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Abstract: Epitopes are short amino acid sequences that define the antigen signature to which an
antibody or T cell receptor binds. In light of the current pandemic, epitope analysis and prediction
are paramount to improving serological testing and developing vaccines. In this paper, known
epitope sequences from SARS-CoV, SARS-CoV-2, and other Coronaviridae were leveraged to identify
additional antigen regions in 62K SARS-CoV-2 genomes. Additionally, we present epitope distribution
across SARS-CoV-2 genomes, locate the most commonly found epitopes, and discuss where epitopes
are located on proteins and how epitopes can be grouped into classes. The mutation density of
different protein regions is presented using a big data approach. It was observed that there are
112 B cell and 279 T cell conserved epitopes between SARS-CoV-2 and SARS-CoV, with more diverse
sequences found in Nucleoprotein and Spike glycoprotein.

Keywords: SARS-CoV-2; epitope; computational biology; mutational analysis; immunology

1. Introduction

Since the first case of COVID-19 was reported in December 2019, the prevalence of
SARS-CoV-2 has grown at an incredible pace, resulting in a worldwide pandemic. The scale
and rate of spread of the disease continue to grow. As a consequence, humans have had to
drastically change their lifestyle, and scientists and clinicians have been presented with
great challenges to address such a paramount public health issue. The research needs pri-
marily include expansion of our fundamental knowledge about SARS-CoV-2 in the context of
other genomically similar Coronaviridae, analyzing individual and population level immune
responses, to model the disease spread and to improve and support vaccine development.

Adaptive immunity comprises humoral and cell-mediated immunity and provides
the major mechanisms for individuals to recognize and mitigate foreign agents or antigens.
Humoral immunity is driven by B cell lymphocytes and occurs when foreign materials,
i.e., antigens from an extratracellular agent such as bacteria or virus, occurs in the body.
After introduction to an antigen, B cells differentiate, leading to the creation of memory and
effector B cells. Cell-mediated immunity, however, does not depend on antibodies for its
adaptive immunity and is instead controlled by mature T cells, macrophages, and cytokines
functioning in response to an antigen.

An epitope is a small site on an antigen where a complementary antibody or T cell
receptor can specifically bind. The corresponding antigens vary between 8 and 17 amino
acids in length, and each epitope is defined by a unique sequence of amino acids. Epitopes
are broadly classified into two structural categories: linear epitopes that are continuous
amino acid sequences, and non-linear or conformational epitopes that are discontinuous
peptides on the unfolded sequence. Non-linear epitopes may only be recognized by the
immune system depending on neighboring loci. In this investigation, we focus on linear
epitopes. There are two types of epitopes: T cell epitopes and B cell epitopes. B cell epitopes
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are solvent-exposed portions of peptides on the surface of an antigen that bind to secreted
and cell-bound immunoglobulins, i.e., the ones to which antibodies bind [1].

T cell epitopes are further separated into Class I (usually 8–11 amino acids long)
and Class II based on their presentation by the major histocompatibility complex (MHC)
molecule for recognition by two distinct subsets of T cells: cytotoxic CD8+ and helper CD4+
T cells, respectively [1]. Additionally, their peptide editor mechanism differs: MHC class
I uses tapasin, whereas MHC class II uses human leukocyte antigen DM (HLA-DM) [2].
There are also subtle conformational differences in peptide loading and exchange [2]. Differ-
entiating between MHC classes has proven difficult, and often computational methods are
limited in their accuracy [3], necessitating a focus on sequence homology when available.
Epitope-based vaccines contain isolated B cell or T cell epitopes and typically contain
multiple distinct epitopes in order to increase the effectiveness of the vaccine against viral
evolution. Epitope-based vaccines must be developed with considerations for antigenicity,
solvent accessibility, allergenicity, and toxicity, as shown in Li et al. [4].

With regard to linear epitopes, there are several tools that aim to predict epitope
sequence and structure using a multitude of machine learning (ML) methods, which
achieve varying levels of accuracy. EpitopeVec [5] predicts linear B cell epitopes using
deep protein sequence embeddings and achieves greater than 80% accuracy in 5-fold
cross-validation experiments. BepiPred-2.0 [6] leverages a random forest algorithm trained
on epitopes annotated from antibody–antigen protein structures and is also leveraged in
Griffoni et al. [7]. BepiPred-2.0 [6] has been accepted as state of the art in the community;
however, it was observed to decrease to 60% accuracy when evaluated against testing data
it had not been trained against [5]. EpiBuilder [8] expands on the results from BepiPred-2.0
to provide epitope assembly, classification, and search in a preoteome-wide processing
approach. ABCPred [9] uses a feed-forward (FNN) and recurrent neural network (RNN) to
predict B cell epitope regions in an antigen sequence with an overall prediction accuracy
of approximately 65%. SVMTrip [10] is named as such because it leverages a support
vector machine to combine tri-peptide similarity and propensity scores to detect linear
B cell epitopes with an area under the curve (AUC) of 0.702. EpiDope [11] uses a deep
neural network to predict B cell epitope regions on individual protein sequences and was
trained from 25 K experimentally confirmed epitope and non-epitope regions. In our work,
we provide an alternative to these ML-based methods for BCE (B cell epitope) prediction
that instead leverages sequence homology and aims to provide increased explainability of
epitope detection and evolution, which can be particularly relevant in the case of emerging
infectious diseases such as SARS-CoV-2, where black box models may be limited. For T cell
prediction, we use sequence homology approaches; however, to predict MHC class, we use
netMHC4.0 [12] on our set of epitopes.

In our work, we focus on Nucleoprotein and Spike glycoprotein, as they have been
identified as the main proteins of interest in SARS-CoV-2 [4,7,13–16]. The structural Nucle-
oprotein (N) is the main virion component. It encapsulates the negative-stranded RNA.
The viral genomics RNA and the N protein assemble into the ribo-nucleoprotein, which
interacts with the membrane (M) protein and is packaged into virions [13]. The N
protein is also involved in other viral functions, including mRNA transcription, replica-
tion [17,18], and immune regulation [14,19,20]. For other RNA viruses, including influenza,
N sequence is often used for species identification [21]. These N proteins have two function-
ally distinct conserved structural domains responsible for RNA binding: the N-terminal
RNA-binding domain (NTD) and the C-terminal domain (CTD), with the latter also in-
volved in dimerization [22]. These conserved domains are connected by an intrinsically
disordered region (IDR) called linker and flanked by intrinsically disordered regions (IDRs).
Due to the large disordered regions, the whole N protein structure has not been resolved
yet, but the N-NTD and N-CTD domains have been solved at high resolution for different
human-infecting Coronaviridae [23–27], including SARS-CoV-2 [28–31].

The Spike glycoprotein (S) is important, as it plays a vital role in binding, fusion,
and entry into the host cell [15,16,32–37]. The S protein is a homotrimeric class I fusion
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protein, and each protomer comprises two functional subunits, S1 and S2. The S protein
is found on the surface of the viral membrane in the metastable prefusion configuration
and undergoes major conformational changes to allow membrane fusion with the host
cell [32–34,36–39]. This process occurs after the receptor binding domain (RBD) in S1 binds
to the host cell receptor. The RBD is flanked by the NTD and the CTD (CTD1, CTD2) [32].
There are two cleavage sites, and one of them separates S1 from S2 fragment. During cell
entry, S1 dissociates and S2 refolds into a stable post-fusion state [40–42]. S2 comprises the
fusion peptide (FP), the FP proximal region (FPPR), the heptad repeat 1 (HR1), the central
helix (CH), the connector domain (CD), the heptad repeat 2 (HR2), a transmembrane
domain (TM), and the cytoplasmic tail (CT). Comparison between pre- and post-fusion
structures suggests that HR1 transitioning movements allow insertion of the FP into the
host cell membrane and folding back of HR2 [32]. In the postfusion structure, HR1 and CH
form a ≈ 180 Å extended, three-stranded coiled coil.

There were two primary motivations for studying and predicting epitopes in SARS-
CoV-2 by leveraging known epitopes of other Coronaviridae. First, understanding the
homology of epitope sequences between different related viruses could provide valuable
insight for developing better epidemiological models that could account for adaptive
immune response developed from exposure to similar pathogens. Second, the adaptive
immune system of two individuals infected by the same organism may learn different
peptide sequences and, therefore, produce antibodies for different epitopes. Conversely,
as some protein domains are common between organisms, an adaptive immune response
developed on the basis of exposure to one organism may sometimes increase risk against
a different infectious pathogen [43]. Identification of common epitopes between related
viruses may also help pharmaceutical research groups identify therapeutics more quickly
by looking at existing treatments for other organisms. Identifying conserved targets may
also aid vaccine design and development.

To further the understanding of the adaptive immune response to SARS-CoV-2 and
to increase our understanding of its genotypic and phenotypic homology with SARS, we
aimed to identify and investigate the presence and evolution of SARS-CoV-2 epitopes,
specifically Nucleoprotein (N) and Spike glycoprotein (S). We present our analysis of 11
different SARS-CoV-2 proteins amounting to 28 K unique protein sequences using in silico
methods for epitope prediction based on sequence homology. We used data from ancestral
lineages as well as eight variants of concern and of interest to show the relevance of
results specifically for the Delta variant, thus underscoring the stability of top epitopes.
Beyond this, we analyze how the occurrence of different groups of epitopes vary by host.
Specific emphasis is placed on detailing Nucleoprotein and Spike glycoprotein findings
with structural depictions, as these proteins are of particular medical interest in human
health [7]. We believe that even though this approach has been applied to SARS-CoV-2, it
can be adopted as a more general guidance to study newly emerging viruses.

2. Methods
2.1. Description of Data Used

Data for this study were obtained primarily from two sources. Coronaviridae epitope
data were retrieved from the Immune Epitope Database and Analysis Resource (IEDB) on
20 July 2020 and again in April 2021 [44]. The IBM Research Functional Genomics Platform
(FGP) [45] with semi-supervised SARS-CoV-2 genome annotation method [46] was used to
identify and retrieve the protein sequences, domain sequences, and genome accessions from
January 2020 to April 2021. This includes ancestral lineage as well as sampled genomes
spanning eight variants of concern and of interest, as described by Beck et al. [46]. Using
this cohort of genome sequences and, separately retrieved, most frequent S sequences for
Delta, we specifically demonstrate the mutational stability of top ten epitopes with variants
of concern as well. For access to data used in this study, please reference Data Availability
(Section 5).
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2.1.1. Immune Epitope Database

From IEDB, linear B cell and T cell epitopes for all Coronaviridae were downloaded as
of April 2021. These data were filtered for positive assays only, i.e., epitopes known through
confirmed laboratory experiments. No filters for host, MHC restrictions, or diseases were
applied. For epitope sequences in IEDB that were found originally in other Coronaviridae,
the identification of those sequences in SARS-CoV-2 was based on observation of the exact
sequence in SARS-CoV-2 proteins in FGP (see Sections 2.3 and 2.4).

At the time of download in 2020, the data contained 601 linear T cell epitopes with
positive assays across 10 proteins and 23 organisms, and 586 linear B cell epitopes with
positive assays across 12 proteins and 30 organisms. There were 28 column descriptors, of
which the following were extracted for this study:

1. Epitope ID;
2. Parent Protein;
3. Parent Protein Accession;
4. Antigen Name;
5. Epitope Description (Sequence).

From IEDB, we retrieved all distinct (non-redundant) epitope sequences, the name of
the protein from which they were found, and the antigen on which it was identified. This
was used as ground truth data to locate conserved regions across SARS-CoV-2 proteins and
to identify new epitopes not originally in IEDB.

Supplemental Figure S2 quantifies the data availability of IEDB B cell and T cell
epitopes by organism and protein. Here, we do not separate the epitopes based on MHC
classes they bind to because our methodology does not rely on prediction tools, where
this separation can be important to select the correct allele and tools. Additionally, we
wanted to see how epitopes cluster based on sequence and position, independent of their
MHC Class.

2.1.2. SARS-CoV-2 Genomic Data

The Functional Genomics Platform (https://ibm.biz/functional-genomics) is a com-
prehensive database and analytics platform that provides (at the time of this work)
∼300,000 pre-annotated bacterial and viral genomes, with over 75 million unique gene
sequences, over 57 million protein sequences, and over 263 million functional domains.
For SARS-CoV-2, it contains high quality, curated genomic data defined as genomic se-
quences with <1% Ns (unknown bases), over 29,000 bp, and <0.05% unique amino acid
mutations (as described in [46]), along with gene, protein, and functional domain sequences.
Moreover, it also provides analytical capabilities such as BLAST over the data. These data,
as well as the analytical tools, can be accessed via the Python SDK or the API endpoints
provided by FGP after creating a free account.

For this study, we utilized ∼28 K unique SARS-CoV-2 protein sequences and ∼49 K
related protein domains and annotations identified from a collection of ∼62 K high quality
SARS-CoV-2 genomes from NCBI GenBank [47] and GISAID [48] using the methods
described in Beck et al. [46] (full protein and domain sequences can be found with that
publication). The proteins and domains identified by FGP are related to the respective
source’s genome accession. There are a total of 16 different proteins by name (including
hypothetical proteins) for SARS-CoV-2, with 11 proteins annotated per SARS-CoV-2 genome
on average. FGP uses md5 hash of a sequence in order to construct its unique identifier
(uid). Thus, each protein sequence has an uid used to identify it. At the time of manuscript
preparation, an earlier version of FGP’S semi-supervised SARS-CoV-2 algorithm [46] was
utilized that had not yet corrected Replicase polyprotein 1a and 1ab sequences; therefore,
analysis on those proteins is limited and not shown in detail in this work.

The host metadata used in this work were downloaded from NCBI GenBank [47] and
GISAID [48].

https://ibm.biz/functional-genomics
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2.2. Protein Sequence Diversity Analysis

In the reference genomes for SARS-CoV-2, the copy number for each protein is 1 [49,50].
After annotation of 61,850 genomes, evidence for copy number greater than one was
found in only 584 genomes (<1%). As some of the analyses described below depends on
subsequent multi-sequence alignment to the reference, these genomes were omitted from
the analysis.

2.3. Identification of Conserved Epitope Sequences

First, known epitope sequences that are present in our protein sequence corpus were
identified. In this section, the set of 28K SARS-CoV-2 protein sequences from FGP was
utilized to determine conserved epitope sequences from two subsets within IEDB data: a
limited set of ground truth SARS-CoV-2 epitopes and epitopes observed in other Coron-
aviridae. To compare these sequences, the following steps were completed:

• Identification of whether an epitope occurs on a protein sequence and at what locus
(amino acid position) using exact string matching functions provided in base Python.
For this, the epitope’s parent protein was matched to the SARS-CoV-2 protein, e.g., epi-
topeA, whose parent protein indicated in IEDB is Nucleoprotein, would be checked
for presence on SARS-CoV-2 Nucleoprotein sequences only;

• Calculation of the number of times an epitope occurs on a protein sequence.

The above analysis was performed separately for B cell and T cell epitopes and for all
protein names in the set of parent protein names retrieved from IEDB.

2.4. Identification of Candidate Epitope Sequences

Next, identification of candidate epitopes was performed, i.e., potential peptides
with high sequence homology to the laboratory confirmed epitopes. This would enable
accounting for slight changes in known epitope sequences due to evolving protein regions.
CANDIDATE epitopes are denoted as NEW in the Supplemental Data.

To this end, we completed a sequence search using BLAST [51] to compare all epitopes
downloaded from IEDB (retrieved 07-2020) against all corresponding (with same parent
protein name) SARS-CoV-2 protein sequences using FGP’s BLAST service. FGP provides
the capability to run BLAST against pre-constructed databases of nucleotide and amino
acid sequences. The SARS-CoV-2 amino acid sequence database was selected for this study.
Default parameters were used to run BLASTP, and an e-value threshold of 0.01 was chosen,
as that indicates a statistically significant match [52].

The steps outlined in Section 2.3 were repeated with the newly identified set of
candidate epitopes to find all protein sequences where these epitopes were found, along
with the start indices of those epitopes and their frequency per protein sequence. The results
were appended to the output from conserved epitope sequence calculation and these were
marked as CANDIDATE, and the conserved epitopes were marked as ORIGINAL.

We relied on sequence homology approach and BLAST to identify CANDIDATE
epitopes because epitope prediction tools can sometimes be unreliable [3,7].

2.5. Identification of T Cell MHC Class I Epitopes

Because T cell MHC Class I epitopes are known to be important in the process of
vaccine design [4,53], prediction of MHC Class I for N and S proteins was performed. Here,
netMHC4.0 [12] was used with a list of 12 human HLA Class I alleles that have been known
to have wide coverage and are listed in Supplemental Data SD2. Peptide lengths between 8
and 14 were allowed, and the rank threshold was set at 0.5 for strong affinity and at 2 for
weak affinity (based on netMHC documentation).

The entire set of CANDIDATE and ORIGINAL T cell epitope sequences from S and N
proteins was passed as input to netMHC4.0.

The output from netMHC4.0 was parsed to identify peptides with strong and weak
affinities to HLA Class I alleles based on the above threshold. Additionally, overlap of
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these with our top ten T cell epitopes from N and S proteins was calculated as well as their
location in structural representations.

Furthermore, for our top ten T cell N and S epitopes, IEDB was manually searched to
record how many epitopes have been verified by assays to be MHC Class I.

2.6. Summary Statistics

The presence of epitopes on proteins and genomes was studied from the compiled list
of ORIGINAL and CANDIDATE epitopes identified in our set of 28 K protein sequences
specifically to answer questions such as: What are the most abundant epitopes? Is an
epitope found multiple times in a protein sequence? How many epitopes are present on
average in a genome?

2.7. Epitope Clustering and Classes

To explore how different epitopes relate to one another based on sequence homology
and similarity of their loci on the protein sequence, both sequence-based clustering and
position-based clustering of epitopes were performed.

For sequence-based clustering, the following steps were performed:

1. Epitopes (both ORIGINAL and CANDIDATE) were grouped based on functional type
(T or B) and parent protein;

2. For each group above, the Levenshtein edit distance measure was calculated (using
Python) for every epitope–epitope pair. This yields a square matrix with axes labeled
by epitope and cell values as the distances between all pairs;

3. Linkage (Python scipy package) was run on the edit distance matrix using ’Euclidean’
metric and ’Single’ method;

4. The resulting linkage matrix was used to compute and plot a dendrogram;
5. A cluster threshold was defined where cluster members had a length normalized

edit distance less than one. We color any linkage lineage lines not clustering together
in blue.

After clustering epitopes by sequence and extracting the relevant clusters for each
protein and epitope type (B or T cell), the occurrence of these clusters on SARS-CoV-2
genomes was investigated. To this end, the dendrogram was combined with a bar plot
indicating frequency of occurrence of all epitopes in the cluster combined to which the
epitope belongs.

A stacked bar plot was generated to present the distribution of genomes over three
categories of original data source (hosts/samples): humans, animals, and environmental.
Source data were retrieved from genome metadata files from NCBI and GISAID. These
data have also been made available as a table in Supplemental Data SD3.

To obtain position-based clustering of the epitopes, the following steps were completed:

1. B cell and T cell epitopes were divided into separate sets based on parent protein as
described above;

2. To remove spurious sequences or assembly errors, only sequences with length within
±10% of the UniProt [54] reference protein sequence for SARS-CoV-2 were considered,
e.g., for Nucleoprotein, the length of reference protein is 419 amino acids, and all
sequences that were within a ±10% range of that, i.e., between 378 and 461 amino
acids in length, were allowed. For SARS-CoV-2 Spike glycoprotein, the reference
protein is of length 1273 amino acids and the allowed range was 1146 to 1400 amino
acid characters;

3. Furthermore, multi-sequence alignments (MSA) were run for all sequences per protein
name relative to one another using MAFFT (v7.431) with the –reorder option [55];

4. For each protein, a matrix was then constructed, with the x-axis indicating the amino
acid position on the protein and the y-axis indicating the epitopes where the length of
the x-axis was the maximum length of the protein sequence;
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5. Each cell was then assigned a binary value, i.e., 0 or 1. The cell is assigned 1 if the
epitope on that row is found on the position on the protein corresponding with the
column index of the cell, e.g., if ‘epitopeA’ is on row 0 and is found on a Nucleoprotein
sequence between indices 7 and 15, then index 7 would be filled with 1;

6. After sequences have been aligned in the MSA, the positional information was padded
so that all pairwise comparisons are represented with identical start and stop coor-
dinates, and gaps are filled in with dashes. To accommodate this relative positional
information generated by an MSA, regular expressions were used to identify the start
index of epitope sequences with the allowance for epitopes that span “gapped regions”
due to the filling in of sequences in the MSA;

7. Epitope sequences spanning regions of insertion described in step 6 were investigated
further for key non-synonymous mutations and their prevalence in this corpus of
ORIGINAL and CANDIDATE epitopes;

8. After alignment, the epitopes were identified on the same position within the protein
sequences. The bars representing epitopes were colored by their presence across
the genomes;

9. After constructing the matrix in steps 2 and 3, ‘single’ linkage was run using method
‘Euclidean’ metric;

10. Finally, the clustermap and dendrogram were plotted using Python’s seaborn library.

2.8. Identification of Epitopes on Protein
2.8.1. Mutations in Proteins Affecting Epitopes and Mutation Density

Certain epitopes were not found as exact subsequences on MSA proteins due to filling
in of gap regions. In such cases, a regular expression (regex) match was used to find
the start position for the epitope. Additionally, these regions identified locations where
protein mutations were occurring and were thus studied in greater detail by visualizing
MSA results.

Mutations at any given position on the Spike glycoprotein transcript were logged
using the MSA results as percentages. The proportion of amino acids matching the reference
were measured at every position on the sequence to estimate ‘mutation density’. These
were plotted to examine regions of elevated mutagenesis on the protein sequence with
respect to the MSA-derived consensus sequence. Mutation density plots were constructed
for both Spike glycoprotein and Nucleoprotein transcripts.

2.8.2. Epitope Distribution across Protein

The clustermap generated in Methods Section 2.7 for position-based clustering also
serves to highlight where epitopes lie on the protein. However, to gain an amino acid-
position level understanding of ‘immunodominance’, the frequency of epitope occurrence
at a given position on the protein transcript was visualized. Our epitope samples were split
into ORIGINAL and CANDIDATE epitopes. The number of times that an epitope occurred
across all genomes was logged. These frequencies were normalized and plotted along with
the normalized global median frequency in order to assess regions of immunodominance
relative to other regions on the protein transcript. The proportion of immunodominance
prescribed to each position by new epitopes was drawn as a stacked area plot atop the pro-
portion of immunodominance prescribed by original epitopes to compare the contributions
of each epitope origin to the overall immunodominance level for the position. This graph
was constructed for T cell and B cell epitopes on N and S proteins.

To identify epitope relationships within protein functional domains, the domains for
each protein were also checked against epitopes for complete sequence homology, i.e., if
an epitope sequence exactly matched or was found as a sub-sequence within a domain
sequence for the corresponding protein.
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2.8.3. Epitope Localization on Protein Structure

In order to visualize the position of the epitopes on the quaternary structure of the
Nucleoprotein (N) and the Spike glycoprotein (S) of SARS-CoV-2, the VMD software [56]
was used, and the following procedure was performed for both proteins. First, the reference
sequence from UniProt (Supplemental Data SD8) was compared with the sequence of the
protein structures deposited in the Protein Data Bank [57,58] and then visualized with
the epitope positions in the 3D shape of the protein by selecting the protein deposited
structure showing 100% identity with the consensus sequence. Specifically, for the N
protein, the 1.5 Å resolution X-ray structure of the C-terminal domain (CTD) resolved by Y.
Peng et al. [13] was used (PDB ID: 7CE0); for the S protein in the prefusion and postfusion
conformations, we used the cryo-EM structure resolved by Y. Cai et al. [32] at 2.9 and 3.0 Å
(PDB ID: 6XR8 and 6XRA, respectively).

Furthermore, MHC Class I epitopes of N and S T cell epitopes were visualized sepa-
rately on the 3D protein structure.

2.9. Result Verification

To understand the correctness of our results, a later set of lab-confirmed epitopes
(IEDB retrieved 04-2021) was used. We did not rely on comparing results with other epitope
prediction tools since this has been benchmarked comprehensively elsewhere [7], and the
accuracy with regards to SARS-CoV-2 was determined to be low [3].

The predicted set of epitopes were analyzed against the latest set of epitopes from
IEDB. BLAST [51] was used to find the sequence alignment between the predicted and
the known epitope sequences found on Spike glycoprotein and Nucleoprotein. For each
protein, the epitopes found in B cell and T cell were separated and then each was used
to create a BLAST database using the epitope sequences from IEDB. This generated four
BLAST databases, one for each protein and cell type. A protein BLAST query was perfomed
with the predicted epitopes as query sequences. All default BLAST inputs were used,
except the number of alignments was set to one in order to find the IEDB sequence that best
matches each predicted sequence. For each protein and cell type, the average percent was
identified, and e-value was calculated between the predicted epitopes and known epitopes.

Additionally, even though a complete analysis with the latest variants of concern was
out of the scope for this paper, in light of the outbreak and seriousness of the Delta variant
of SARS-CoV-2, the two most frequently seen sequences of Spike glycoprotein for Delta
variant were retrieved and assessed to identify if our top Spike T cell and Spike B cell
epitopes are present on this Spike sequence. The sequences were obtained from [46] and
are included in Supplemental files SD1. As seen here [46], these sequences have been found
in other variants of concern as well.

3. Results
3.1. Protein Sequence Diversity Analysis

In this work, a corpus of 61,850 SARS-CoV-2 genomes from NCBI GenBank and
GISAID was analyzed. Protein annotations for each were downloaded from FGP. After per-
forming the data sanitation steps outlined in Methods Section 2.2, 584 (<1%) genomes were
identified as low quality where, after annotation, protein sequence diversity was >1 for
one or more proteins. These were excluded, resulting in a total genome dataset of 61,266.
A total of 4595 and 1737 unique protein sequences were observed in S and N sequences,
respectively. From this corpus, the number of observed epitopes are indicated in Table 1.
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Table 1. Epitope distribution by protein. * indicates that analysis on Replicase Polyprotein 1a and
1ab is limited Section 2.1.2.

B Cell Epitopes T Cell Epitopes

Protein Name #Unique Sequences Conserved Candidate Conserved Candidate

Spike Glycoprotein 4595 50 152 114 29

Nucleoprotein 1737 52 62 65 54

Membrane Protein 285 8 16 18 9

Protein 3a 4 1 1 21 13

Envelope Protein 1 1 0 3 0

ORF6 Protein 109 0 0 5 1

Protein 7a 217 0 1 9 3

Protein 7b 98 0 0 2 1

Protein 9b 7 0 1 0 0

Replicase Polyprotein 1a * 11,509 0 4 3 0

Replicase Polyprotein 1ab * 795 0 0 39 0

3.2. Epitope Sequences

Section 2.3 outlines the procedure followed for identification of conserved epitopes
between SARS-CoV-2 protein sequences and other Coronaviridae. As shown in Table 1,
112 B cell and 279 T cell conserved epitopes were identified across all proteins. Of the
112 linear B cell epitopes from Coronaviridae found in SARS-CoV-2 protein sequences, three
are originally from SARS-CoV-2 and 109 from SARS. Of the 279 linear T cell epitopes from
Coronaviridae that were found in FGP SARS-CoV-2 protein sequences, 221 are originally
from SARS-CoV-2 and 58 from SARS.

Additionally, 492 candidate linear B cell (304) and T cell (188) epitopes were identified
in SARS-CoV-2 proteins with high sequence similarity to epitopes from IEDB (Table 1). Our
results suggest that linear SARS-CoV-2 epitope sequence length varies from 7 to 42 amino
acid characters for both ORIGINAL and CANDIDATE epitope sequences.

The top ten (by occurrence) B and T cell epitopes for Spike glycoprotein and Nucle-
oprotein are listed in Tables 2 and 3. The criteria for being a top epitope is based only
on the number of genomes an epitope is found in. In addition to the epitope sequences,
the tables list the start index of epitopes on aligned protein sequences, if T cell epitope
belongs to MHC Class I, parent epitope (if the epitope is derived, i.e., CANDIDATE). and
other epitopes that cluster with it based on sequence similarity.
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Table 2. Top 10 most commonly found epitopes in Nucleoprotein. Here, frequency of occurrence is determined by calculating the number of unique genomes
an epitope is present in. Homologous epitopes are sister epitopes that cluster together with the epitope in first column when performing clustering by sequence.
The cluster change rate indicates the probability of a candidate epitope being found in the cluster. If the cluster consists of only lab confirmed epitopes, the evolution
rate will be 0. Start pos is the index of the starting position of epitope on aligned protein sequences, as noted in Section 2.8.1 and in case of every epitope matches the
median start position on unaligned sequences. * in front of the sequence indicates that the sequence was found to be a MHC CLass I epitope in majority assays listed
on iedb.org.

EPITOPE
NUMBER

GENOMES

HOMOLOGOUS
EPITOPES and

CLUSTER CHANGE RATE
START

POS PARENT EPITOPES

Nucleo B cell Epitopes

LLPAAD 61,007 0.0 393 N.A

QGTDYKHW 61,004 [ ] 0.0 293 N.A

SKKPRQKRTATKAYNV 60,996 [SKKPRQKRTATKQYNV] 0.5 254 SKKPRQKRTATKQYNV

KRTATKAYNVTQAFGRR 60,981 [KRTATKQYNVTQAFGRR] 0.5 260 KRTATKQYNVTQAFGRR

TKAYNVTQAFGRRGP 60,980 [TKQYNVTQAFGRRG] 0.5 264 TKQYNVTQAFGRRGP

QFAPSASAFFGMSRIGM 60,978 [] 0.0 305 N.A

KHWPQIAQFAPSASAFF 60,950 [] 0.0 298 N.A

KKSAAEASKKPRQKRTA 60,947 [] 0.0 247 N.A

YNVTQAFGRRGPEQTQGNF 60,941 [VTQAFGRRGPEQTQGNFGDQ] 0.0 267 N.A

VTQAFGRRGPEQTQGNFGDQ 60,920 [YNVTQAFGRRGPEQTQGNF] 0.0 269 N.A

Nucleo T cell Epitopes

ILLNKHID * 61,092 [ILLNKHIDA] 0.0 350 N.A

ILLNKHIDA * 61,069 [ILLNKHID] 0.0 350 N.A

LALLLLDRL * 61,063
[LLLDRLNQL,

GDAALALLLLDRLNQL] 0.0 218 N.A

FSKQLQQSM * 61,063 [] 0.0 402 N.A

GMSRIGMEV * 61,025 [] 0.0 315 N.A
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Table 2. Cont.

EPITOPE
NUMBER

GENOMES

HOMOLOGOUS
EPITOPES and

CLUSTER CHANGE RATE
START

POS PARENT EPITOPES

KAYNVTQAF * 61,024 [ TKQYNVTQAF] 0.0 265 N.A

LLLDRLNQL * 61,012
[LALLLLDRL,

GDAALALLLLDRLNQL] 0.0 221 N.A

AQFAPSASAFFGMSR 60,996 [ AQFAPSASAFFGMSRIGM] 0.0 304 N.A

SKKPRQKRTATKAYNV 60,996 [SKKPRQKRTATKQYNV] 0.5 254 SKKPRQKRTATKQYNV

QKRTATKAYNVTQAF 60,988
[QKRTATKQYNVTQAF,

RQKRTATKAYNVIQAFGRRG] 0.66 259 QKRTATKQYNVTQAF

Table 3. Top 10 most commonly found epitopes in Spike glycoprotein sequences. Here, frequency of occurrence is determined by calculating the number of unique
genomes an epitope is present in. Homologous epitopes are sister epitopes that cluster together with the epitope in first column when performing clustering by
sequence. The cluster change rate indicates the probability of a candidate epitope being found in the cluster. If the cluster consists of only lab confirmed epitopes, the
evolution rate will be 0. Start pos is the index of the starting position of epitope on aligned protein sequences, as noted in Section 2.8.1 and in case of every epitope
matches the median start position on unaligned sequences. * in front of the sequence indicates that the sequence was found to be a MHC CLass I epitope in majority
assays listed on iedb.org.

EPITOPE
NUMBER

GENOMES

HOMOLOGOUS
EPITOPES and

CLUSTER CHANGE RATE
START

POS PARENT EPITOPES

Spike B cell Epitopes

ILSRLDKVEAEVQIDRL 61,222 [ILSRLDKVEAEVQIDRL] 0.0 979 N.A

DFCGKGYHLMSFPQSAP 61,215 [DFCGKGYHLMSFPQSAP] 1.0 1040 DFCGKGYHLMSFPQAAP

MAYRFNGIGVTQNVLYE 61,213 [MAYRFNGIGVTQNVLYE] 0.0 901 N.A

VLGQSKRVDFCGKGYHL 61,212 [VLGQSKRVDFCGKGYHL] 0.0 1032 N.A

AISSVLNDILSRLDKVE 61,211 [AISSVLNDILSRLDKVE] 0.0 971 N.A

GSFCTQLN 61,209 [GSFCTQLN] 0.0 756 N.A

EAEVQIDRLITGRLQSL 61,205 [EAEVQIDRLITGRLQSL] 0.0 987 N.A
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Table 3. Cont.

EPITOPE
NUMBER

GENOMES

HOMOLOGOUS
EPITOPES and

CLUSTER CHANGE RATE
START

POS PARENT EPITOPES

KQLSSNFGAISSVLNDI 61,205 [KQLSSNFGAISSVLNDI] 0.0 963 N.A

SLQTYVTQQLIRAAEIR 61,200 [SLQTYVTQQLIRAAEIR] 0.0 1002 N.A

LMSFPQSAPHGVVFLHV 61,199 [LMSFPQSAPHGVVFLHV] 1.0 1048 LMSFPQAAPHGVVFLHV

Spike T cell Epitopes

FPQSAPHGVVF * 61,227 [] 0.0 1051 N.A

RVDFCGKGY * 61,225 [] 0.0 1038 N.A

VLNDILSRL * 61,225 [ SVLNDILSRL] 0.0 975 N.A

SVLNDILSRL * 61,224 [VLNDILSRL] 0.0 974 N.A

YHLMSFPQSA * 61,223 [] 0.0 1046 N.A

MAYRFNGIGVTQNVLY 61,216 [] 0.0 901 N.A

ALNTLVKQL * 61,212 [AQALNTLVKQL] 0.0 957 N.A

AQALNTLVKQL * 61,211 [ALNTLVKQL] 0.0 955 N.A

SFPQSAPHGVVFLHV 61,210 [LMSFPQSAPHGVVFLHV] 0.5 1050 N.A

LITGRLQSL * 61,209 [] 0.0 995 N.A
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In order to test the predicted epitopes and to measure the sequence diversity, the pre-
dicted epitope sequences were compared to the known epitopes for each cell type, and the
percent match was calculated. We find the average percent identity for Nucleoprotein B cell
is 95.05%, Nucleoprotein T cell is 97.75%, Spike B cell is 94.64%, and Spike T cell is 97.40%.
Furthermore, range of percent identities for all predicted epitopes within each cell type
was analyzed. Figure S1 shows the average and range of percent identity for each epitope
class. This shows that, although the averages for all four classes were greater than 90%,
the sequence diversity of B cell epitopes was larger than for T cell epitopes.

Additionally, to verify the validity of the top Spike epitopes in the Delta variant,
the presence of the top ten B and T cell Spike epitopes was checked on 2 SARS-CoV-2 Delta
spike sequences. We found that all epitopes are indeed present on the Delta Spike as well.

Supplemental Figures S16–S21 show the presence of epitopes in genomes and proteins.
We observe a distribution where the epitopes are present in large numbers in most entities
and then fall off sharply. This may require further investigation into genomes with a low
number of identified epitopes, as these genomes may have sequencing errors or other
assembly defects, etc. Note that each epitope was found only once on a protein sequence,
and each protein had a copy number of one on a genome, thus each epitope was found at
most once per genome (if found at all).

Figures 1 and S3–S5 show the relations between epitopes from sequence based cluster-
ing. Supplemental Data SD3 presents the csv file from which sequence based clustering
figures were generated.

In Figure 1, most epitopes are already laboratory confirmed epitopes in SARS-CoV-
2. Only one cluster is seen with significant frequency that has more than two epitopes.
In Supplemental Figure S5 for Spike B cell, most epitopes are CANDIDATE epitopes,
indicating high sequence diversity and potentially many undiscovered or unconfirmed
epitopes at the time of analysis. There is only one cluster with significant presence, and even
within that, there is only one laboratory confirmed epitope. In Supplemental Figure S4 for
Nucleoprotein B cell epitopes, there are no laboratory confirmed epitopes already known
to be present in SARS-CoV-2, and top clusters have non-zero CANDIDATE epitopes. This
may indicate rapidly evolving regions on proteins leading to evolution of new epitope
sequences. In Supplemental Figure S3 for Nucleoprotein T cell epitopes, the cluster with
the most significant presence has only SARS and CANDIDATE epitopes.

In all figures noted previously, a significant number of CANDIDATE epitopes are
observed. When we compare the presence of clusters against each other, it is observed that
there are certain clusters of epitopes that have a much higher weight than other clusters.

3.3. T Cell MHC Class I Peptides

T cell MHC Class I epitopes bind to HLA Class I and are known to be important in the
process of vaccine design [4,53]; thus, the prediction of MHC Class I for N and S proteins
was performed.

As described in Section 2.5, the T cell epitopes of N and S were annotated using
netMHC4.0 to identify which epitopes are potentially MHC Class I in their sequence
entirety or have peptides regions that bind to HLA Class I alleles. The alleles used are
detailed in Supplemental Data SD2. The output from netMHC was filtered to include
peptides with strong or weak binding only (defined as rank <= 0.5 and rank > 0.5 and
<2, respectively, based on netMHC documentation), and others were discarded. These
results are presented in Supplemental Data SD5. NetMHC was run allowing for peptide
lengths from 8 to14 mers, as the majority of our peptides were observed to have length < 11,
although previous studies indicated those longer than 11 amino acids should be cautiously
selected [12].
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Figure 1. Clustering of Spike glycoprotein T cell Epitopes ORIGINAL + CANDIDATE and their
occurrence. The bottom chart is a dendrogram obtained by performing sequence based clustering
on T cell S epitopes. The labels along the x-axis in the dendrogram are the epitope sequences and
have been assigned colors based on their originating organism: blue if CANDIDATE epitope, red
if originally found in SARS, and green if known to be found in SARS-CoV-2. Along the y-axis of
the dendrogram is the edit distance score. The edit distance of two sequences lets us know how
similar the sequences are to one another. We put a threshold of 1.0 on this edit distance to discover
clusters within the epitopes, i.e., epitopes with normalized distance < 1.0 are part of same cluster.
In the top part of each figure, the bars align with the epitope labels from the dendrogram. Each bar
represents the number of times all members of the cluster to which the epitope belongs are seen across
SARS-CoV-2 genomes in our dataset. It is also important to note that the figure is actually a log–log
plot of the counts. Furthermore, each bar is stacked based to show genomes sequenced in humans,
animals, or environment. We would also like to highlight that low presence in genomes sequenced
from environment is not a consequence of epitopes not being found in those genomes, but rather a
product of extremely low numbers of high quality genomes from the environment in our dataset.
Data used to generate this figure are presented in Supplemental Data SD3.

The alleles from SD5 have been grouped and ordered by their frequency of occurrence
and listed in Supplemental Data SD6. For S protein, strong and weak binding was most
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commonly observed with HLA-A2402. For N protein, strong and weak binding was most
commonly observed with HLA-B0702. Interestingly, HLA-A0201 was not found to be the
most common allele, as reported in other work [7].

For epitope comparisons with netMHC, we consider matching epitopes as those only
with 100% sequence identity. Out of 143 T cell S epitopes, thirteen matched strong binding
S peptides and 37 with weak binding S peptides (SD5). Out of 119 T cell N epitopes, only
three exhibited strong binding with N peptides and seven with weak binding N peptides
(SD5). All of the above matches were found only in ORIGINAL S epitopes and not with
any of the CANDIDATE epitopes for both weak and strong. For N epitopes, there was one
CANDIDATE epitope, with all others being ORIGINAL for both weak and strong.

From manual inspection of IEDB at the time of writing, all of the top ten T cell epitopes
are known epitopes for SARS-CoV-2. In addition, eight of the top ten T cell S epitopes and
seven of the top ten T cell N epitopes were identified as MHC Class I through biological
assays referenced on IEDB. These have been indicated in Tables 2 and 3 with an asterisk (*).
In contrast, from netMHC in top ten S epitopes, two were strong binding peptides and four
were weak binding peptides. For top ten N epitopes, none matched strong binding peptides,
and one matched weak binding peptides (Supplemental Data SD7). The above findings are
in agreement with [3].

3.4. Epitopes on Protein
3.4.1. Mutations in Proteins Affecting Epitopes

Understanding the rate of mutation across epitope sequences can provide insights
into waning host immunity and the average period of host reinfection. These insights can
also shape our understanding of vaccine efficacy over time. To evaluate this, we computed
a multiple sequence alignment (MSA) of unique Spike glycoprotein and Nucleoprotein
sequences and evaluated the mutational density across the B cell and T cell epitopes.

In Spike glycoprotein (Figure 2),it is observed that specific residue positions have high
mutation density when evaluating the consensus sequence obtained after running MSA. In
addition, a small region between residue positions 250–350 has slightly higher mutation
density on average. In Nucleoprotein, there is slightly above average mutation density
around residue position 200.

For Nucleoprotein, there were no epitopes that overlapped with mutations or indels
(insertions or deletions). However, for the Spike glycoprotein consensus sequence logo,
the most prevalent amino acid by position was observed to be present with a median
value of 99.84% (range 0.023%–100%), suggesting high sequence conservation across the
protein. However, there was a small amount of mutations or indels in epitope sequences.
For example, for epitope WTAGAAAYYVGY at amino acid position 272–288, we observed
several key differences from the wild type epitope sequence. We observed a three amino
acid insertion in one of our Spike glycoprotein sequences. Additionally, at amino acid
position 278, we observed higher variability where the dominant amino acid glycine (G)
is present in only 91.41% of sequences, with substitutions to serine (S) or aspartic acid (D)
being the most common. This shifts from an aliphatic amino acid to a polar, hydroxylated
amino acid or negatively charged acid, respectively, which can then change binding affinity
to host proteins.

3.4.2. Epitope Distribution across Protein

The immunodominance Figures 2a, S9, S12, and S13 show the presence of T cell and B
cell epitopes on Spike glycoprotein and Nucleoprotein proteins. Mutation density plots for
S and N proteins are in Figures 2, S10 and S14. We also plot the presence of unknown amino
acid by position in Figures S11 and S15. As discussed in Section 2.8.1, we plot the epitopes
on each protein and cluster them by position. Figure 3 shows the position of T cell epitopes
on S. These plots relay more granular information regarding each epitope and its presence
in our genome set and on the protein, along with its positional neighbors, as compared to
immunodominance plots, which show aggregate data for all epitopes. Where the slope
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is high (an increase in differing epitopes at a similar position), the epitope sequences are
more diverse and changing most rapidly. Data used to generate Figures 3 and S6–S8 are
present in Supplemental Data SD4.

(a)

(b)
Figure 2. Immunodominance plot and mutagenesis plots. (a) Stacked area plot depicting normalized
T cell epitope presence across the length of the Spike glycoprotein transcript (total length: 1299 amino
acids). The graph is colored by epitope origin, with original epitope rates in blue and newly predicted
epitope rates in red. (b) Mutation density plot for the Spike glycoprotein; logs normalized mismatch
frequency rates across the protein as compared to the consensus sequence.
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Figure 3. Clustermap obtained after clustering the T cell epitopes of Spike glycoprotein based on the
position at which they occur within the protein. The x-axis is the entire length of the protein, which is
1299 in the case of S. Along the y-axis, every row represents one epitope. The color scheme is defined
by using a color map that assigns colors to each row depending on occurrences of the epitope across
all genomes. The y-axis labels on the right-hand side are colored cyan to indicate an epitope from the
top ten list. Data used to generate this figure are present in Supplemental Data SD4.

In Figure 2a, an almost even distribution of T cell epitopes on Spike glycoprotein
is observed; however, there is an uptick at the 1063 aa position. In addition, there are
fewer CANDIDATE epitopes, as already noted in Section 3.1. By simultaneously looking at
Figure 3, it is observed that the most prevalent T cell epitopes on Spike are in the S2 region,
and three contribute to the uptick along the 1063 aa region.

Supplemental Figure S9 reveals a large number of CANDIDATE B cell epitope se-
quences on Spike glycoprotein and significant regions on S1 with no epitopes present (also
supported in Supplemental Figure S8). From the latter, we can again see that most prevalent
Spike B cell epitopes are found on the S2 region.

For Spike, as shown in Figures 2a and S9, the presence of both T cell and B cell epitopes
along S2 correlates with lower mutation density in S2.

Supplemental Figure S12 shows immunodominance for Nucleoprotein T cell. The fig-
ure reveals that most ORIGINAL epitopes lie between residue positions 300 and 365 which
is the C-terminal domain (CTD). However, a considerable number of CANDIDATE epi-
topes are observed between residue positions 50 and 120, which is the N-terminal domain
(NTD). A few regions of gaps with fewer epitopes around residue position 200, which has
high mutation density, were also observed. From Supplemental Figure S6, it is observed
that the most prevalent epitopes were on the C terminal domain.

Immunodominance figure of Nucleoprotein B cell (Supplemental Figure S13) reveals
that many CANDIDATE epitopes are found, even in regions where no ORIGINAL epitopes
are present. We also observe a gap around residue position 200, which is the linker region.
The most prevalent epitopes are again present in the C terminal domain (Supplemental
Figure S7).

To better understand the relationship between epitopes and protein functional do-
mains, evaluation of the occurrence of complete sequence identity between epitopes and
protein domains was performed. Although epitopes are observed to span the length of
Nucleoprotein and Spike glycoprotein, no exact matches were observed between epitopes
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and full length domain sequence or sub-sequence of any domain sequence on SARS-CoV-
2 proteins. All matches contained at minimum a single amino acid mutation or indel.
Domains and epitopes were only compared with respect to the same parent protein.

3.4.3. Epitope Localization on Protein Structure

We analyzed the position of the ten B and T cell epitopes that were most frequently
identified in all genomes investigated and observed that 9/10 high frequency B cell and
7/10 high frequency T cell epitopes were localized in the CTD of the N protein. Therefore,
in Figure 4B,C only the CTD of the N protein 3D structure is shown, and in Figure 4A, the
position of the four epitopes located in the linker or in the C-terminal domain intrinsically
disordered region (IDR) of the N protein are indicated. For greater clarity, we represent the
position of B and T cell epitopes only on one homodimer and have grayed out the others.
The Nucleoprotein CTD structure consists of one 310 helix, followed by four α-helices, two
β-strands, another α-helix, and another 310 helix [13]. In B cells, the ten most frequently
identified epitopes are located between the first 310 helix and the first β-strand, as shown in
Figure 4B. The KKSAAEASKKPRQKRTA (bright blue) and the SKKPRQKRTATKAYNV
(green) epitopes are on the first 310 helix and overlap. The KRTATKAYNVTQAFGRR (red)
epitope is on the first α-helix and is followed by the VTQAFGRRGPEQTQGNFGDQ (pink)
epitope. Their sequence includes two other epitopes: the TKAYNVTQAFGRRGP (purple)
and YNVTQAFGRRGPEQTQGNF (cyan). The QGTDYKHW (orange) epitope is located
between the second and third α-helix, followed by the KHWPQIAQFAPSASAFF (dark
blue) and the QFAPSASAFFGMSRIGM (violet) epitopes, which extend half way of the first
β-strand. Only one epitope, LLPAAD (yellow), among those represented here is located in
the C-terminal IDR (Figure 4A,B). Compared to our observations for the B cell epitopes,
the T cells the epitopes are distributed in a discontinuous manner in the C-terminal domain
sequence. In addition, two epitopes are located in the linker (LALLLLDRL* (green) and
LLLDRLNQL* (dark blue), respectively) and one in the C-term IDR (FSKQLQQSM* (red))
(Figure 4A,C). The SKKPRQKRTATKAYNV (cyan) epitope is on the 310 helix and is followed
by the KAYNVTQAF* (violet) epitope located on the first α-helix. The sequence of these two
epitopes includes that of the QKRTATKAYNVTQAF (pink). The AQFAPSASAFFGMSR
epitope (bright blue) is on the third α-helix and partially overlaps the GMSRIGMEV*
(purple) epitope, which extends over almost all the first β-strand. The two ILLNKHID* and
ILLNKHIDA* epitopes (yellow and orange) located on the last α-helix overlap except for
one residue.

Because the S protein undergoes major conformational changes allowing membrane
fusion between the SARS-CoV-2 viral membrane and the host cell, the top ten B cell
and T cell epitopes identified after analyzing all genomes have been marked on a 3D
representation of the protein. Both prefusion and postfusion states are shown in Figure 5B,C.
For clarity, the epitopes are represented only on one homotrimer, with remaining regions
grayed out. In addition, Figure 5A shows a schematic representation of the S protein
sequence to identify visually the position of the epitopes on the protein.

We observe that the top ten B and T cell epitopes are localized in the S2 subunit of
the S protein and, specifically, they are found between residue 902 and 1065, except the
B cell epitope GSFCTQLN (violet) located between residue 757 and 764 before the fusion
peptide (FP). The B cell epitope MAYRFNGIGVTQNLVYE (green), partially located in the
heptad repeat 1 (HR1), is also recognized by T cells, although the two epitope sequences
differ for the glutamic acid E, which is absent in the T cell epitope sequence (violet colored
sequence in Figure 5C). The five consecutive B cell epitopes KQLSSNFGAISSVLNDI (bright
blue), AISSVLNDILSRLDKVE (purple), ILSRLDKVEAEVQIDRL(yellow), EAEVQIDRLIT-
GRLQSL (dark blue), and SLQTYVTQQLIRAAEIR (cyan) are localized between the HR1
domain and almost all the central helix (CH), spanning between residue 964 and 1019 of the
S protein. The remaining three B cell epitopes VLGQSKRVDFCGKGYHL (red), DFCGK-
GYHLMSFPQSAP (orange), and LMSFPQSAPHGVVFLHV (pink) are mostly localized in
the connector domain (CD).
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Figure 4. Representation of the localization of the B cell and T cell epitopes on the CTD domain
of the Nucleoprotein. (A) Scheme of SARS-CoV-2 N domains illustrating the N-term intrinsically
disorder region (IDR) followed by the N-terminal domain (NTD), the IDR linker, the C-terminal
domain (CTD), and the C-term IDR. (B,C) The N CTD dimer is represented in New Cartoon format
(one monomer is gray and the other is transparent), and the sequence of the B cell (B) and T cell
(C) epitopes is colored according to the legend represented in the figure. The epitope sequence is
represented in the legend. The epitopes located in the linker domain are indicated by (**) and those
in the C-term IDR by (*). For great clarity, we represented the epitopes in only one monomer.

Figure 5. Representation of the localization of the B cell and T cell epitopes on the SARS-CoV-2 Spike
glycoprotein in the prefusion and postfusion conformations. (A) Scheme of SARS-CoV-2 S1 and
S2 units of the S protein and of their domains. (B,C) The S protein trimer is represented in New
Cartoon format (one monomer is gray the other two are transparent) and is shown in the prefusion
conformation in the left side of the panels and in the postfusion conformation on the right side of the
panels. The sequence of the B cell (A) and T cell (B) epitopes is shown in the figure legend and is
colored accordingly in the S protein structure.
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As previously observed in the case of the N protein, the T cell epitopes are more
widely distributed over the entire length of the S protein S2 subunit. The two epitopes
ALNTLVKQL* (dark blue) and VLNDILSRL* (green) are located in the HR1 domain and
partially overlap with the other two epitopes AQALNTLVKQL* (bright blue) and SVLNDIL-
SRL* (red). The epitope LITGRLQSL* (pink) is localized entirely in the CH domain. Con-
secutively located on the CD domain are the following epitopes: RVDFCGKGY* (orange),
YHLMSFPQSA* (purple), FPQSAPHGVVF* (yellow), and SFPQSAPHGVVFLHV (cyan).

Additionally, MHC Class I epitopes from the top ten list have been presented on the
3D structure of the S and N proteins in Figure S22 and are denoted with an asterisk (*) in
the above section.

4. Discussion

During our study, it was observed that 77% of IEDB ground truth data were from
SARS-CoV or SARS-CoV-2 (or their parent organisms in taxonomic tree), and 74% of the
total epitopes were for Spike glycoprotein or Nucleoprotein (Figure S2). This is a reflection
of what was sequenced, and it is important to remember this data bias whilst considering
the results described here, as it may influence the observed similarity with respect to other
proteins in the SARS-CoV-2 genomes.

In addition, complete sequence homology was found only with respect to identi-
fied SARS-CoV-2 and SARS epitopes, whereas no epitopes from other Coronaviridae
were found to be present in SARS-CoV-2 genomes when performing an exact sequence
match. This result is scientifically interesting because it underscores the similarity between
SARS and SARS-CoV-2 genomes and highlights the lack of similarity of SARS and SARS-
CoV-2 to other Coronaviridae. This observation has been confirmed in another study of
COVID-19 [7]. Our results provide support for the relevance of this work in the face of
other emerging viruses, where homology or orthology can be used to rapidly augment
our knowledge of epitopes and immunology. The stability of findings across SARS-CoV-2
variants further underscores the extensibility of our method.

Although no exact matches of epitopes were observed with Coronaviridae other than
SARS, when considering fuzzy matches or candidate epitopes, we see that fourteen B
cell epitopes had parent epitopes found in organisms other than SARS and SARS-CoV-
2. These organisms are: Murine hepatitis virus strain JHM, Feline infectious peritonitis
virus (strain KU-2), Infectious bronchitis virus, Porcine epidemic diarrhea virus, Murine
hepatitis virus strain A59, Avian infectious bronchitis virus (strain M41), Avian infectious
bronchitis virus (strain Vic S), and Porcine transmissible gastroenteritis coronavirus strain
Purdue. Additionally, 26 candidate T cell epitopes were also found to have parent epitopes
belonging to organisms other than SARS and SARS-CoV-2. These organisms are: Feline
infectious peritonitis virus (strain KU-2), Human betacoronavirus 2c EMC/2012, Feline
infectious peritonitis virus (strain 79-1146), Murine hepatitis virus, and Avian infectious
bronchitis virus (strain Vic S). We think that the similarity between regions of SARS-CoV-2
proteins and immune targets of other Coronaviridae might be relevant for investigating
viable therapeutics and refining epidemiological models to better estimate effective rate
of transmission by accounting for possibly resistant populations. The results shown in
Supplemental Figure S1 provide validation for these epitope predictions, which are further
confirmed by the fact that the top ten epitopes are found on SARS-CoV-2 Delta variant’s
Spike glycoprotein sequence.

We reported in Tables 2 and 3 a list of the most commonly observed epitopes and
marked the T cell MHC Class I epitopes. For brevity, we only discuss the top ten epitopes
for each epitope type and protein. Among the most frequent epitopes, we observed that
all derived epitopes exhibit parent epitopes belonging to SARS except for one T cell Spike
glycoprotein epitope, ISSVLNDILSRLDKVEAEVQ, which had a parent epitope from Feline
infectious peritonitis virus (strain 79-114). . The bulk of the most commonly seen epitopes
were actually original epitopes, i.e., lab confirmed epitopes found as is in SARS or SARS-
CoV-2 genomes.
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From epitope distributions and quantities in the analyzed genome cohort (Supplemen-
tal Figures S18, S19 and Supplemental Figures S16, S21, respectively), we observed stability
of epitope presence across a large set of genomes (62 K). This may provide an advantage
from the perspective of multiple downstream analysis, such as therapeutic design, in terms
of the host immune response and vaccine development or effectiveness.

In our work, we provide two approaches for selection of epitopes to better understand
inter-species homology and relevance for fundamental immunological understanding
affecting vaccine design, spread of virus, and development of more accurate epidemiologi-
cal models:

1. From sequence based clustering (Figure 1), it is possible measure the evolution rate for
a cluster by analyzing the ratio of candidate to total epitopes in a cluster. This metric
can be useful when evaluating epitope candidates for vaccines and can be used to
theoretically predict the probability of change of an epitope solely on sequence homol-
ogy. Additionally, mapping cluster presence across a genome set adds a dimension
for identifying the most suitable epitopes. Additionally, it is possible to filter by host
to study changes that might arise from a virus evolving in different hosts. Tracking
of major clusters could also enable development of statistical models to estimate a
timeline for immune response robustness.

2. By analyzing mutation density regions and immunodominance regions, it is possible
to evaluate which segments of proteins may be undergoing the fewest amino acid
changes and thus would advise the most stable regions on the protein or those
that may be evolving under selective pressure. This type of analysis combined
with studying position-based clustering could provide more insight for selection
of epitopes, as it would highlight most prevalent epitopes with consideration for
their neighbors.

Finally, we analyzed the epitope location on the 3D structure of the N and S proteins.
Figures 4 and 5 illustrate the position of the ten most commonly observed epitopes on the
3D representation of the N and the S proteins. In the N protein, 9/10 high frequency B
cell and 7/10 high frequency T cell epitopes are localized in the CTD and span different
stretches of amino acids, depending on the type of cell. In the S protein, the epitopes are
found essentially in the S2 subunit, which overall shares 91% amino acid sequence identity
with the SARS-CoV S1 subunit. In addition, the epitopes are primarily found in the HR1,
CH, and CD motifs, except for one B cell epitope located in the region upstream of the
FP. Compared to prefusion conformation of the S protein, the S postfusion conformation
seems to favor a greater exposure of the epitopes to the solvent and thus to antibody
binding. The S protein is characterized by a high density glycan surface, which can lead
to immune evasion already studied in SARS-CoV-2 and other coronaviruses [59–62]. X.
Fan et al. [63] identified the putative sites of the N-linked glycans shielding the postfusion S
protein surface. These sites are completely conserved between SARS-CoV-2 and SARS-CoV.
The combined knowledge of the position of the most commonly observed epitopes and the
glycan sites is crucial for developing broad-spectrum vaccines and therapeutics, as the S
protein is the major determinant for viral transmission. In addition, Supplemental Figure
S22 shows presence of MHC Class I epitopes on N and S proteins.

There are important synergies between the work of Grifoni et al. [7] and our study.
They performed their work in early 2020 and discussed prediction of immune targets in
the absence of lab confirmed targets to speed up vaccine design. Their approach is based
on identifying protein and genome similarities to other notable Coronaviridae that have
led to previous epidemics and pandemics, including SARS-CoV and MERS. Our work
confirms some of their results, such as the similarity between SARS-CoV and SARS-CoV-2.
Furthermore, some of the epitopes predicted by Grifoni et al. have also been predicted
and observed in our work. Nonetheless, we highlight key differences between the two
efforts. Our analysis covers a much larger set of proteins, i.e., 28 K, representing more
biological sequence diversity instead of using just reference sequences. In our analysis,
we used lab confirmed epitopes for SARS-CoV-2 protein. Finally, during MHC Class
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I epitope predictions, we observed differences in top HLA binding alleles when using
netMHC4.0, but not when MHC classification for the top ten epitopes was investigated
manually from IEDB.

5. Future Work

1. It is possible to study the proximity of epitopes to more mutation prone regions to
eliminate immune targets that otherwise may seem promising.

2. It is possible to also combine the epitope evaluation approaches discussed in Section 4 to
design a quantitative metric for evaluating and ranking epitope targets suitable for vaccine
development. Selection of stable epitopes is important, as that would enable development
of shorter vaccines and may have a positive impact on effectiveness of vaccines because
more stable immunotargets may be learned by the host immune system.

3. It would be interesting scientifically to study the presence of the top ten epitopes in
vaccine sequences.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14081837/s1, Figure S1: Percent identity of matches between
predicted and known epitopes for each cell class. Figure S2: Distribution of epitopes by organism and
protein. Figure S3: Clustering of Nucleoprotein T cell epitopes ORIGINAL + CANDIDATE and
their occurrence. Figure S4: Clustering of Nucleoprotein B cell epitopes ORIGINAL+CANDIDATE
and their occurrence. Figure S5: Clustering of Spike glycoprotein B cell epitopes ORIGINAL +

CANDIDATE and their occurrence. Figure S6: Clustermap: position based clustering of Nucleopro-
tein T cell epitopes ORIGINAL + CANDIDATE. Figure S7: Clustermap: position based clustering
of Nucleoprotein B cell epitopes ORIGINAL + CANDIDATE. Figure S8: Clustermap: position
based clustering of Spike glycoprotein B cell epitopes ORIGINAL + CANDIDATE. Figure S9: B
cell epitope presence on Spike glycoprotein. Figure S10: Mutation density on Spike glycoprotein.
Figure S11: Unknown amino Acid (X) presence proportion on Spike glycoprotein. Figure S12: T cell
epitope presence on Nucleoprotein. Figure S13: B cell epitope presence on Nucleoprotein. Figure
S14: Mutation density on Nucleoprotein. Figure S15: Unknown amino acid (X) presence proportion
on Nucleoprotein. Figure S16: Spike glycoprotein epitopes and SARS-CoV-2 genomes. Figure S17:
Spike glycoprotein epitopes and protein sequences. Figure S18: Spike glycoprotein epitopes and
SARS-CoV-2 genomes. Figure S19: Nucleoprotein epitopes and SARS-CoV-2 genomes. Figure S20:
Nucleoprotein epitopes and protein sequences. Figure S21: SARS-CoV-2 genomes vs. Nucleoprotein
epitopes. Figure S22: MHC Class I epitopes on Nucleoprotein and Spike glycoprotein T cell.

Author Contributions: A.A. conceived this work. A.A. and J.H.K. designed the experiments. A.A.,
K.L.B., G.N., G.M., S.C., J.H.K., and M.K. generated and analyzed the data. A.A., K.L.B., G.N., G.M.,
S.C., J.H.K., and S.B. wrote the manuscript. E.S. is the architect of the platform used. M.K. and
V.M. provided scientific guidance and domain knowledge. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by IBM.

Data Availability Statement: All epitope data can be obtained directly from iedb.org. All protein
sequence data can be obtained from any of the following sources:

• IBM Functional Genomics Platform (ibm.biz/functional-genomics);
• Publication regarding FGP’s annotation of SARS-CoV-2 data [46];
• Delta S sequences are in Supplemental Data SD1;
• Reference sequences for N and S are in Supplemental Data SD8.

All genome metadata can be obtained from NCBI [47] and GISAID [48] directly.
For any additional data or for raw formatted files, please reach out to the corresponding authors.

Conflicts of Interest: The authors declare no competing interests.

References
1. Sanchez-Trincado, J.L.; Gomez-Perosanz, M.; Reche, P.A. Fundamentals and methods for T-and B-cell epitope prediction. J.

Immunol. Res. 2017, 2017 . [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/v14081837/s1
https://www.mdpi.com/article/10.3390/v14081837/s1
http://doi.org/10.1155/2017/2680160
http://www.ncbi.nlm.nih.gov/pubmed/29445754


Viruses 2022, 14, 1837 23 of 25

2. Wieczorek, M.; Abualrous, E.T.; Sticht, J.; Álvaro Benito, M.; Stolzenberg, S.; Noé, F.; Freund, C. Major histocompatibility complex
(MHC) class I and MHC class II proteins: Conformational plasticity in antigen presentation. Front. Immunol. 2017, 8, 292.
[CrossRef] [PubMed]

3. Prachar, M.; Justesen, S.; Steen-Jensen, D.B.; Thorgrimsen, S.; Jurgons, E.; Winther, O.; Bagger, F.O. Identification and validation of
174 COVID-19 vaccine candidate epitopes reveals low performance of common epitope prediction tools. Sci. Rep. 2020, 10, 1–8.
[CrossRef] [PubMed]

4. Lin, L.; Ting, S.; Yufei, H.; Wendong, L.; Yubo, F.; Jing, Z. Epitope-based peptide vaccines predicted against novel coronavirus
disease caused by SARS-CoV-2. Virus Res. 2020, 288, 198082. [CrossRef] [PubMed]

5. Bahai, A.; Asgari, E.; Mofrad, M.R.K.; Kloetgen, A.; McHardy, A.C. EpitopeVec: Linear epitope prediction using deep protein
sequence embeddings. Bioinformatics 2021, 37, 4517–4525. [CrossRef] [PubMed]

6. Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using
conformational epitopes. Nucleic Acids Res. 2017, 45, W24–W29. [CrossRef] [PubMed]

7. Grifoni, A.; Sidney, J.; Zhang, Y.; Scheuermann, R.H.; Peters, B.; Sette, A. A sequence homology and bioinformatic approach can
predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe 2020, 27, 671–680. [CrossRef] [PubMed]

8. Moreira, R.S.; Filho, V.B.; Calomeno, N.A.; Wagner, G.; Miletti, L.C. EpiBuilder: A Tool for Assembling, Searching, and Classifying
B-Cell Epitopes. Bioinform. Biol. Insights 2022, 16, 11779322221095221. [CrossRef]

9. Saha, S.; Raghava, G.P.S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins Struct.
Funct. Bioinform. 2006, 65, 40–48. [CrossRef]

10. Yao, B.; Zhang, L.; Liang, S.; Zhang, C. SVMTriP: A Method to Predict Antigenic Epitopes Using Support Vector Machine to
Integrate Tri-Peptide Similarity and Propensity. PLoS ONE 2012, 7, e45152. [CrossRef] [PubMed]

11. Collatz, M.; Mock, F.; Barth, E.; Hölzer, M.; Sachse, K.; Marz, M. EpiDope: A deep neural network for linear B-cell epitope
prediction. Bioinformatics 2020, 37, 448–455. [CrossRef] [PubMed]

12. Andreatta, M.; Nielsen, M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system.
Bioinformatics 2016, 32, 511–517. [CrossRef] [PubMed]

13. Peng, Y.; Du, N.; Lei, Y.; Dorje, S.; Qi, J.; Luo, T.; Gao, G.F.; Song, H. Structures of the SARS-CoV-2 nucleocapsid and their
perspectives for drug design. EMBO J. 2020, 39, e105938. [CrossRef] [PubMed]

14. Lu, X.; Pan, J.; Tao, J.; Guo, D. SARS-CoV nucleocapsid protein antagonizes IFN-b response by targeting initial step of IFN-b
induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 2011, 42, 37–45. [CrossRef]

15. Duan, L.; Zheng, Q.; Zhang, H.; Niu, Y.; Lou, Y.; Wang, H. The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function,
and antigenicity: Implications for the design of spike-based vaccine immunogens. Front. Immunol. 2020, 576622 . [CrossRef]
[PubMed]

16. Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein.
Viruses 2012, 4, 1011–1033. [CrossRef]

17. Zuniga, S.; Cruz, J.L.; Sola, I.; Mateos-Gomez, P.A.; Palacio, L.; Enjuanes, L. Coronavirus nucleocapsid protein facilitates template
switching and is required for efficient transcription. J. Virol. 2010, 84, 2169–2175. [CrossRef] [PubMed]

18. Cong, Y.; Ulasli, M.; Schepers, H.; Mauthe, M.; V’Kovski, P.; Kriegenburg, F.; Thiel, V.; de Haan, C.A.M.; Reggiori, F. Nucleocapsid
protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. J. Virol. 2020, 94, e01925-19.
[CrossRef]

19. Surjit, M.; Liu, B.; Jameel, S.; Chow, V.T.; Lal, S.K. The SARS coronavirus nucleocapsid protein induces actin reorganization and
apoptosis in COS-1 cells in the absence of growth factors. Biochem. J. 2004, 383, 13–18. [CrossRef] [PubMed]

20. Surjit, M.; Liu, B.; Chow, V.T.; Lal, S.K. The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the
activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J. Biol. Chem. 2006,
281, 10669–10681. [CrossRef]

21. Steuler, H.; Schröder, B.; Bürger, H.; Scholtissek, C. Sequence of the nucleoprotein gene of influenza A/parrot/Ulster/73. Virus
Res. 1985, 3, 35–40. [CrossRef]

22. Chang, C.K.; Hou, M.H.; Chang, C.F.; Hsiao, C.D.; Huang, T.H. The SARS coronavirus nucleocapsid protein–forms and functions.
Antivir. Res. 2014, 103, 39–50. [CrossRef] [PubMed]

23. Chen, C.Y.; Chang, C.K.; Chang, Y.W.; Sue, S.C.; Bai, H.I.; Riang, L.; Hsiao, C.D.; Huang, T.H. Structure of the SARS coronavirus
nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA. J. Mol. Biol.
2007, 368, 1075–1086. [CrossRef] [PubMed]

24. Saikatendu, K.S.; Joseph, J.S.; Subramanian, V.; Neuman, B.W.; Buchmeier, M.J.; Stevens, R.C.; Kuhn, P. Ribonucleocapsid
formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J.
Virol. 2007, 81, 3913–3921. [CrossRef] [PubMed]

25. Lin, S.Y.; Liu, C.L.; Chang, Y.M.; Zhao, J.; Perlman, S.; Hou, M.H. Structural basis for the identification of the N-terminal domain
of coronavirus nucleocapsid protein as an antiviral target. J. Med. Chem. 2014, 63, 3131–3141. [CrossRef] [PubMed]

26. Szelazek, B.; Kabala, W.; Kus, K.; Zdzalik, M.; Twarda-Clapa, A.; Golik, P.; Burmistrz, M.; Florek, D.; Wladyka, B.; Pyrc, K.
Structural characterization of human coronavirus NL63 N protein. J. Virol. 2017, 91, e02503. [CrossRef]

http://dx.doi.org/10.3389/fimmu.2017.00292
http://www.ncbi.nlm.nih.gov/pubmed/28367149
http://dx.doi.org/10.1038/s41598-020-77466-4
http://www.ncbi.nlm.nih.gov/pubmed/33235258
http://dx.doi.org/10.1016/j.virusres.2020.198082
http://www.ncbi.nlm.nih.gov/pubmed/32621841
http://dx.doi.org/10.1093/bioinformatics/btab467
http://www.ncbi.nlm.nih.gov/pubmed/34180989
http://dx.doi.org/10.1093/nar/gkx346
http://www.ncbi.nlm.nih.gov/pubmed/28472356
http://dx.doi.org/10.1016/j.chom.2020.03.002
http://www.ncbi.nlm.nih.gov/pubmed/32183941
http://dx.doi.org/10.1177/11779322221095221
http://dx.doi.org/10.1002/prot.21078
http://dx.doi.org/10.1371/journal.pone.0045152
http://www.ncbi.nlm.nih.gov/pubmed/22984622
http://dx.doi.org/10.1093/bioinformatics/btaa773
http://www.ncbi.nlm.nih.gov/pubmed/32915967
http://dx.doi.org/10.1093/bioinformatics/btv639
http://www.ncbi.nlm.nih.gov/pubmed/26515819
http://dx.doi.org/10.15252/embj.2020105938
http://www.ncbi.nlm.nih.gov/pubmed/32914439
http://dx.doi.org/10.1007/s11262-010-0544-x
http://dx.doi.org/10.3389/fimmu.2020.576622
http://www.ncbi.nlm.nih.gov/pubmed/33117378
http://dx.doi.org/10.3390/v4061011
http://dx.doi.org/10.1128/JVI.02011-09
http://www.ncbi.nlm.nih.gov/pubmed/19955314
http://dx.doi.org/10.1128/JVI.01925-19
http://dx.doi.org/10.1042/BJ20040984
http://www.ncbi.nlm.nih.gov/pubmed/15294014
http://dx.doi.org/10.1074/jbc.M509233200
http://dx.doi.org/10.1016/0168-1702(85)90039-5
http://dx.doi.org/10.1016/j.antiviral.2013.12.009
http://www.ncbi.nlm.nih.gov/pubmed/24418573
http://dx.doi.org/10.1016/j.jmb.2007.02.069
http://www.ncbi.nlm.nih.gov/pubmed/17379242
http://dx.doi.org/10.1128/JVI.02236-06
http://www.ncbi.nlm.nih.gov/pubmed/17229691
http://dx.doi.org/10.1021/acs.jmedchem.9b01913
http://www.ncbi.nlm.nih.gov/pubmed/32105468
http://dx.doi.org/10.1128/JVI.02503-16


Viruses 2022, 14, 1837 24 of 25

27. Nguyen, T.H.V.; Lichiere, J.; Canard, B.; Papageorgiou, N.; Attoumani, S.; Ferron, F.; Coutard, B. Structure and oligomerization
state of the C-terminal region of the Middle East respiratory syndrome coronavirus nucleoprotein. Acta Crystallogr. D Struct. Biol.
2019, 75, 8–15. [CrossRef]

28. Cubuk, J.; Alston, J.J.; Incicco, J.J.; Singh, S.; Stuchell-Brereton, M.D.; Ward, M.D.; Zimmerman, M.I.; Vithani, N.; Griffith, D.;
Wagoner, J.A.; et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat. Commun.
2021, 12, 1–17. [CrossRef]

29. Zinzula, L.; Basquin, J.; Bohn, S.; Beck, F.; Klumpe, S.; Pfeifer, G.; Nagy, I.; Bracher, A.; Hartl, F.U.; Baumeister, W. High-resolution
structure and biophysical characterization of the nucleocapsid phosphoprotein dimerization domain from the Covid-19 severe
acute respiratory syndrome coronavirus 2. Biochem. Biophys. Res. Commun. 2021, 538, 54–62. [CrossRef]

30. Ye, Q.; West, A.M.V.; Silletti, S.; Corbett, K.D. Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. Protein Sci.
2020, 29, 1890–1901. [CrossRef] [PubMed]

31. Kang, S.; Yang, M.; Hong, Z.; Zhang, L.; Huanga, Z.; Chen, X.; He, S.; Zhoua, Z.; Zhoua, Z.; Chen, Q.; et al. Crystal structure
of SARS-CoV-2 nucleocapsid protein RNA domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B 2020,
10, 1228–1238. [CrossRef]

32. Cai, Y.; Zhang, J.; Xiao, T.; Peng, H.; Sterling, S.M.; Walsh, R.M.; Rawson, S.; Rits-Volloch, S.; Chen, B. Distinct conformational
states of SARS-CoV-2 spike protein. Science 2020, 369, 1586–1592. [CrossRef] [PubMed]

33. Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol. 2016, 3, 237–261. [CrossRef] [PubMed]
34. Walls, A.C.; Tortorici, M.A.; Snijder, J.; Xiong, X.; Bosch, B.J.; Rey, F.A.; Veesler, D. Tectonic conformational changes of a coronavirus

spike glycoprotein promote membrane fusion. Proc. Natl. Acad. Sci. USA 2017, 114, 11157–11162. [CrossRef] [PubMed]
35. Duquerroy, S.; Vigouroux, A.; Rottier, P.J.M.; Rey, F.A.; Bosch, B.J. Central ions and lateral asparagine/glutamine zippers stabilize

the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein. Virology 2005, 335, 276–285. [CrossRef]
36. Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of

the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [CrossRef]
37. Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2

spike glycoprotein. Cell 2020, 180, 1–12.
38. Bosch, B.J.; van der Zee, R.; de Haan, C.A.; Rottier, P.J. The coronavirus spike protein is a class I virus fusion protein: structural

and functional characterization of the fusion core complex. J. Virol. 2003, 77, 8801–8811. [CrossRef]
39. Tortorici, M.A.; Veesler, D. Structural insights into coronavirus entry. Adv. Virus Res. 2019, 105, 94–108.
40. Kielian, M. Mechanisms of virus membrane fusion proteins. Annu. Rev. Virol. 2014, 1, 171–189. [CrossRef]
41. Harrison, S.C. Viral membrane fusion. Virology 2015, 479, 498–507. [CrossRef]
42. Weissenhorn, W.; Dessen, A.; Harrison, L.J.C.S.C.; Skehel, J.J.; Wiley, D.C. Structural basis for membrane fusion by enveloped

viruses. Mol. Memb. Biol. 1999, 16, 3–9. [CrossRef]
43. Lee, W.S.; Wheatley, A.K.; Kent, S.J.; DeKosky, B.J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies.

Nat. Microbiol. 2020, 5, 1185–1191. [CrossRef]
44. Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The immune

epitope database (IEDB): 2018 update. Nucleic Acids Res. 2019, 47, D339–D343. [CrossRef] [PubMed]
45. Seabolt, E.; Nayar, G.; Krishnareddy, H.; Agarwal, A.; Beck, K.L.; Kandogan, E.; Kuntomi, M.; Roth, M.; Terrizzano, I.; Kaufman,

J.; et al. IBM Functional Genomics Platform, A Cloud-Based Platform for Studying Microbial Life at Scale. IEEE/ACM Trans.
Comput. Biol. Bioinform. 2020, 19, 940–952 . [CrossRef] [PubMed]

46. Beck, K.L.; Seabolt, E.; Agarwal, A.; Nayar, G.; Bianco, S.; Krishnareddy, H.; Ngo, T.A.; Kunitomi, M.; Mukherjee, V.; Kaufman,
J.H. Semi-Supervised Pipeline for Autonomous Annotation of SARS-CoV-2 Genomes. Viruses 2021, 13, 2426. [CrossRef]

47. Benson, D.A.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2009, 37, D26–D31. [CrossRef]
48. Elbe, S.; Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob. Challenges

2017, 1, 33–46. [CrossRef] [PubMed]
49. Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of

COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [CrossRef]
50. Finkel, Y.; Mizrahi, O.; Nachshon, A.; Weingarten-Gabbay, S.; Morgenstern, D.; Yahalom-Ronen, Y.; Tamir, H.; Achdout, H.; Stein,

D.; Israeli, O.; et al. The coding capacity of SARS-CoV-2. Nature 2021, 589, 125–130. [CrossRef]
51. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.

[CrossRef]
52. Karlin, S.; Altschul, S.F. Methods for assessing the statistical significance of molecular sequence features by using general scoring

schemes. Proc. Natl. Acad. Sci. USA 1990, 87, 2264–2268. [CrossRef] [PubMed]
53. Comber, J.D.; Philip, R. MHC class I antigen presentation and implications for developing a new generation of therapeutic

vaccines. Ther. Adv. Vaccines 2014, 2, 77–89. [CrossRef] [PubMed]
54. Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; et al.

UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2016, 45, D158–D169. [CrossRef] [PubMed]
55. Katoh, K.; Misawa, K.; Kuma, K.I.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast

Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [CrossRef] [PubMed]
56. Humphrey, W.; Dalke, A.; Schulten, K. VMD – Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]

http://dx.doi.org/10.1107/S2059798318014948
http://dx.doi.org/10.1038/s41467-021-21953-3
http://dx.doi.org/10.1016/j.bbrc.2020.09.131
http://dx.doi.org/10.1002/pro.3909
http://www.ncbi.nlm.nih.gov/pubmed/32654247
http://dx.doi.org/10.1016/j.apsb.2020.04.009
http://dx.doi.org/10.1126/science.abd4251
http://www.ncbi.nlm.nih.gov/pubmed/32694201
http://dx.doi.org/10.1146/annurev-virology-110615-042301
http://www.ncbi.nlm.nih.gov/pubmed/27578435
http://dx.doi.org/10.1073/pnas.1708727114
http://www.ncbi.nlm.nih.gov/pubmed/29073020
http://dx.doi.org/10.1016/j.virol.2005.02.022
http://dx.doi.org/10.1126/science.abb2507
http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003
http://dx.doi.org/10.1146/annurev-virology-031413-085521
http://dx.doi.org/10.1016/j.virol.2015.03.043
http://dx.doi.org/10.1080/096876899294706
http://dx.doi.org/10.1038/s41564-020-00789-5
http://dx.doi.org/10.1093/nar/gky1006
http://www.ncbi.nlm.nih.gov/pubmed/30357391
http://dx.doi.org/10.1109/TCBB.2020.3021231
http://www.ncbi.nlm.nih.gov/pubmed/32877338
http://dx.doi.org/10.3390/v13122426
http://dx.doi.org/10.1093/nar/gkn723
http://dx.doi.org/10.1002/gch2.1018
http://www.ncbi.nlm.nih.gov/pubmed/31565258
http://dx.doi.org/10.1016/S2213-2600(20)30076-X
http://dx.doi.org/10.1038/s41586-020-2739-1
http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1073/pnas.87.6.2264
http://www.ncbi.nlm.nih.gov/pubmed/2315319
http://dx.doi.org/10.1177/2051013614525375
http://www.ncbi.nlm.nih.gov/pubmed/24790732
http://dx.doi.org/10.1093/nar/gkh131
http://www.ncbi.nlm.nih.gov/pubmed/14681372
http://dx.doi.org/10.1093/nar/gkf436
http://www.ncbi.nlm.nih.gov/pubmed/12136088
http://dx.doi.org/10.1016/0263-7855(96)00018-5


Viruses 2022, 14, 1837 25 of 25

57. Kouranov, A.; Xie, L.; de la Cruz, J.; Chen, L.; Westbrook, J.; Bourne, P.E.; Berman, H.M. The RCSB PDB information portal for
structural genomics. Nucleic Acids Res. 2006, 34, D302–D305. [CrossRef]

58. Berman, H.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.; Weissig, H.; Shindyalov, I.; Bourne, P. The Protein Data Bank. Nucleic
Acids Res. 2020, 28, 235–242. [CrossRef]

59. Watanabe, Y.; Allen, J.D.; Wrapp, D.; McLellan, J.S.; Crispin, M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science
2020, 369, 330–333. [CrossRef]

60. Watanabe, Y.; Berndsen, Z.T.; Raghwani, J.; Seabright, G.E.; Allen, J.D.; Pybus, O.G.; McLellan, J.S.; Wilson, I.A.; Bowden, T.A.;
Ward, A.B.; et al. Vulnerabilities in coronavirus glycan shields despite extensive glycosylation. Nat. Commun. 2020, 11, 26883.
[CrossRef]

61. Yang, T.J.; Chang, Y.C.; Ko, T.P.; Draczkowski, P.; Chien, Y.C.; Chang, Y.C.; Wu, K.P.; Khoo, K.H.; Chang, H.W.; Hsu, S.T.D.
Cryo-EM analysis of a feline coronavirus spike protein reveals a unique structure and camouflaging glycans. Proc. Natl. Acad. Sci.
USA 2020, 117, 1438–1446. [CrossRef] [PubMed]

62. Walls, A.C.; Xiong, X.; Park, Y.J.; Tortorici, M.A.; Snijder, J.; Quispe, J.; Cameroni, E.; Gopal, R.; Dai, M.; Lanzavecchia, A.; et al.
Unexpected Receptor Functional Mimicry Elucidates Activation of Coronavirus Fusion. Cell 2019, 176, 1026–1039.e15. [CrossRef]
[PubMed]

63. Fan, X.; Cao, D.; Kong, L.; Zhang, X. Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein. Nat.
Commun. 2020, 11, 3618. [CrossRef] [PubMed]

http://dx.doi.org/10.1093/nar/gkj120
http://dx.doi.org/10.1093/nar/28.1.235
http://dx.doi.org/10.1126/science.abb9983
http://dx.doi.org/10.1038/s41467-020-16567-0
http://dx.doi.org/10.1073/pnas.1908898117
http://www.ncbi.nlm.nih.gov/pubmed/31900356
http://dx.doi.org/10.1016/j.cell.2018.12.028
http://www.ncbi.nlm.nih.gov/pubmed/30712865
http://dx.doi.org/10.1038/s41467-020-17371-6
http://www.ncbi.nlm.nih.gov/pubmed/32681106

	Introduction
	Methods
	Description of Data Used
	Immune Epitope Database
	SARS-CoV-2 Genomic Data

	Protein Sequence Diversity Analysis
	Identification of Conserved Epitope Sequences
	Identification of Candidate Epitope Sequences
	Identification of T Cell MHC Class I Epitopes
	Summary Statistics
	Epitope Clustering and Classes
	Identification of Epitopes on Protein
	Mutations in Proteins Affecting Epitopes and Mutation Density
	Epitope Distribution across Protein
	Epitope Localization on Protein Structure

	Result Verification

	Results
	Protein Sequence Diversity Analysis
	Epitope Sequences
	T Cell MHC Class I Peptides
	Epitopes on Protein
	Mutations in Proteins Affecting Epitopes
	Epitope Distribution across Protein
	Epitope Localization on Protein Structure


	Discussion
	Future Work
	References

