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Abstract: Functionalized iron oxide nanoparticles (IONPs) are of great interest due to wide range
applications, especially in nanomedicine. However, they face challenges preventing their further
applications such as rapid agglomeration, oxidation, etc. Appropriate surface modification of IONPs
can conquer these barriers with improved physicochemical properties. This review summarizes recent
advances in the surface modification of IONPs with small organic molecules, polymers and inorganic
materials. The preparation methods, mechanisms and applications of surface-modified IONPs with
different materials are discussed. Finally, the technical barriers of IONPs and their limitations in
practical applications are pointed out, and the development trends and prospects are discussed.
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1. Introduction

Recently, magnetic nanoparticles is an emerging field of study and has gained much attention
among researchers due to their widespread applications in various fields including catalysis [1],
data storage [2], environmental remediation [3], magnetic fluids [4], electronic communication [5],
and biomedicine [6] etc. Among different types of magnetic nanoparticles (MNPs), iron oxide
nanoparticles (IONPs) are the most popular and widely used in the field of biomedicine due to
their ease of surface modification, synthesis, and low toxicity [7]. Current studies and literature
have confirmed that magnetic IONPs are frequently used in the treatment of hyperthermia [8–10]
or as drug carriers in cancer treatment [11–13], magnetic resonance imaging (MRI) agents [14–16],
bioseparation [17–19], gene delivery [20–22], biosensors [23–25], protein purification [26–28],
immunoassays [29–31] and cell labeling [32–34].

However, IONPs suffer from two major issues such as rapid agglomeration, oxidation into the
physiological environment of the tumors due to large surface area, chemical reactivity and high surface
energy, thus resulting in a loss of magnetism [35]. Therefore, appropriate surface modification of IONPs
is required to make them biocompatible. The coating method is the most common surface modification
approach to conjugate the organic or inorganic materials onto the surface of IONPs. This method
not only prevents the oxidation and agglomeration of IONPs, but also provides the possibility for
further functionalization [36]. Functionalization of magnetic IONPs can improve their physicochemical
properties, making them ideal candidates for the field of catalysis and biomedicine.
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Different characteristics such as size, shape, morphology and dispersability of the IONPs can affect
their application in biomedicine [37,38]. Therefore, researchers are focusing on synthesizing MNPs by
adopting different routes to control their size, shape and morphology with adjustable and desirable
properties. So far, a number of synthesis routes such as co-precipitation [39], hydrothermal [40],
thermal decomposition [41], microemulsion [42], electrochemical deposition [43], laser pyrolysis [44],
solvothermal methods [45], sonochemical methods [46], chemical vapor deposition [47], the microwave
assisted method [48], and aerosol pyrolysis [49] have been reported to prepare the magnetic IONPs.
The advantages and disadvantages of some methods are listed in Table 1.

Table 1. Principal preparation methods of iron oxide nanoparticles (IONPs).

Method Advantages Disadvantages

Co-precipitation method Simple and efficient Size distribution, poor crystallinity
and aggregation

Hydrothermal reactions Easy to control particle size
and shape

Long reaction time, high reaction
temperature, high pressure

Thermal decomposition Good control of size and
shapes, high yield High reaction temperature

Microemulsion method Control of particle size,
highly homogeneous

Poor yield, large amounts of solvent
required and time consuming

Sol-gel reactions Precise control of size
and structure Relatively expensive, long reaction time

Aerosol/vapor phase method High yield Extremely high temperatures

Electrochemical method Easy control of size Reproducibility

In this review, first we briefly describe the factors influencing why surface modification of MNPs
is essentially required, and then introduce the structures of magnetic iron oxide nanocomposites.
The materials used in surface modification are categorized as organic materials and inorganic
materials. Organic material molecules are composed of small molecules and polymers while inorganic
materials include silica, carbon, metals and metal oxides/sulfides. In next section, we summarize the
IONPs’ surface coating mechanisms as well as the progress made in recent years, and highlight their
applications in various fields.

2. Surface Modification of Magnetic Iron Oxide Nanoparticles (IONPs) and Applications

There are four main purposes of surface modification of NPs: (1) to improve or change the
dispersion of MNPs; (2) to improve the surface activity of MNPs; (3) to enhance the physicochemical
and mechanical properties; and (4) to improve the bicompatibility of MNPs. There are mainly four
magnetic iron oxide nanocomposites (Figure 1) [50].
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Figure 1. Typical morphologies of magnetic composite nanomaterials. Reproduced with permission 
from [50]. Copyright Institute of Physics, 2015. 
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The Stöber method is the most common approach to synthesize IONP@SiO2, in which the 
IONPs are uniformly dispersed in ethanol solution, followed by the addition of tetraethoxysilane 
(TEOS), then finally the aqueous ammonia solution is admixed to the mixed solution [50,58]. As a 
basic catalyst, ammonia can not only control the particle size, but also inhibit hydrolysis to form 
particles with regular morphology. Zhao Li et al. found that the size of silica particles increases with 
the concentration of ammonia, water, and TEOS in the reaction solution. At the same time, she found 
that an increase in the reaction temperature accelerated the ripening of the silica particles, causing 
the particle size to increase slightly [59]. This method can be applied to coat a SiO2 layer directly onto 
the surface of Fe3O4. Malvindi et al. studied the toxicity of silica-coated IONPs in a vitro model. They 

Figure 1. Typical morphologies of magnetic composite nanomaterials. Reproduced with permission
from [50]. Copyright Institute of Physics, 2015.

2.1. Surface Coating with Inorganic Materials

2.1.1. Silica

Silica is the most common and widely used agent for surface modification of IONPs [51–55].
Silica coating has following advantages: low agglomeration, enhancing the stability and reducing the
cytotoxic effects of MNPs. Therefore, it has demonstrated good biocompatibility, hydrophilicity and
stability [56]. Recently, researchers have described the procedure to control the size and thickness of the
silica coated NPs [57]. Generally, there are four main approaches to prepare IONP@SiO2 (Table 2) [50].

Table 2. Summary of synthesis methods for silica-coated IONPs.

Synthesis Methods Advantages Disadvantages

Stöber method Controllable silica shell and
uniform size, high crystallinity

Lack of understanding of its
kinetics and mechanism

Microemulsion Control of the particle size,
high homogeneous

Poor yield, large amounts of
solvent required and time

consuming

Aerosol pyrolysis Hermetically-coated Complex experimental conditions

Methods based on sodium
silicate solution Control of crystallinity and surface area Depends on preparation method

The Stöber method is the most common approach to synthesize IONP@SiO2, in which the IONPs
are uniformly dispersed in ethanol solution, followed by the addition of tetraethoxysilane (TEOS),
then finally the aqueous ammonia solution is admixed to the mixed solution [50,58]. As a basic
catalyst, ammonia can not only control the particle size, but also inhibit hydrolysis to form particles
with regular morphology. Zhao Li et al. found that the size of silica particles increases with the
concentration of ammonia, water, and TEOS in the reaction solution. At the same time, she found
that an increase in the reaction temperature accelerated the ripening of the silica particles, causing the
particle size to increase slightly [59]. This method can be applied to coat a SiO2 layer directly onto
the surface of Fe3O4. Malvindi et al. studied the toxicity of silica-coated IONPs in a vitro model.
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They used the A549 and HeLa lines and incubated cells with surface-modified Fe3O4@SiO2 as well
as bare NPs. They reported that the naked NPs show higher toxicity due to their stronger in situ
degradation [60]. Uribe Madrid et al. demonstrated the synthesis of Fe3O4@mSiO2 core-shell structures
with high specific surface area and different mesoporous silica (mSiO2) shell thickness. This composite
nanoparticle synthesized via the modified Stöber method shows excellent drug release performance
and it is ideal for targeted drug delivery in vivo [61].

The second method is the microemulsion method, which can be divided into two different types,
namely water-in-oil (W/O, micelles) and oil-in-water (O/W, reversed micelles). Sillca-coated IONPs
with high crystallinity can be synthesized by the microemulsion process, which comprises water,
oil and surfactant [62]. Du et al. synthesized a silica-encapsulated Fe3O4 core-shell structure by the
microemulsion approach and further functionalized with an antiseptic agent cetyl trimethylammonium
bromide (CTAB). Their results have shown that the core size of Fe3O4 NPs depends on the
water/surfactant molar ratio of the microemulsion system [63]. Yang et al. developed an oil–water
two-phase layered coating strategy for the preparation of monodisperse dendritic mesoporous
silica-encapsulated magnetic nanospheres with pore size of approximately 5.7 to 10.3 nm and shell
thickness of 40 to 100 nm [64]. Some researchers have put forward their own views on the mechanism
of silica coating in reverse microemulsion systems. Ding et al. summarized these viewpoints and
found that it is generally accepted that there is a ligand exchange. They systematically studied the
factors affecting the core size and shell thickness of Fe3O4@SiO2 NPs. They found that shell thickness
increased with an increasing amount of ammonia and TEOS. Meanwhile, the small aqueous domain
is suitable for ultrathin silica shell, while the large aqueous domain is essential for a thicker shell.
Single-core Fe3O4@SiO2 NPs with different shell thicknesses are shown in Figure 2 and the surface
coating mechanism is depicted in Figure 3 [65]. The microwave-assisted method can also be used to
assist in the synthesis of Fe3O4@SiO2 NPs. Lu et al. prepared Fe3O4@SiO2 NPs with a very thin SiO2

shell (2.5 nm) by a novel microwave-assisted reverse microemulsion method [66]. The microemulsion
method has the advantage of controlling the shape, size distributions and shell thickness. However,
the poor yield and demand of large amounts of solvent are the major drawbacks of this method.
The separation of NPs from surfactants is often time consuming and requires much effort [62].

Nanomaterials 2018, 8, x FOR PEER REVIEW  4 of 26 

 

used the A549 and HeLa lines and incubated cells with surface-modified Fe3O4@SiO2 as well as bare 

NPs. They reported that the naked NPs show higher toxicity due to their stronger in situ 

degradation [60]. Uribe Madrid et al. demonstrated the synthesis of Fe3O4@mSiO2 core-shell 

structures with high specific surface area and different mesoporous silica (mSiO2) shell thickness. 

This composite nanoparticle synthesized via the modified Stöber method shows excellent drug 

release performance and it is ideal for targeted drug delivery in vivo [61]. 

The second method is the microemulsion method, which can be divided into two different 

types, namely water-in-oil (W/O, micelles) and oil-in-water (O/W, reversed micelles). Sillca-coated 

IONPs with high crystallinity can be synthesized by the microemulsion process, which comprises 

water, oil and surfactant [62]. Du et al. synthesized a silica-encapsulated Fe3O4 core-shell structure 

by the microemulsion approach and further functionalized with an antiseptic agent cetyl 

trimethylammonium bromide (CTAB). Their results have shown that the core size of Fe3O4 NPs 

depends on the water/surfactant molar ratio of the microemulsion system [63]. Yang et al. developed 

an oil–water two-phase layered coating strategy for the preparation of monodisperse dendritic 

mesoporous silica-encapsulated magnetic nanospheres with pore size of approximately 5.7 to 10.3 

nm and shell thickness of 40 to 100 nm [64]. Some researchers have put forward their own views on 

the mechanism of silica coating in reverse microemulsion systems. Ding et al. summarized these 

viewpoints and found that it is generally accepted that there is a ligand exchange. They 

systematically studied the factors affecting the core size and shell thickness of Fe3O4@SiO2 NPs. They 

found that shell thickness increased with an increasing amount of ammonia and TEOS. Meanwhile, 

the small aqueous domain is suitable for ultrathin silica shell, while the large aqueous domain is 

essential for a thicker shell. Single-core Fe3O4@SiO2 NPs with different shell thicknesses are shown in 

Figure 2 and the surface coating mechanism is depicted in Figure 3 [65]. The microwave-assisted 

method can also be used to assist in the synthesis of Fe3O4@SiO2 NPs. Lu et al. prepared Fe3O4@SiO2 

NPs with a very thin SiO2 shell (2.5 nm) by a novel microwave-assisted reverse microemulsion 

method [66]. The microemulsion method has the advantage of controlling the shape, size 

distributions and shell thickness. However, the poor yield and demand of large amounts of solvent 

are the major drawbacks of this method. The separation of NPs from surfactants is often time 

consuming and requires much effort [62]. 

 

Figure 2. Transmission electron microscope (TEM) image of 12.2-nm Fe3O4@SiO2 nanoparticles (NPs) 

with shell thicknesses of (a) 2.0 nm, (b) 6.3 nm, (c) 14.1 nm, and (d) 19.8 nm. Scale bar = 20 nm. 

Reproduced with permission from [65]. Copyright American Chemical Society, 2012. 

Figure 2. Transmission electron microscope (TEM) image of 12.2-nm Fe3O4@SiO2 nanoparticles (NPs)
with shell thicknesses of (a) 2.0 nm, (b) 6.3 nm, (c) 14.1 nm, and (d) 19.8 nm. Scale bar = 20 nm.
Reproduced with permission from [65]. Copyright American Chemical Society, 2012.
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The third method is aerosol pyrolysis, which is very innovative, highly productive and usually
carried out in a flame environment [50,67]. Flame aerosol technology is widely used in large-scale
production of carbon black and ceramic products such as fumed silica and titania [68], as well as zinc
oxide and alumina powders [69,70]. Professor Pratsinis’ group has done a lot of research and made
outstanding contributions in this field [69,71]. He developed the flame spray pyrolysis process for
the aerosol synthesis of films and particles up to 5 kg/h in his labs. He has shown experimentally
how to closely control aerosol particle size, crystallinity and morphology, from perfectly spherical
to highly ramified fractal-like structures. Recently, his group published an article about the impact
of humidity on silica nanoparticle agglomerate morphology and size distribution [72]. He studied
scalable flame synthesis of SiO2 nanowires [68]. For example, Teleki et al. synthesized the IONPs by
flame spray pyrolysis of acetylacetone iron in a xylene/acetonitrile solution, then in situ coated the
resulting aerosol with SiO2 by oxidation of swirling hexamethlydisiloxane vapor. They eventually
obtained hermetically-coated superparamagnetic Fe2O3 NPs with a relatively low SiO2 content [73].
Li et al. reported double-faced γ-Fe2O3@SiO2 nanohybrids with a “Janus” structure synthesized by
a flame aerosol route. The aerosol route steps are illustrated in Scheme 1 [67].
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The fourth method is based on sodium silicate solution, which is used as a silica precursor [74,75].
Setyawan et al. reported a strategy for synthesizing silica-coated magnetite NPs by the one-step
electrochemical method. In the experimental system, sodium silicate serves as a dispersant and
supporting electrolyte which helps to improve the conductivity of the solution. The anode and cathode
of a chemical cell consists of iron and iron base, respectively [74,76]. Fajaroh et al. found that the
concentration of sodium silicate solution has a positive and negative correlation with the crystallinity
and surface area of the NPs, respectively [77].

Finally, a large number of reactive silanol groups present on the silica layer can be used for further
surface functionalization [78]. (3-aminopropyl)triethoxysilane (APTES), (3-Mercaptopropyl)triMethoxysilane
(MPTS), Triethoxy vinyl silanes (VTES), aminosilane are the most commonly used binding ligands.
Functionalized Fe3O4@SiO2 MNPs have great applications in biomedicine and environmental
fields [79–81].

2.1.2. Carbon

Carbon-based materials as an inorganic compound are also used in surface coating of IONPs,
to enhance their stability, biocompatibility and disperstivity. The Fe3O4@C nanocomposites have
various applications, such as use as catalysts, electrode supercapacitors, microwave absorbers, anode
materials for lithium-ion batteries, and so on [82–86].

Many research groups have shown that Fe3O4@C nanocomposites are the superior materials
for supercapacitors [87]. For instance, Liu et al. synthesized carbon-coated Fe3O4 nanorods via
hydrothermal reactions followed by a carbon-thermal reduction process, and demonstrated that
Fe3O4/C nanorods exhibit higher specific capacitance as well as better cycle performance to that of
pure Fe3O4. Generally this phenomenon arises due to the presence of a carbon layer that makes the
particles intact and increases the electronic conductivity of the electrodes [88]. Sinan et al. synthesized
Fe3O4 NPs by a co-precipitation method first and then successfully prepared layered porous Fe3O4/C
nanocomposites with high specific surface area by hydrothermal carbonization and the MgO template
method. This showed that Fe3O4/C nanocomposites are very promising for applications as a negative
material for asymmetric supercapacitors [89]. Research shows that the presence of activated carbon
with a three-dimensional (3D) network structure can enhance the conductivity and cycling stability
of Fe3O4 [90].

Fe3O4@N-doped carbon NPs have great importance in lithium-ion batteries as an efficient
oxygen-reduction electrocatalyst [91,92]. Number of materials can be used as N and C sources.
For example, Yang et al. fabricated yolk–shell Fe3O4@Void@C–N NPs by using melamine formaldehyde
resin [93]. Similarly, Yang et al. prepared Fe3O4@void@N-doped carbon with a yolk–shell structure
where C and N are provided by ionic liquids. The introduction of nitrogen helps to enhance the lithium
ion storage capacity, and the void acts as a buffer during the charging and discharging process [94].
Fe3O4@N-doped carbon NPs can also be used as an oxygen-reduction electrocatalyst [95,96].

Carbon nanotubes are one-dimensional nanomaterials made by curling one or more layers of
graphite sheets in a certain way. Carbon nanotubes are widely fabricated as nanocomposites because of
their metal-semiconductor characteristics, high mechanical strength, excellent adsorption capacity and
microwave absorption capacity [97–100]. Guo et al. synthesized Fe3O4/CNTs nanocomposites with
particle size of 80 nm via the hydrothermal method by using Sn(OH)6

2− as an inorganic dispersant.
After 50 cycles, the Fe3O4/CNTs nanocomposites can provide reversible discharge capacity of
700 mAh/g at the 50 mA/g current density [101]. Zhu et al. synthesized Fe3O4/CNTs nanocomposites
with 3D network by anchoring porous Fe3O4 spheres onto carbon nanotubes. This nanocomposite
exhibits a remarkable microwave absorption property [102]. Zhang et al. prepared Fe3O4/CNTs
nanocomposites by thermal decomposition of polyols, and conjugated these with hexanediamine
and used them as a dual-drug carrier for the co-delivery of epirubicin hydrochloride and paclitaxel.
Their designed Fe3O4/CNTs nanocomposites have potential applications in cancer treatment as
a combined chemotherapy approach [103].



Nanomaterials 2018, 8, 810 7 of 27

Fe3O4/graphene nanocomposites have drawn much attention in recent years [50,104]. Their superior
properties have seen them widely applied in lithium batteries, ion removal, dye removal, catalysts,
sensors, supercapacitor electrodes, microwave absorption, MRI, etc. [105–112]. Kumar et al. synthesized
a 3D hybrid material composed of Fe3O4 NPs and reduced graphene oxide (rGO) nanosheets,
in which Fe3O4 nanoparticles were introduced into the network of rGO nanosheets, and the formation
mechanism is shown in Scheme 2. The specific capacitance of this hybrid material is determined by the
surface morphology and interconnection of the two components [113]. A novel sandwich-structured
graphene-Fe3O4 composites (graphene-Fe3O4@carbon) were prepared by Zhao et al., with higher
reversible capacity, better cycling/rate performance than carbon-coated Fe3O4. The carbon layer serves
as a buffer, while avoiding the aggregation of nanoparticles [114].
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2.1.3. Metal

Surface modification of IONPS with metallic elements can provide an inert layer, which typically
exhibit a core-shell, core-satellite or dumbbell structure. Metallic coatings facilitate further functionalization
of the IONPS to improve stability and compatibility [115].

Gold is the most common noble metal element used for surface coating [116–119]. In general,
direct and indirect method are the two routes to achieve the gold shell coating on the surface of the
magnetic IONPs, as shown in Scheme 3 [120].
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A direct method is to directly form a gold shell onto the surface of IONPs via reduction of Au3
+

by using reducing agents. Direct gold coating can be carried out in aqueous or organic solution.
In the aqueous phase, the sodium citrate and sodium borohydride are the frequently used reducing
agents [116,121]. Ghorbani et al. synthesized the citrate-protected Fe3O4/Au NPs by the method of Lo.
First, HAuCl4 was added to deionized water and heated to boiling. After that, the prepared Fe3O4

nanoparticle solution was added, followed by the insertion of sodium citrate under stirring. Finally,
the mixture was boiled under stirring for 5 min and in doing so the solution color changed from
brown to burgundy [122,123]. Yan et al. synthesized the carboxylate-functionalized Fe3O4 NPs by
a one-step method and subsequently mixed it with HAuCl4 aquatic solution. Then added NaBH4 to the
mixed solution to directly reduce the HAuCl4. Inspired by the experimental results, they put forward
a mechanism to synthesize bifunctional Fe3O4@Au nanocomposites, as shown in Scheme 4. Carboxylic
acid groups adsorbed AuCl4 under acidic condition, and then NaBH4 was added to form zero-valent
Au which attached to Fe3O4 NPs through the chemistry of the carboxylate group, and gradually the
gold shell was formed around Fe3O4 NPs [124]. Hydroxylamine hydrochloride is another reducing
agent used [125].
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In the organic synthesis route, the oleic acid and oleylamine are usually present as a capping
agent in the solution. Freitas et al. used 1-hexadecanol to reduce Fe(acac)3 for amine-functionalized
Fe3O4 NPs in the presence of oleic acid and oleylamine. Oleylamine also works as a reducing agent.
These amine groups can attach Au3+. Then, they synthesized core-shell Fe3O4@Au MNPs in three
Fe3O4:HAuCl4 molar ratios (1:1; 1:4; 1:7). Their results show that the gold shell formed in a ratio
of 1:1 cannot completely encase the Fe3O4 core, while Fe3O4@Au obtained in a 1:4 ratio has the
best performance [126]. Li and co-workers used the FeO(OH) and HAuCl4 as iron precursor and
gold precursor, respectively. With the presence of oleic acid, octahedron-like Au/Fe3O4 NPs were
synthesized by reducing FeO(OH) and HAuCl4 in 1-octadecene solvent. The size of the synthesized
particles is controlled by the proportion of the starting materials [127].

An indirect method is used to synthesize Fe3O4@Au NPs by forming a “glue” layer between
the IONPs core and the gold shell. The layer design and preparation are crucial during the synthesis
as they can affect the properties of the Fe3O4@Au NPs [128]. The “glue” layer should be capable of
enhancing the Fe3O4 MNPs stability, and also have metal binding groups to attach gold seeds to
promote the formation of gold shell. Materials used as the “glue” layer are often polymers, silica and
carbon [129–132]. Wang et al. used the mercapto-silica shell as the “glue” layer combining the Fe3O4

core with the Au shell and obtained the durian-like multifunctional Fe3O4@Au nanocomposites [129].
Li et al. synthesized amino-functionalized Fe3O4@SiO2 NPs firstly and then reduced HAuCl4 by
a seed growth method to obtain Fe3O4@Au NPs [130]. Polyphosphazene (PZS) as the “glue” layer has
been studied. The steps involved in the preparation are shown in the Scheme 5. These synthesized
Fe3O4@PZS@Au NPs has multiple functions for MRI and photothermal therapy, as well as the potential
to be used as a biosensor and catalyst [131]. Ramos-Tejada et al. developed a new approach to synthesize
Fe3O4/Au NPs. The first step involved mixing FeSO4 and distilled water, by adding KNO3 and NaOH
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in an oxygen-free environment at 90 ◦C to synthesize Fe3O4 core. The second step involved mixing
MNP suspension with polyethylenimine (PEI) solution, by applying sonication to achieve a first PEI
layer; subsequently a second poly(styrenesulfonate) (PSS) layer and a third PEI layer were added
using a layer-by-layer techniques. The third step involved using NaBH4 to reduce chloroauric acid to
obtain negatively charged gold NPs. In a fourth step, the previously obtained polymer-coated NPs
were dispersed in water until the particle concentration was 0.25 mg/mL, by adding the resulting
suspension dropwise to the gold seed solution, after sonication and subsequent further treatment,
Fe3O4/Au NPs were finally obtained [133].

Silver is another noble metal used for surface coating. Silver coated magnetic (Fe3O4@Ag) NPs
have appealing applications in the field of biomedicine [134,135]. Chen et al. prepared the Ag@Fe3O4

nanowire by the solvothermal method and the showed that these NPs possessed peroxidase-like
catalyst activity, which makes them suitable candidates for biomedicine [136]. Gao et al.’s experiments
on mice demonstrated that Fe3O4@Ag hybrid NPs are effective computed tomography (CT) contrast
agents, and thus can be used for in vivo CT imaging [137]. Du et al. reported a portable SERS
(surface enhanced Raman scattering) sensor based on Fe3O4@Ag core-shell NPs to distinguish
arsenic species [138].

On the other hand, silver-coated magnetic nanocomposites are considered as promising
multifunctional materials as well because they have unique antibacterial characteristics [139–142].
However, hybrid Fe3O4@C@Ag are the dominant class of nanocomposites owing to their widespread
applications in different research areas [143–145]. Xia et al. synthesized Fe3O4@C@Ag nanocomposites
and concluded that by introducing a carbon layer, their synthesized nanocomposites have better
antibacterial activity compared to Fe3O4@Ag. Thus the hybrid Fe3O4@C@Ag can be used as catalysts,
antibacterial agents, adsorbents and bi-functional magneto-optical probes [146]. Chen et al. reported
a multifunctional system based on Fe3O4@C@Ag hybrid NPs that can be used as a bi-functional
probe for MRI and two-photon fluorescence (TPF) imaging techniques as well as near-infrared light
responsive drug delivery [147].
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2.1.4. Metal Oxides/Sulfides

Distinctive physicochemical properties of metal oxides and metal sulfides are of great interest
in the functionalization of IONPs [50,148]. Generally, by considering the structure, the metal oxides
are divided into six main categories such as M2O (Cu2O, Ag2O etc.), MO (ZnO, MgO, CoO, ZnS,
CdS etc.), M2O3 (Al2O3, Y2O3, Bi2S3 etc.), MO2 (TiO2, SnO2 etc.), M2O5 (V2O5 etc.) and MO3

(WO3, MoO3 etc.). Saffari prepared superparamagnetic Fe3O4-ZnO nanocomposites with 10% ZnO
content by adopting the sonochemical method and reported that Fe3O4/ZnO nanocomposite has
excellent photocatalytic properties. Through the degradation analysis of eight kinds of organic dyes,
it was found that Fe3O4/ZnO nanocomposite has suitable photocatalytic properties. Moreover,
the Fe3O4@ZnO core/shell NPs have enhanced photocatalytic performance compared to bare
ZnO NPs [149]. Wang’s group prepared the reusable Fe3O4@ZnO core/shell NPs and studied
their photo-catalytic characteristics. According to the photocatalytic reaction mechanism of the
Fe3O4@ZnO (Scheme 6), they attributed this phenomenon to the higher surface oxygen vacancy
concentration and the inhibition of photo-induced electron-hole pairs recombination by Fe3+ ions [150].
Recently, Shekofteh-Gohari et al. fabricated a new type of magnetically separable Fe3O4/ZnO/CoWO4

nanocomposites with a different ratio of CoWO4. When the ratio of CoWO4 is 30%, the nanocomposites
showed excellent photocatalytic activity. In terms of the degradation rate constant of rhodamine B,
the optimum nanocomposites were 24 and 5 times higher than in the absence of laser source or
the untreated samples of Fe3O4/ZnO and Fe3O4/CoWO4 samples, respectively [151]. In addition,
Fe3O4/Al2O3 NPs can be used as adsorbents to remove ions in water. Doping with sulfate can be
used to remove F- in drinking water. A fluoride adsorption process was rapid in the beginning while
slower as the passage of time; nearly 90% adsorption was achieved within 20 min [152]. Similarly,
in another study, the Fe3O4@TiO2 core-shell magnetic composites were used as sorbents to efficiently
sorb uranium (VI) [153]. Moreover, Liu et al. found that the Fe3O4@TiO2 with a yolk-shell structure
has enhanced microwave absorption performance than that with a core-shell structure [154].
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Generally, the combination of hard and soft magnetics will lead to many new applications [155].
Hard-soft magnetic composites are widely used in permanent magnets, data storage systems,
image contrast agents and microwave devices [156]. In these bi-magnetic nanostructures, the size of the
soft phase often determines the magnetization switch behavior. A typical example is the combination
of hard magnetic CoFe2O4 and soft magnetic Fe3O4 [157,158]. Zeng et al. reported that composites
(CoFe2O4/Fe3O4) have larger remanence (Mr/Ms), coercivity (Hc) and maximum energy product
(BH)max than pure ferrite (CoFe2O4) due to exchange coupling [156,159].
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2.2. Surface Coating with Organic Materials

2.2.1. Polymers

In recent years, polymer-coated IONPs have drawn much more attention owing to their widespread
applications in various research areas including nanomedicine. In situ and post-annealing coating are
two common approaches to synthesize polymer coated IONPs [78]. The former is coating the polymer
onto the surface of IONPs during the synthesis process [160]. The latter is further polymer functionalized
on the basis of previously prepared IONPs. Todate, dextran, chitosan, alginate, polyethylene glycol (PEG),
polyvinyl alcohol (PVA), polydopamine (PDA), polysaccharide, polyethylenimine, polyvinylpyrrolidone
(PVP), poly acid polyetherimide, and polyamidoamine (PAMAM) are the most commonly used
polymers for the surface modification of IONPs (Table 3) [161–171].

Table 3. Polymers used for coating IONPs and their applications.

Polymer Source/Production/Preparation Applications

Polyethylene glycol
(PEG)

Produced by the interaction of ethylene oxide
with water, ethylene glycol, or ethylene glycol

oligomers

Magnetic resonance imaging
(MRI) contrast agents for
in vivo cancer imaging,

biosensors

Polyvinylvinyl
pyrrolidone (PVP) Made from the monomer N-vinylpyrrolidone

Targeted killing of breast
cancer cells, MRI contrast

agents

Polyethylenimine
(PEI)

Branched PEI: by the ring opening
polymerization of aziridine

Linear PEI: by post-modification of other
polymers like poly(2-oxazolines) or

N-substituted polyaziridines

Cancer cell separation,
hyperthermia

Polyacrylic acids Polymerization of acrylic acid Anticancer drug delivery

Polyvinyl alcohol
(PVA)

Polymerization of vinyl acetate,
then saponification of polyvinyl acetate

In vivo imaging, drug delivery,
biosensor

Polydopamine (PDA) Formed from dopamine at slightly basic pH Catalyst and adsorbent,
biosensors

Dextran Produced by lactic acid bacteria In vivo cancer drug carriers,
MRI contrast agents

Chitosan Extracted from shellfish or fungi cell wall Hyperthermia, tissue
engineering

Starch Produced by green plants Contrasting and imaging

Alginate Extracted from brown algae Drug-targeted controlled
release, adsorbent

Polyphenol Found in some common plant foods like cocoa
beans, tea and vegetables Magnetic hyperthermia

Flavonoids Found in some common plant foods like fruits,
vegetables, beans and tea

Cell imaging, nano-carrier;
nano-drug

Amino acids In nature
Adsorbent, radio-labeling,

biosensors and cancer
detection

Lipids In nature, animal food and nuts Gene therapy, dual-modal
imaging

Dextran is a polysaccharide with excellent biocompatibility as well as good water solubility and its
coating onto the IONPs has an impact on their physicochemical properties. Shaterabadi et al. found that
dextran coating reduces the saturation magnetization of the IONPs which is mainly due to the presence



Nanomaterials 2018, 8, 810 12 of 27

of dextran non-magnetic shell. Moreover, the dextran coating also reduces the cytotoxicity of the IONPs,
therefore making the nanocarrier excellent while enhancing their biocompatibility [160]. In addition,
Hauser et al. found that synthetic methods, the amount of dextran can greatly affect the properties of
the IONPs such as size, stability, crystallinity and magnetism [172]. Owing to its biosafety, bioactivity,
biocompatibility, low cytotoxicity, dextran-coated IONPs are considered promising candidates for
biomedical applications [173]. Unterweger et al. developed a novel drug delivery system by coating
IONPs with dextran and cisplatin hyaluronic acid. After testing in the Jurkat cell line and the PC-3
cell line, the drug-free IONPs showed good biocompatibility and no cytotoxic effects, whereas the
IONPs incorporated with cisplatin were able to induce apoptosis [174]. Osborne et al. synthesized
dextran-coated IONPs which can be used as clinical MRI contrast agents in two-step and one-step
procedures with the aid of microwaves. This method is simple, versatile, cost effective and repeatable.
Therefore, the complexity of manufacturing processes is greatly resolved which makes the commercial
production of surface modified IONPs possible [161].

PEG is another frequently-used water-soluble polymer. In the past, several methods and
approaches have been reported to synthesize PEG-coated IONPs for the purpose of biomedical
applications [164,175–177]. Liu et al. developed a simple strategy in which rich carboxyl groups were
introduced through the multiple coordination between poly(acrylic acid) (PAA) and IONPs, then α,
ω-diamino PEG was attached to IONPs by amidation of carboxyl groups. In vitro experiments showed
that these surface-decorated IONPs significantly attenuated macrophage phagocytosis, as described by
Lee’s group [178,179]. Moreover, it is also reported PEG-coated Fe3O4 NPs can prevent the reduction
of cytochrome C [175]. Anbarasu et al. obtained Fe3O4 with a cubic inverse spinel structure by the
coprecipitation method and found that both the average crystallite size and physical size of the NPs
were decreased by increasing the amount of PEG [164]. Another synthesizing approach has been
reported to prepare superparamagnetic IONPs with tunable properties using PEG containing PVP or
PEI. An illustration of the synthesis of PEG/PVP-coated superparamagnetic iron oxide nanoparticles
(SPIONs) is illustrated in Scheme 7. The prepared superparamagnetic IONPs had a hydrodynamic
size less than 40 nm, with neutral or positive zeta potentials, showed higher dispersion stability than
those IONPs coated with PEG alone [180].
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Chitosan is an alkaline hydrophilic polymer whose low toxicity, good biocompatibility and
biodegradability is confirmed in reported work [162,181,182]. Chitosan-coated IONPs are usually further
functionalized with other polymers such as PEG and PAA [183,184]. For instance, Yan et al. prepared
chitosan-PAA coated magnetic composite microspheres and found that the addition of PAA significantly
increased the adsorption capacity of Cu (II) [183]. Qu et al. loaded 10-hydroxycamptothecin (HCPT)
onto prepared PEG-chitosan-Fe3O4 nanocomposites. The synthesis steps of PEG-chitosan-Fe3O4

nanocomposites are as follows. The chitosan-Fe3O4 was first dispersed in phosphate buffered
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saline. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride was then added to activate
the carboxylic acid moiety of the subsequently added carboxymethylated PEG (CM-PEG). Next,
the reaction mixture was stirred and cultured at room temperature for 48 h. Thereafter, unreacted
CM-PEG was removed by centrifugation. Finally, PEG-chitosan-Fe3O4 was washed three times with
deionized water, collected by magnetic separation and lyophilized. Compared to the original HCPT
powder, the HCPT-loaded nanocomposites showed higher antitumor activity against HepG2 cells.
Besides, there nanocomposites can also be used for targeted hyperthermia [184]. However, the use
of pure chitosan is limited due to its low solubility in acidic averments, low mechanical and thermal
stability. Therefore, the researchers are trying to use the chitosan derivatives in order to overcome the
aforementioned drawbacks of pure chitosan. N, O-carboxymethyl chitosan (CC) as a kind of chitosan
carboxylation product has a good application prospect in membrane-forming. The membrane modified
with CC-Fe3O4 NPs has improved hydrophilicity and anti-fouling properties [185].

Other polymers like polydopamine, polysaccharides, polylactic acid, polyacrylic acid, alginate,
polyvinylidene fluoride, PEI, PVP, and PAMAM are also commonly used in surface conjugation of
IONPs [186–188]. Recently, a new method based on cathodic electrochemical deposition (CED) and in
situ coating was developed to prepare polysaccharide-coated Fe3O4 NPs [167]. PEI-coated IONPs can
be further carboxylated or acetylated to enhance their biocompatibility [189]. PDA-coated Fe3O4 NPs
can be used to detect small molecule pollutants [166]. Bian et al. formed Fe3O4@PDA-Pt composite by
depositing Pt dendrimer-like NPs in situ on Fe3O4@PDA core-shell nanocomposites. This composite
exhibited high catalytic performance for methylene blue, 4-nitrophenol and its derivative. It is worth
mentioning that as a catalyst, it has good reusability and high stability [190]. Dimethyl sulfoxide
(DMSO) can be used as a stabilizer to synthesize IONPs [191]. Yan et al. developed a novel potential
MRI contrast agent by in situ synthesis of SPIO with immobilized SI-ATRP initiator and polymer
analogs of DMSO. DMSO-based polymer acts to enhance the interaction between the MNPs and the
water protons.

2.2.2. Small Molecules and Surfactants

Functionalized NPs can be divided into three main types: lipophilic, hydrophilic and amphiphilic.
This form of division is based on different surface characteristics of such surface-coated NPs [155].
Inorganic compounds such as silane as a coupling agents can be used to bind the different functional
groups (e.g., –OH, –COOH, –NH2, –SH) onto the surface of bare MNPs and further their conjugation
with different biomolecules, metal ions and polymers in order to make these MNPs suitable for various
applications in diverse research areas [50]. The mechanism of IONPs modified by silane agents is shown
in Scheme 8 [155]. Briefly, 3-aminopropyltriethyloxysilane (APTES), mercaptopropyltriethoxysilane
(MPTES), and triethoxyvinylsilane (VTES) are the common silane coupling agents used in the
surface modification of IONPs. Wang et al. adopted the sonochemical method to prepare the
APTES-coated Fe3O4 NPs with diameter 8.4 ± 2.1 nm and concluded that the synthesized NPs exhibited
superparamagnetism and good dispersibility. Magneto-rheological fluids prepared on the basis of these
IONPs have typical magneto-rheological properties [192]. Li et al. developed acetylated APTES-coated
Fe3O4 NPs based on the hydrothermal method. Based on their analysis results, they concluded that
acetylation can improve the biocompatibility of NPs. The novel nanoparticle can be used for in vitro
and in vivo MRI [193]. In addition, APTES functionalized magnetic iron oxide is also applied in the
extraction of metal ions. In a study conducted by Mahmoud, it is reported that APTES functionalized
Fe3O4 are capable of adsorbing Pb2+, Cu2+, Cd2+ and Hg2+ from aqueous solutions [194].
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Lipophilic substances such as oleic acid are typically referred to as "fat-loving" or "fat-liking"
and are of great interest for researchers to prepare lipophilic IONPs with very good dissolvability in
polar liquids such as oil [195,196]. Additionally, oleic acid can form a dense protective monolayer that
binds firmly to the NPs surface to stabilize the NPs [197]. Recently, the high degree of monodispersity,
excellent biocompatibility, low toxicity, high colloidal stability and hydrophobicity of different types
of IONPs having surface conjugation with oleic acid have been reported by many research groups.
For example, Marinca et al. introduced a new synthetic route to prepare oleic acid-coated magnetite
NPs. In the first step, iron and hematite were mixed and then heated. In the second step, the resulting
magnetite powder and oleic acid are wet-mechanically milled. In their study, they did a comparison
between the dry milling and wet milling NPs. Based on their experiment they concluded that the
magnetite particles obtained by wet milling have a higher magnetization [198]. Velusamy et al. found
that the conjugation of oleic acid onto the surface of IONPs can significantly reduce the growth and
metabolism of biofilms and thus it can be used to inhibit the biofilm formation onto the surface
of biomaterials [199].

However, in a biomedical scenario, the use of lipophilic substances coated IONPs is a not a good
choice and thus the practical use of these NPs is greatly limited. To enhance the practical applications
of IONPs, the research is focusing on synthesizing hydrophilic or water-soluble IONPs. Different
organic molecules such as amino acids [200], citric acid [201], vitamins [202,203], cyclodextrin [204],
dopamine [205,206], lauric acid [207], dimercaptosuccinic acid (DMSA) [208,209] are often used to
modify the surface of IONPs by adopting different synthesis approaches so that the water solubility
of IONPs can be greatly enhanced. One approach is to add these small organic molecules directly
during the synthesis procedure. Jin et al. modified Fe3O4 NPs with arginine, lysine and poly-L-lysine,
respectively. They found that these samples have high bacterial capture efficiency in the pH range
4–10 [200]. Recently, Karimzadeh et al. developed a novel method for the synthesis of amino acid
modified Fe3O4 NPs based on CED [210]. Sahoo et al. have described that citric acid can adsorb
on the surface of magnetite NPs through the coordination of one or two carboxylate functional
groups [211]. Durdureanu-Angheluta et al. adopted the liquid laser ablation technique to synthesize
citric acid-coated IONPs having spherical nature with an average size of about 60 nm. Their synthesized
NPs have a core–shell structure and contain an outer layer of hydrophilic material of citric acid,
which helps the NPs to stabilize in aqueous dispersions [212]. On the other hand, a cheap hydrophilic
substance with lipophilic cavities, known as β-cyclodextrin is also used in the surface decoration of
IONPs. In what follows, Li et al. prepared β-cyclodextrin modified Fe3O4 NPs by N2 plasma-induced
grafting. This composite is suitable for the removal of organic and inorganic contaminants [204]. A few
research groups also used the ascorbic acid (vitamin C) owing to their water solubility and anti-oxidant
property, for surface modification of IONPs and concluded that these surface decorated NPs can be
used as MRI contrast agents [203].
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The hydrophobic nature of the IONPs can be changed to hydrophilic by adopting three different
approaches, for example, amphiphilic polymer coatings [197], ligand exchange [213] and surface
fatty acid oxidation [214]. Among them, ligand exchange involves an excess of ligand molecules,
and the hydrophobic groups on the surface of the NPs are displaced by the ligand exchange reaction.
Patil et al. further functionalized the oleic acid-coated Fe3O4 NPs with betaine-HCl (BTH) to create
a new hydrophilic shell that ultimately resulted in the transfer from non-aqueous phase to aqueous
phase. IONPs can also be transferred to aqueous solutions by oxidizing the oleic acid layer on
the surface of NPs [215]. Cai et al. proposed a universal and efficient method for the large-scale
transfer of hydrophobic Fe3O4 NPs to the aqueous phase [216]. This method is based on the oxidative
decomposition of oleic acid in a reverse micelle system assisted by poly(vinylpyrrolidone) (PVP) [217].
The phase transfer process is as follows. Firstly, the prepared hydrophobic Fe3O4 NPs were dispersed
in cyclohexane, and then tert-butanol, K2CO3, aqueous PVP solution and oxidizing agent were added
and stirred at room temperature for 2 h. Finally, the NPs obtained were washed with ethanol and
water for three times. The resulting NPs have superior features, like ideal colloidal stability, excellent
biocompatibility, low cytotoxicity. Moreover, this phase transfer strategy also applies to other oleic
acid-coated NPs [216].

3. Conclusions

This review summarizes the surface modification of IONPs by different organic molecules
including surfactants as well as polymers and inorganic materials that include silicon groups, carbon,
metal [218] and metal oxides/sulfides. Surface coating can improve the stability, biocompatibility,
and even the solubility of IONPs, which greatly expands the scope of application of IONPs. Different
synthesis methods, reaction mechanisms, performance, improvement and potential applications were
also discussed. Important research findings in recent years are cited in this review, in the hope that
this provides the readers a necessary background with logically coherent arguments about the surface
modification of IONPs.

At present, although some progress has been made in the research on the modification of IONPs,
several limitations still exist. Firstly, it is still a challenge to absolutely control the shape and size
distribution of magnetic IONPs. Secondly, the issue of how to maintain the long-term stability of
functionalized IONPs also needs to be addressed [50] Finally, most of the applications, especially
those related to the clinical aspects, still remain in the theoretical stage and there is a long way to
go before they can be applied in practice. Thus, much effort needs to be devoted to optimizing
synthetic routes to obtain better IONPs. At the same time, it is essential to develop accessible, efficient,
stable and environmentally friendly surface modification materials. Future research will focus on
the multifunctional MNPs needed in clinical practice [57] In the future, with the improvement of
surface modification technology and the development of surface modification materials, more and
more multifunctional NPs will be developed and put into practical application.
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