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Abstract: This study aimed to investigate the molecular
mechanism under the pathophysiology of subarachnoid
hemorrhage (SAH) and identify the potential biomarkers
for predicting the risk of SAH. Differentially expressed
mRNAs (DEGs), microRNAs, and lncRNAs were screened.
Protein–protein interaction (PPI), drug–gene, and com-
peting endogenous RNA (ceRNA) networks were constructed
to determine candidate RNAs. The optimized RNAs signature
was established using least absolute shrinkage and selection
operator and recursive feature elimination algorithms. A
total of 124 SAH-related DEGs were identified, and were
enriched in inflammatory response, TNF signaling pathway,
and others. PPI network revealed 118 hub genes such as
TNF, MMP9, and TLR4. Drug–gene network revealed that
chrysin targeted more genes, such as TNF and MMP9.
JMJD1C-AS-hsa-miR-204-HDAC4/SIRT1 and LINC01144-hsa-
miR-128-ADRB2/TGFBR3 regulatory axes were found from
ceRNA network. From these networks, 125 candidate RNAs
were obtained. Of which, an optimal 38 RNAs signatures (2
lncRNAs, 1 miRNA, and 35 genes) were identified to con-
struct a Support Vector Machine classifier. The predictive
value of 38 biomarkers had an AUC of 0.990. Similar pre-
dictive performancewas found in external validation dataset
(AUC of 0.845). Our findings provided the potential for 38
RNAs to serve as biomarkers for predicting the risk of SAH.
However, their application values should be further vali-
dated in clinical.
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1 Introduction

Intracranial aneurysm (IA) is one of the common neuro-
logical diseases, and its incidence rate in the general
population is approximately 5% [1]. IA is characterized
by localized dilation or ballooning of a cerebral artery.
Once an IA ruptures, a subarachnoid hemorrhage (SAH)
typically develops [2,3]. SAH is a severe subtype of stroke,
occurring in people about 50 years old [4]. Previous research
revealed that environmental exposures and genetic predis-
position play a role in the susceptibility of SAH, and the
estimated heritability is about 40% [5]. Recently, despite
considerable advances in therapy for IAs, SAH remains a
highly challenging condition associated with a high socio-
economic burden [6,7]. SAH is a critical disease that has
to be treated immediately. Therefore, an in-depth under-
standing of the molecular mechanism of SAH is necessary
for the treatment of SAH. In addition, early screening and
early active management and prevention of SAH help to
reduce the mortality and disability rate of SAH patients.
For these two purposes, this study was designed to investi-
gate the molecular mechanism under the pathophysiology
of SAH and to identify potential biomarkers that could pre-
dict the risk of SAH.

With the development of bioinformatics, gene expres-
sion profiling has been widely used to identify the biomar-
kers for the diagnosis and treatment of SAH [8]. Wang
et al. found that six hub genes, BASP1, CEBPB, ECHDC2,
GZMK, KLHL3, and SLC2A3, were determined as biomar-
kers to assess the progression and rupture of IAs [3]. It is
known that long non-coding RNAs (lncRNAs) interact with
mRNAs, and microRNAs (miRNAs) regulate many pro-
cesses, such as transcription, translation, regulation of
cell differentiation and cell cycle [9]. Interestingly, non-
coding RNAs, comprising miRNAs and lncRNAs, play an
important role in IAs and SAH [10]. Besides, lncRNAs
detected from the biological fluids may be used as non-
invasive biomarkers for the diagnosis and prognosis of IAs
and SAH [11]. For instance, lncRNA MALAT1 expression
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was independently associated with the poor overall sur-
vival for IAs, and the overexpression ofMALAT1 predicted
an higher risk of death in IA patients [12]. Circulating
miRNAs (such as miR-16 and miR-25) may be novel bio-
logical markers that are useful in assessing the likelihood
of IA occurrence [13]. Unfortunately, because of poor
understanding of the mechanisms of SAH, current diag-
nosis and treatment of SAH can be inconsistent and/or
ineffective [14,15]. Especially, the effects of core RNAs on
the progression and prognosis of SAH patients have not
been fully identified.

In the present research, we aimed to screen the SAH-
related RNAs as biomarkers to provide new insights for
the early screening, diagnosis, and treatment of SAH. For
this aim, GSE36791 [16] and GSE73378 [15] datasets from
the Gene Expression Omnibus (GEO) database were rea-
nalyzed. A flowchart presenting the experimental design
of this study is illustrated in Figure 1.

2 Materials and methods

2.1 Data collection and preprocessing

The microarray datasets searched by terms of “subarach-
noid hemorrhage” and “Homo sapiens” were acquired in
the GEO database as of 2 January 2021. For the purpose of
this research, the dataset screening criteria were as fol-
lows: (1) blood samples; (2) samples of SAH patients and
controls; and (3) the total number of samples >50. There
were two datasets meeting the screening criteria, GSE73378
[15] and GSE36791 [16] datasets. The GSE73378 dataset had
a total of 226 samples, of which 210 blood samples including
103 SAH samples and 107 control samples were analyzed in
this study. GSE36791 dataset had a total of 61 blood samples
including 43 SAH samples and 18 control samples. The
platform of these two datasets was GPL10558 Illumina
HumanHT-12 V4.0 expression beadchip. The corresponding

Figure 1: Flow diagram of the present study.
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platform annotation files were downloaded from Ensembl
genome browser 96 database. Then, the probes in the two
datasets were annotated to lncRNAs, miRNAs, and mRNAs
based on the annotation files. Of the two datasets, all the
analyses were performed based on GSE73378 dataset, and
GSE36791 was used just for validation of the expression and
predictive performance of the selected feature RNAs.

2.2 Assessment of differentially
expressed RNAs

In GSE73378 dataset, the differentially expressed mRNAs
(DEGs), miRNAs (DEMs), and lncRNAs (DELs) from SAH
samples andnormal sampleswere analyzedusing the limma
package (Version 3.34.7) [17] in R 3.6.1 language. The cutoff
for differentially expressed RNAs (RNAs) screening was a
false discovery rate (FDR) < 0.05 and |log2FC| > 0.263 (1.2
fold changes). Euclidean distance-based two-way hierarchi-
cal clustering analysis [18,19] was performed for the identi-
fiedDERsusing thepheatmappackage (Version 1.0.8) [20] in
R 3.6.1 language.

2.3 SAH-related DEGs screening and
functional enrichment analysis

SAH-associated genes were downloaded from DisGeNET
database [21] by term of “subarachnoid hemorrhage.”
The SAH-associated genes from DisGeNET database were
used as the reference gene sets, gene set enrichment ana-
lysis was performed for all genes detected in GSE73378
dataset (genes were ranked by corresponding log FC value)
using GSEA software (http://software.broadinstitute.org/
gsea/index.jsp) [22] to further identify SAH-associated
genes from GSE73378 dataset. Then, the obtained SAH
disease-related genes were merged with DEGs, and the
overlapped genes were selected as the SAH-related DEGs.
The SAH-related DEGs were used to perform Gene Ontology
(GO) enrichment analysis (biological process) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses
with the DAVID online tool (version 6.8) [23,24]. FDR <
0.05 was considered to be significantly enriched.

2.4 Construction of protein–protein
interaction (PPI) network

Interactions among the protein-coding genes in SAH-
related DEGs were retrieved from the STRING database
(Version 11.0) [25] with PPI score of 0.4. PPI network was

visualized using Cytoscape software (Version 3.6.1) [26]
based on interaction pairs.

2.5 Construction of the drug–gene network

Connectivity Map (CMap) resource was created to connect
human diseases with the genes that underlie them and
drugs that treat them. CMap is the first installment of a
reference collection of gene-expression profiles from cul-
tured human cells treated with small bioactive mole-
cules, for uncovering the functional connections among
diseases, genetic perturbation, and drug action [27,28].
The Comparative Toxicogenomics Database (CTD) is a
public resource based on published literature, manually
curated associations among genes, chemicals, pheno-
types, diseases, and environmental exposures [29]. To
predict the small molecule drugs that target the SAH-
related DEGs, both CMap and CTD were used. First,
SAH-related DEGs were searched from CMap database
to obtain the drug molecule–gene interactions. Second,
the SAH-related DEGs were uploaded to CTD database to
obtain the drug molecule–gene interactions. Then, the
overlapped drug molecule–gene interactions from the
two databases were selected. Finally, the drug–gene net-
work was visualized based on the selected drug mole-
cule–gene interactions using Cytoscape 3.6.1 software.

2.6 Construction of competing endogenous
RNA (CeRNA) network

The connection relationship between DELs and DEMs
was constructed by the DIANA-LncBase v2 database [30],
and the lncRNA–miRNA interactions with negative corre-
lations of their expression level were selected. The DEMs-
associated target genes (miRNA–mRNA) were predicted
using five miRNA databases including TargetScan Ver-
sion7.2 [31], picTar [32], miRanda [33], RNA22 [34], and
PITA [35]. The miRNA–target gene interaction pairs were
selected if they were predicted in more than three data-
bases and were further filtered by SAH-related DEGs.
Finally, the ceRNA network was established by integrating
lncRNA–miRNA interactions and miRNA–mRNA interac-
tions using Cytoscape 3.6.1 software.

2.7 Screening of optimal RNAs signature

All RNAs (mRNAs, miRNAs, and lncRNAs) contained in
these three networks were used to screen characteristic
RNAs by two different algorithms: least absolute shrinkage
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and selection operator (LASSO) and recursive feature elim-
ination (RFE). In brief, R 3.6.1 lars package (Version 1.2,
https://cran.r-project.org/web/packages/lars/index.html)
[36] was used to perform the regression analysis to screen
characteristic RNAs. The RFE algorithm in the R 3.6.1 caret
package (Version 6.0-76, https://cran.r-project.org/web/
packages/caret) [37] was also used to screen the optimal
characteristic RNAs. Then, we compared the results of the
two algorithms and selected the overlapping RNAs as the
final feature RNAs signature.

2.8 Evaluation and validation of optimal
RNAs signature

We first extracted the expression of the optimal feature
RNAs from GSE73378 dataset and GSE36791 dataset. Their
expression levels in SAH and normal samples were dis-
played. Afterward, the Support Vector Machine (SVM)
from R 3.6.1 e1071 (Version 1.6-8, https://cran.r-project.
org/web/packages/e1071) [38] was used to construct the
SVM classifier based on the optimal feature RNAs signature
(Core: Sigmoid Kernel; Cross: 100-fold cross-validation). Both

GSE73378 dataset and GSE36791 dataset were used for classi-
fier construction. Receiver operating characteristic (ROC)
curve analysis was performed with R 3.6.1 pROC (Version
1.12.1, https://cran.r-project.org/web/packages/pROC/
index.html) [39] to calculate the performance of the SVM
classifier for SAH. The R codes used in this study have
been provided in an additional file.

3 Results

3.1 Differentially expressed RNAs in SAH

A total of 920 lncRNAs, 351 miRNAs, and 14,898 mRNAs
were annotated. Then, 663 differentially expressed RNAs
(including 17 DELs, 25 DEMs, and 621 DEGs) were identi-
fied based on the cutoff value of |log2 FC| > 0.263 and
FDR < 0.05. Of which 228 RNAs were upregulated, and
435 were downregulated (Figure 2a). The pheatmap showed
samples could be obviously distinguished into SAH and
normal groups based on the differential expression level
of DERs (Figure 2b).

Figure 2: Differentially expressed RNAs analysis. (a) Volcano plot of DERs identified using the edgeR package. Red and green points
indicated upregulated and downregulated DERs, respectively (|log2 FC| > 0.263), FC: fold change. (b) Pheatmap of DERs. Black and white
color indicated the samples from patients with SAH and controls, respectively.
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Figure 3: Identification of differentially expressed genes related with SAH. (a) Gene set enrichment analysis (GSEA) identified SAH-related
genes. (b) The significantly enriched biological processes and (c) KEGG pathways.
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3.2 SAH-related DEGs identification and
function enrichment

From the DisGeNET database, a total of 470 genes asso-
ciated with SAH were obtained. Then, GSEA was per-
formed for all genes in SAH with the reference gene
sets of SAH-associated genes from DisGeNET, and a total
of 354 SAH-related genes were obtained (Figure 3a). Next
the 354 SAH-related genes were compared with 621 DEGs,
and a total of 124 overlapping genes were obtained as
SAH-related DEGs. Enrichment analysis showed that these
genes were enriched in 106 GO-biological processes, such
as GO:0071260 – cellular response tomechanical stimulus,
GO:0045944– positive regulation of transcription from RNA
polymerase II promoter, GO:0048661– positive regulation
of smooth muscle cell proliferation, GO:0006954– inflam-
matory response, and GO:0001666– response to hypoxia
(Figure 3b). In addition, 43 KEGG pathways were signifi-
cantly enriched for these genes, including hsa05200: pathways
in cancer, hsa04668: TNF signaling pathway, hsa04010:MAPK
signaling pathway, hsa04066: HIF-1 signaling pathway, and
hsa04068: FoxO signaling pathway (Figure 3c).

3.3 Construction of PPI network

The SAH-related DEGs were entered into the STRING
database, and a total of 830 PPI networks were generated.
The PPI network, including 118 gene nodes, was con-
structed as shown in Figure 4a. The first ten hub genes,
TNF, AKT1, TP53, MMP9, TLR4, STAT3, IL1B, TLR2, MYC,
and CXCR4, were screened with the highest degree.

3.4 Construction of the drug–gene network

FromCMAPdatabase, a total of 23 chemicalswere obtained to
target SAH-related DEGs with the threshold of |Pearson R| >
0.75 and P < 0.05. The drug–gene pairs related to these
23 chemicals were further selected from the CTD database,
and a total of 22 drug–gene pairs were obtained to establish
a drug–gene network (Figure A1, Table A1). The network
contained ten upregulated genes, five downregulated genes,
and five small molecule drugs (coralyne, alexidine, enilco-
nazole, chrysin, and arachidonyltrifluoromethane). Chrysin
was found to target more genes, such as TNF, AKT1, and
MMP9.

3.5 CeRNA network construction

Using the DIANA-LncBase v2 database, seven lncRNA–miRNA
interactions involving three miRNAs and five lncRNAs with
the negative correlation of their expression levels were
obtained. Then, the target genes were predicted for 3
miRNAs in lncRNA–miRNA interactions, and then the
target genes were filtered by SAH-related DEGs, and a total
of 21 pairs of miRNA–mRNA connections were found.
The ceRNA network was established via integration
with lncRNA–miRNA and miRNA–mRNA interactions
(Figure 4b). The ceRNA network comprised 29 nodes,
including 5 lncRNAs, 3 miRNAs, and 21 mRNAs. Notably,
upregulated JMJD1C-AS1 may function as a ceRNA to
suppress the inhibitory effects of hsa-miR-204 on HDAC4
and SIRT1, thus leading to their upregulated expression.
Similarly, upregulated MEG3 may regulate the expression
of TGFBR3 and GSK3B by binding to hsa-miR-128. In addi-
tion, LINC01144 – hsa-miR-128 – ADRB2/TGFBR3 regula-
tory axis was found. We further performed correlation
analysis for lncRNA and their associated mRNAs in ceRNA
network (Table A2), and weak positive correlations were
found. There was a significant positive correlation between
LINC01287 and STAT3 (r = 0.35; p < 0.01), indicating that
LINC01287 – hsa-miR-204 – STAT3 was a potential impor-
tant ceRNA regulatory axis.

3.6 Screening and verification of SAH-
related RNAs

LASSO and RFE algorithms were used to screen charac-
teristic RNAs signatures from all RNAs in the three net-
works. In the training set (GSE73378), a total of 90 RNAs
and 52 RNAs were obtained using LASSO and RFE, respec-
tively (Figure 5a and b). Furthermore, a total of 38 over-
lapping RNAs were obtained as optimal characteristic RNAs
signature, including 2 lncRNAs (JMJD1C-AS1 and LINC01144),
1 miRNA (hsa-miR-510), and 35 genes (TLR4,MMP9, ADRB2,
TGFBR3, among others) (Table 1). The expression levels of
the optimal characteristic RNAs signature in SAH and normal
samples are displayed in Figure 6a and b. Only the two
lncRNAs, one miRNA, and top ten mRNAs (ranking by log
FC) were displayed. In the GSE73378 dataset, all the 13 RNAs
were significantly differentially expressed in the SAH sample
compared to that of control samples (Figure 6a). While, in
the GSE36791 dataset, the two lncRNAs (JMJD1C-AS1 and
LINC01144), hsa-miR-510, and mRNAs (KLF4 and TRPM4)
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showed no statistical difference on their expression levels
between SAH and normal samples (Figure 6b).

To validate the diagnostic ability of the optimal char-
acteristic RNAs signature, the SVM classifier were con-
structed in GSE73378 dataset, which showed well predictive
value for SAH patients with an AUC of 0.990 (Figure 6c).

The predictive value of these optimal characteristic RNAs
signature was further validated in an external independent
dataset (GSE36791). The SVM classifier still showed better
performance with an AUC of 0.845 (Figure 6d). The results
showed that the RNAs had a robust and stable predictive
ability for SAH.

Figure 4: Networks construction. (a) The PPI network. The change in the color of the node from green to red indicates the change in the
degree of significant difference from significantly down to up; the size of the node indicates the degree of connectivity of the node in the
network. (b) The ceRNA network. Square, triangle, and circle represent lncRNA, miRNA, and mRNA, respectively. The change in the color of
the node from green to red indicated the change in log FC from low to high.
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4 Discussion

This study aimed to discover effective diagnosis bio-
markers for SAH by the analysis of sequencing data, which
have the potential to guide future clinical and basic med-
ical studies. In the present research, we first identified 621
DEGs, of which 124 SAH-related DEGs were obtained using
DisGeNET and GSEA. These genes were enriched in the
inflammatory response, cellular response to mechanical sti-
mulus, TNF signaling pathway, and cancer-related path-
ways. Increasing studies have revealed that IA is closely
related to the inflammatory response [40,41]. Moreover,
inflammation and immune response have also been found
to potentially contribute to the formation of IA [42]. Among
these pathways associated with SAH, some studies have
also confirmed the role of the TNF signaling pathway in
diseases including SAH. The potential of TNF-α inhibitors
has been reported to impact the pathogenesis of aneurismal
SAH, and the TNF-α signaling pathway has been found to
play an important role in the pathogenesis of SAH [43]. In
IAs, TNF-αwas up-expressed in wall tissues and associated
with the type and diameter of the aneurysm [44]. According
to these studies, we speculated that the TNF signaling
pathway was implicated in SAH development.

PPI network for SAH-related DEGs showed that TNF,
MMP9, and TLR4 were hub genes. It has been reported
that venous levels of TNF-R1 were associated with poor
outcomes at 6 months for SAH [45], and down-regulating
TNF-α can inhibit the formation of IAs in vivo [44]. Thus,
decreasing TNF expression may have the potential to
inhibit SAH. MMP9 was found to be associated with
TLR4 signaling activation, and downregulating MMP9
induced by LPS has a neuroprotective effect on brain

injury caused by SAH [46]. In addition, TLR4 is a key
player in the regulation of inflammation, and it has
been found to be correlated with poor prognosis in SAH
[47]. Our present results also confirmed that TLR4 was
up-expressed in SAH. Subsequently, by constructing a
ceRNA network, it was suggested that the downregulated
lncRNA MEG3 may be particularly important for SAH, as
it may function as a ceRNA for upregulating hsa-miR-128
expression, thus leading to the downregulation of ADRB2
and TGFBR3. Previous studies have shown that MEG3 is
highly expressed in SAH, and MEG3 may promote SAH-
induced neuronal cell injury by inhibiting the PI3K/AKT
signaling pathway [48]. However, MEG3 has also been
found to promote platelet phagocytosis by decreasing miR-
128 expression to protect VECs from senescence [49]. To the
best of our knowledge, the regulatory mechanisms ofMEG3
in SAH need further experimental confirmation. Further-
more, TGFBR3 is involved in the activation of the TGF-β
signaling pathway, and TGFBR3 is downregulated in pan-
creatic ductal adenocarcinoma cells [50]. In present data,
TGFBR3 was downregulated in SAH, and overexpression of
TGRBR3 may be an important therapeutic target in SAH
treatment.

We identified 38 optimal characteristic RNAs signatures
from the RNAs in these networks, which were used to con-
struct the SVM classifier. The results of ROC curves investi-
gated that these RNAs (such as JMJD1C-AS1, LINC01144,
hsa-miR-510,TLR4,ADRB2,TGFBR3, and so on)werepotential
biomarkers for predicting SAH.MiR-510 has been reported to
be significantly downregulated in ovarian serous carcinoma
(OSC), and it is a novel candidate biomarker for predicting
the symptoms of OSC [51]. However, the role ofmiR-510 and
lncRNAs, JMJD1C-AS1 and LINC01144, in SAH has not been

Figure 5: The optimal RNAs signature screened by the LASSO and RFE algorithms. (a) The standardized coefficients in LASSO algorithm; (b)
cross-validation showed best accuracy at the variables of 90 in RFE.
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reported. LINC01144-hsa-miR-128-ADRB2/TGFBR3 regula-
tory axis was found from our ceRNA network, LINC01144
may play a role in SAH by regulating ADRB2 and TGFBR3
expression. ADRB2 encodes adrenoceptor beta 2. Adreno-
ceptor polymorphisms are associated with an increased
risk of cardiac abnormalities after SAH [52], β-adreno-
ceptor antagonists have been found to suppress the eleva-
tion of IL-6 after SAH in rats [53]. TGFBR3 is a transforming
growth factor (TGF) beta receptor. TGF-β1/Smad/CTGF
pathwaywas inhibited by rhDecorin to prevent development
of hydrocephalus after SAH [54]. Knockdown of TGF-β1 in
human umbilical cord-derived mesenchymal stem cells could
attenuate SAH-induced chronic hydrocephalus, upregulation

of inflammatory cytokines, and other behavioral changes [55].
Considering the important role ofADRB2 and TGFBR3 in SAH,
we speculated that LINC01144 was involved in the develop-
ment of SAH. However, elucidation of the roles of these
lncRNAs associated with the screening and prevention of
patients with SAH requires further investigation.

We suggested that these identified RNA biomarkers
could help doctors to predict the risk of SAH and inter-
vene as soon as possible. Although the feature RNAs were
identified just based on the GSE73378 dataset, these fea-
ture RNAs still showed well predictive performance in
another dataset with different inclusion criteria for patients
(patients had the last episode of aneurysmal SAH at least

Table 1: The optimal 38 RNAs signature (including 2 lncRNAs, 1 miRNA, and 35 genes) screened by LASSO and RFE algorithms

ID Symbol Type Log2 FC P value FDR Regulation (up/down)

ILMN_1677589 JMJD1C-AS1 lncRNA 0.297887125 5.10 × 106 0.004133736 Up
ILMN_1690382 LINC01144 lncRNA −0.269639525 2.14 × 106 0.00173673 Down
ILMN_3310690 hsa-miR-510 miRNA −0.28978015 5.83 × 106 0.004725453 Down
ILMN_1662809 SETD2 mRNA −0.273252525 0.000143801 0.009318308 Down
ILMN_1666924 PINK1 mRNA 0.349209875 0.000468661 0.030369229 Up
ILMN_1671054 HLA-A mRNA 0.27793335 0.000577726 0.037436671 Up
ILMN_1671818 UTS2 mRNA −0.304786475 0.000176825 0.011458233 Down
ILMN_1677511 PTGS2 mRNA 0.2805209 0.000522788 0.033876642 Up
ILMN_1677532 TARDBP mRNA −0.3606863 9.19 × 105 0.005955158 Down
ILMN_1679401 TRPM4 mRNA 0.350872575 1.62 × 105 0.001051006 Up
ILMN_1680424 CTSG mRNA −0.425172725 0.000364996 0.023651752 Down
ILMN_1680453 ITM2C mRNA −0.50531015 4.88 × 105 0.039519664 Down
ILMN_1680618 MYC mRNA 0.2905886 0.000607897 0.039391751 Up
ILMN_1689734 IL1RN mRNA 0.341397425 0.000695521 0.045069739 Up
ILMN_1695590 ADRB2 mRNA −0.3777768 0.000218822 0.014179666 Down
ILMN_1703617 AHSA1 mRNA −0.271606475 0.000419963 0.027213615 Down
ILMN_1706217 TLR4 mRNA 0.464493425 9.57 × 105 0.006198665 Up
ILMN_1708934 ADM mRNA 0.772645425 1.71 × 105 0.013866249 Up
ILMN_1710410 CHRM3 mRNA −0.27857305 7.68 × 105 0.004974289 Down
ILMN_1715715 CEBPA mRNA −0.304131125 0.000418064 0.027090539 Down
ILMN_1722622 CD163 mRNA 0.27239935 0.000605937 0.039264732 Up
ILMN_1728197 CLDN5 mRNA 0.32183615 0.000479949 0.031100715 Up
ILMN_1729161 NOTCH1 mRNA 0.30529195 5.49 × 105 0.044479822 Up
ILMN_1734830 MTHFR mRNA −0.28369415 3.74 × 105 0.03025829 Down
ILMN_1748661 AKT1 mRNA 0.276206975 0.000242712 0.015727718 Up
ILMN_1760778 ENG mRNA −0.2935118 0.000170384 0.011040888 Down
ILMN_1779857 KLF4 mRNA 0.374529375 0.000160395 0.010393626 Up
ILMN_1783889 PRKAA1 mRNA 0.2661743 1.77 × 105 0.014369739 Up
ILMN_1784287 TGFBR3 mRNA −0.509380675 0.0001915 0.01240917 Down
ILMN_1787386 ADAMTS13 mRNA 0.2707362 4.82 × 105 0.003125726 Up
ILMN_1791847 DAPK2 mRNA −0.297182 0.000465953 0.030193776 Down
ILMN_1796180 CRY2 mRNA −0.294307375 4.04 × 106 0.003268646 Down
ILMN_1796316 MMP9 mRNA −0.6874905 0.000225147 0.01458955 Down
ILMN_1800425 SLC9A1 mRNA −0.319644675 0.000369868 0.023967444 Down
ILMN_1809613 NGEF mRNA −0.28343285 9.99 × 105 0.006473637 Down
ILMN_1814327 AGTR1 mRNA −0.29794675 9.43 × 105 0.006112184 Down
ILMN_1815057 PDGFRB mRNA −0.338885 3.48 × 105 0.002256956 Down
ILMN_2267914 CD68 mRNA −0.305515875 0.000622021 0.040306975 Down
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two years in GSE73378 dataset, while this is not mentioned
in GSE36791 dataset), which further indicated the stability
and reliability of feature RNAs in predicting risk of SAH.
Additionally, though the expression and predictive value
of these feature RNAs have been validated using another
external independent dataset (GSE36791), experimental
verification is still indispensable in the future. In addition,
the clinical value of these biomarkers should be further
confirmed.

5 Conclusion

In summary, gene expression profile analysis revealed a large
scale of expression pattern changes in RNAs under the patho-
physiology of SAH, and they were mainly implicated in the

inflammatory response, TNF signaling pathway. We further
identified 38 RNAs, including 2 lncRNAs (JMJD1C-AS1 and
LINC01144), 1 miRNA (hsa-miR-510), and 35 genes (TLR4,
ADRB2, TGFBR3, among others) as potential blood biomar-
kers for screening patients with SAH. This 38 RNAs signature
had a better predictive performance for SAH risk. LINC01144
might regulate ADRB2/TGFBR3 expression by sponging hsa-
miR-128. These findings of the present study contributed to
understanding the molecular mechanism of SAH deeply and
also provided the potential biomarkers for the screening and
prevention of SAH. However, their application values should
be further validated in clinical.
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Figure 6: Screening and verification of SAH-related RNAs. The expression of SAH-related RNAs in the (a) GSE73378 and (b) GSE36791
datasets. *P < 0.05; 0.005 <**P < 0.05; ***P < 0.005. ROC curves for SVM classifier constructed by 38 RNAs in the (c) GSE73378 and (d)
GSE36791 datasets, respectively.
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Appendix

Figure A1: The drug–gene network. Circles and diamonds represent genes and chemicals, respectively. Red color represented the upre-
gulated gene, and green represented a downregulated gene.
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Table A2: Correlation analysis results for lncRNA and their asso-
ciated mRNAs in ceRNA network

DElncRNA DEmRNA P value Cor

LINC01287 STAT3 0.002185022 0.346095443
LINC01144 RABGEF1 0.01566732 0.076406814
MEG3 ENO2 0.035022817 0.0051276
LINC00305 DENR 0.07519792 0.171671465
LINC01144 GORASP1 0.103475631 0.012136242
MEG3 GSK3B 0.115897555 0.22090058
JMJD1C-AS1 HDAC4 0.132741279 0.146195814
LINC01287 CXCR4 0.147614043 0.146372974
LINC01144 SETD2 0.154924645 0.031606782
LINC00305 CD44 0.16762594 0.030003851
MEG3 MNT 0.194071109 0.17576912
LINC00305 RPS6KA5 0.29245268 0.015048382
LINC00305 TXNIP 0.412733498 0.015264142
MEG3 GORASP1 0.414505273 0.214254126
JMJD1C-AS1 CXCR4 0.425698672 0.192223608
MEG3 ADRB2 0.439984979 0.254273266
JMJD1C-AS1 BIRC2 0.472841434 0.170991838
LINC00305 SIRT1 0.538544746 0.00332312
JMJD1C-AS1 STAT3 0.554945082 0.086126879
JMJD1C-AS1 HIF1A 0.695596063 0.035741985
MEG3 RABGEF1 0.708916655 0.175062031
LINC00305 CXCR4 0.746472986 0.199083358
LINC00305 TGFBR2 0.759578309 0.038602594
LINC00305 BIRC2 0.8264802 0.066127226
MEG3 TGFBR3 0.862145773 0.160751671
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