, coral heat stress research requires molecular 
and physiological measurements to be incorporated together to fully 
understand thermotolerance.

Formation of mRNA is only the first step in a long chain of reg‐
ulatory mechanisms leading to the final protein (Baumgarten et al., 
2018). Through these, a single mRNA can potentially translate into 
thousands of proteins and be controlled by a number of regulatory 
mechanisms at posttranscriptional and posttranslational levels. The 
analysis of mRNA is seldom a representation of the protein content 

in the organism, which is frequently reflected in the poor correlation 
reported between mRNA and protein expression (Cziesielski et al., 
2018; Griffin et al., 2002; Lee et al., 2003).

Discrepancies between the transcriptome and proteome cause 
concern not only for interpretation of data but also for the devel‐
opment of new biomarkers. Whereas previous biomarkers were 
established based on protein extraction and identification, current 
markers are suggested predominantly on the presence of mRNA. In 
particular, combined transcriptome–proteome approaches have the 
capacity for complementing one another (Seliger et al., 2009), allow‐
ing for data integration to provide a better understanding of a sys‐
tem or its current situation (Gomez‐Cabrero et al., 2014). A narrow 
assortment of papers utilizes proteomic analysis to elaborate on fun‐
damental coral biology such as symbiosis, larval development, and 
calcification (Barneah et al., 2006; Drake et al., 2013; Oakley et al., 
2016; Ramos‐Silva et al., 2013), but work related to proteomic stress 
response in corals is sparse (Cziesielski et al., 2018; Matthews et al., 
2017; Weston et al., 2015). While technology and analytical tools are 
quickly progressing, large‐scale studies on proteins are not as feasi‐
ble as for nucleic acids (Graves & Haystead, 2002). Secondly, the ap‐
plication of proteomics is not as standardized as that for mRNA‐seq. 
Methods are being developed for integrative analysis of multi‐omics 
data to illustrate more comprehensive pictures of the molecular 
systems (Bersanelli et al., 2016). Achieving data integration is a dif‐
ficult challenge that has not been simplified by the rapidly increasing 
amount of data.

With the growing use of ‐omics tools, it is important that the 
targeted biological question should drive the use of these tools in‐
stead of embarking on a frenzy of large‐scale sequencing. Those 
that choose to focus their work on ‐omics should consider physi‐
ologically validating their observations. One omic layer might not 
represent the other, but if the phenotype does not support molecu‐
lar findings, a reassessment of conclusions drawn may be advisable. 
Additionally, ‐omics users should consider creating clear hypothe‐
ses that can be incorporated and tested by physiologists or others. 
The important lesson learned from such tools is that identifying 
long lists of genes and proteins often generates more questions, 
which, when fully utilized, can lead to new research and progression 
in the field.

3.3 | The holistic holobiont

The term coral holobiont comprises the totality of the coral sym‐
biotic relations including, but not limited to, endosymbiotic zoox‐
anthellae, bacteria, archaea, viruses, and fungi. All are part of what 
collectively is termed the microbiome, and each plays a role in the 
response of the holobiont. Research can often be targeted to a spe‐
cific symbiont of interest. As much as we need to simplify the system 
into individual parts in order to confidently discern the role of each 
player, however, we must also remember that it is intricately con‐
nected. Ultimately, the goal is to understand system requirements 
and describe the relationship between each component to unveil the 
mechanisms of thermal tolerance.
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Cnidarian host and Symbiodiniaceae temperature response are 
often pursued as separate fields. Recent studies have increasingly 
been combining coral and Symbiodiniaceae responses in their hy‐
pothesis testing. A growing understanding of the metabolic host–
symbiont relationship has encouraged the use of methods that 
allow the measuring of these dynamics, such as metabolomics (Cui 
et al., 2019; Matthews et al., 2017) or NanoSIMS (Krueger et al., 
2018). These have shown that the metabolic balance between the 
two partners is not only sensitive to environmental stressors but 
specifically fine‐tuned (Cui et al., 2019; Li et al., 2018; Matthews 
et al., 2017; Nielsen, Petrou, & Gates, 2018). The coral microbi‐
ome has also been shown to significantly impact the thermal stress 
response mechanisms of the coral as well as on their symbionts 
(Littman et al., 2010; Pogoreutz et al., 2018; Ziegler et al., 2017). 
Evidently, interactions between the different partners of the ho‐
lobiont are extremely important to consider when attempting 
to understand the overall response. Our understanding of coral 
temperature and bleaching tolerance hypotheses increasingly 
acknowledges the difficulty of discerning the role of one partner 
from the other.

Targeting the complexity of the individual components of the 
holobiont was recognized by the ReFuGe Consortium (Voolstra et 
al., 2015), and explores the sequencing of the various components 
of the coral holobiont. Integrative approaches are required to effi‐
ciently compare and contrast not only different molecular layers, but 
also the response and interaction of different members of the sys‐
tem. This interplay is particularly important in light of current aims at 
aiding corals in surviving rapid climate changes.

4  | CONCLUSION

Realization of the economic benefit of reef systems coupled with 
undeniable evidence of climate change impacts has fueled the field 
of coral heat stress studies. The emergence of new research meth‐
ods such as transcriptomics has led to a continuous expansion of 
knowledge in the field. However, rapid advancements in technology 
perpetuate the increase in data generated, which may distract from 
developing mechanistic understanding. In these times, it is impor‐
tant to reflect upon the path that research endeavors have taken, 
build upon these, and expand in directions suitable for the long‐term 
goal of understanding how we may possibly ensure a future for coral 
reefs.

Gathering knowledge on the intricate system of the coral holo‐
biont and combining the different parts to allow deeper insight into 
the overall response mechanisms will require a collaborative effort. 
Only then can we hope to find successful ways to aid corals in accli‐
matizing and adapting to the rapidly altering environment.
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