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Diagnostic identification of chronic 
insomnia using ALFF and FC 
features of resting‑state functional 
MRI and logistic regression 
approach
Ning Yang 1,4, Shuyi Yuan 2,4, Chunlong Li 3, Wenqing Xiao 1, Shuangcong Xie 1, Liming Li 1, 
Guihua Jiang 1* & Xiaofen Ma 1*

This study investigated whether the amplitude of low-frequency fluctuation (ALFF) and functional 
connectivity (FC) features could be used as potentially neurological markers to identify chronic 
insomnia (CI) using resting-state functional MRI and machine learning method logistic regression 
(LR). This study included 49 CI patients and 47 healthy controls (HC). Voxel-wise features, including 
the amplitude of low-frequency fluctuations (ALFF) and functional connectivity (FC), were extracted 
from resting-state functional magnetic resonance brain images. Then, we divided the data into two 
independent cohorts for training (44 CI patients and 42 HC patients), and independent validation (5 CI 
patients and 5 HC patients) by using logistic regression. The model was evaluated using 20 rounds of 
fivefold cross‑validation for training. In particular, a two-sample t-test (GRF corrected, p-voxel < 0.001, 
p-cluster < 0.05) was used for feature selection during the model training. Finally, single‑shot testing 
of the final model was performed on the independent validation cohort. A correlation analysis 
(Bonferroni correction, p < 0.05/4) was also conducted to determine whether the features contributing 
to the prediction were correlated with clinical characteristics, including the Insomnia Severity Index 
(ISI), Pittsburgh sleep quality index (PSQI), self-rating anxiety scale (SAS), and self-rating depression 
scale (SDS). Results showed that resting-state features had a discrimination accuracy of 86.40%, 
with a sensitivity of 93.00% and specificity of 79.80%. The area under the curve (AUC) was 0.89 (all 
Ppermutation< 0.001). The ALFF and FC features showed significant differences between the CI patients 
and HC. The regions contributing to the prediction mainly included the anterior cingulate, prefrontal 
cortex, orbital part of the frontal lobe, angular gyrus, cingulate gyrus, praecuneus, parietal lobe, 
temporal gyrus, superior temporal gyrus, and middle temporal gyrus. Furthermore, some specific 
functional connectivity among related regions was positively correlated with the ISI, and also 
negatively related to the SDS in correlation analysis. Our current study suggested that ALFF and FC in 
the regions contributing to diagnostic identification might serve as potential neuromarkers for CI.

Chronic insomnia (CI) is a common clinical disease that is characterised by difficulty in falling asleep, dif-
ficulty maintaining sleep, or early awakening lasting for at least 1 month, accompanied by daytime cognitive 
impairment1,2. CI leads to daytime fatigue, emotional disruptions, and cognitive impairment, which can result 
in various psychological and cognitive disorders such as depressive and anxiety disorders3,4. However, despite 
its adverse social-economic effects, the neurological causes and consequences of CI are not fully understood.

Recent advances in neuroimaging techniques have provided a powerful tool for studying the neurobiologi-
cal mechanisms of CI. Resting-state functional magnetic resonance imaging (rs-fMRI) has become a powerful 
technique for imaging brain activity in vivo, providing a new approach for studying the mechanism of CI. Li 
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et al.5 demonstrated that CI patients had lower amplitude of low-frequency fluctuation (ALFF) values in the left 
orbitofrontal cortex/inferior frontal gyrus, right middle frontal gyrus, left inferior parietal lobule, and bilateral 
cerebellum posterior lobes, with higher ALFF values in the right middle/inferior temporal lobe extended to the 
right occipital lobe. Dai et al.6 also used the ALFF method to find that CI patients had higher ALFF values in the 
temporal and occipital lobes, with lower ALFF values in the bilateral cerebellum. The functional connectivity 
(FC) is another powerful tool for studying the neurobiological mechanisms of CI. A series of studies5,7,8 found 
functional abnormalities in patients with insomnia, associated with a wide range of cortical and subcortical 
regions, including the reticular ascending activation systems, islands, amygdala, cingulate cortex, hippocampus, 
frontal cortex, and caudate nucleus. From the perspective of a functional connection network9,10, these areas 
primarily consist of the default mode network (DMN), salience network (SN), affective network (AN), central 
executive network (CEN), and subcortical area (SUB).

While the FC and ALFF features are valuable in insomnia research, the relevant studies have often reported 
level differences between patients with CI and healthy controls, and doctors need to make judgements at the 
individual level for diagnosis and treatment. Therefore, in order for neuroimaging studies to better serve clinical 
diagnosis, individual-level diagnosis and prediction are required. In recent years, machine learning methods have 
been widely used in neuroimaging data analysis, and can extract effective information from neuroimaging data, 
find neurological markers based on brain image data, and distinguish patients with neuropsychiatric diseases 
from normal people at the individual level. A related study11 on the classification and prediction of patients with 
mood disorders based on fMRI was published. The results showed that their applied classification algorithm 
(support vector machine, SVM) could better diagnose patients with mood disorders and accurately predict the 
drug response of complex patients. Mao et al.12 used a logistic regression method and combined multiple neu-
roimaging data for the diagnosis of Alzheimer’s disease and mild cognitive impairment. Their results suggested 
that the use of multiple neuroimaging markers can improve the diseases diagnosis performance.

To date, it is still unclear whether the FC and ALFF features could be used as neurological markers for the 
diagnosis of CI patients at the individual level, and few studies have applied machine learning methods to 
the diagnosis of CI. Deep learning was applied on a set of 57 EEG features to accurately distinguish between 
patients with insomnia and healthy controls13. The classifier had an accuracy of up to 86%. Li et al.14 suggested 
that the functional connectivity strength (FCS) could be used as potential neuromarkers for the classification of 
CI patients and healthy controls (HC) using the SVM method. The classification accuracy was 81.5%. Ramiro 
et al.15 used a logistic regression (LR) method trained with a set of similarity measures to distinguish between 
control and insomnia subjects. The LR model classified controls and insomnia subjects with an accuracy of 81%.

In the present study, voxel-wise features such as the ALFF and FC were extracted from resting-state func-
tional magnetic resonance (MR) brain images. The machine learning method LR16,17 was used to classify the CI 
patients and HC to investigate whether these features could be used as potentially neurological markers for the 
classification of CI. In particular, a two-sample t-test (GRF corrected, p-voxel < 0.001, p-cluster < 0.05) was used 
to perform feature selection during model training.

Materials and methods
Participants.  This prospective study was approved by the ethics committee of the Guangdong Second Pro-
vincial General Hospital and all the participants provided written informed consent after they were provided 
with a complete description of the study. We confirmed that all methods were carried out in accordance with rel-
evant guidelines and regulations. Forty-nine patients with CI (21 males and 28 females, with a mean age ± stand-
ard deviation of 39.27 ± 11.00) were recruited from the Guangdong Second Provincial General Hospital.

The following inclusion criteria14 were used for CI patients: (a) all patients must meet the diagnostic require-
ments for CI in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV); (b) patients 
complained of difficulty falling asleep, difficulty maintaining sleep, or waking up early for at least 1 month; (c) 
patients had no other sleep disorders; (d) the patients were younger than 60 years of age; (e) psychoactive drugs 
were not used for patients at least 2 weeks before and during this study; (f) patients were assessed as right-handed 
using the Edinburgh Handedness Inventory. Exclusion criteria were as follows: (a) patients with abnormal signal 
in any region of the brain confirmed by conventional T1-weighted or T2 fluid-attenuated inversion recovery 
magnetic resonance imaging; (b) insomnia caused by organic diseases or serious mental diseases secondary to 
depression or general anxiety; (c) other sleep disorders; (d) pregnant, lactating or menstruating women. Forty-
seven healthy controls (15 males and 32 females, age 39.85 ± 8.97 years) were recruited to meet the following 
criteria: (a) an Insomnia Severity Index score of less than 7; (b) no history of shift work or sleep complaints; (c) 
no drug or substance abuse for at least 2 weeks prior to and during the study, such as caffeine, nicotine, or alcohol; 
(d) no brain injury or prior severe head trauma, as confirmed by conventional T1-weighted or T2 fluid-attenuated 
inversion recovery MR imaging; (e) no history of psychiatric or neurological disease; (f) right-handed dominant.

Several questionnaires were completed by the study participants. These questionnaires included the insomnia 
severity index (ISI), Pittsburgh sleep quality index (PSQI), self-rating anxiety scale (SAS), and self-rating depres-
sion scale (SDS). The demographic and scale data of all the study participants are listed in Table 1.

Data acquisition.  Functional magnetic resonance imaging was performed in Medical Imaging Depart-
ment of Guangdong Second Provincial General Hospital using a 1.5 Tesla MRI scanner (Achieva Nova-Dual; 
Philips, Best, the Netherlands)14. Participants were asked to rest with their eyes closed, to remain still and not 
fall asleep. Functional MR images were obtained in approximately 10 min using a gradient echo planar imaging 
(EPI) sequence as follows: interlaced scan, repetition time/echo time = 2500 ms/50 ms, section thickness = 4 mm, 
intersection gap = 0.8 mm, matrix = 64 × 64, field of view = 224 mm × 224 mm, flip angle = 90°, 27 axial slices, 240 
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volumes. After the scan, all subjects were asked if they fell asleep during the scan. Those subjects who were asleep 
were excluded.

Data pre‑processing.  Pre-processing of the resting-state fMRI data was carried out using the Data Pro-
cessing Assistant for Resting-State fMRI (DPARSF; Chao-Gan and Yu-Feng, which is based on Statistical Para-
metric Mapping (SPM12, http://​www.​fil.​ion.​ucl.​ac.​uk/​spm)18. The first 10 image points for each participant were 
removed to eliminate the effects of an uneven magnetic field at the beginning or the discomfort of the test on the 
image quality and results. Because the MR image was scanned layer by layer, the layers had different acquisition 
times. Slice timing correction was used to ensure that the acquisition times for all the voxels in a volume were 
theoretically consistent. Subsequently, the data were corrected for any slight head movement of the participant 
during data acquisition. None of the participants had more than 3.0 mm of maximal displacement and 3.0 of 
maximal rotation in any direction. The nuisance variables included 24 head motion parameters, as well as white 
matter and CSF signals, and global signals were regressed out from the fMRI data. Then, spatial normalisation 
was conducted according to the standard Montreal Neurologic Institute template, and the data were resampled 
using a voxel size of 3 × 3 × 3 mm3. These images were smoothed by convolution using an isotropic Gaussian 
kernel (full width at half maximum, 4 mm). Finally, to reduce the effects of low-frequency drift and high-fre-
quency noise, the smooth imaging data were processed to eliminate linear trends and filter over time (bandpass, 
0.01–0.1 Hz).

Data analysis.  The ALFF feature19 can be used to analyse the amplitudes of the local characteristics of a 
brain’s blood oxygenation level-dependent MRI signal activity. The ALFF analysis was implemented as follows. 
First, the fast Fourier transform (FFT) algorithm was used to convert the time-domain signal into the frequency 
domain to obtain the power spectrum. The average square root of the power spectrum was the ALFF. In this 
study, the voxel-wise ALFF feature of each participant was calculated before filtering. In short, the time series 
of each given voxel was first converted to the frequency domain using the FFT. The square root of the power 
spectrum was calculated and averaged over a range of 0.01–0.1 Hz at each voxel. This average square root was 
called the ALFF of each voxel. For standardisation purposes, the ALFF of each voxel was divided by the global 
average ALFF value for each individual. The normalised ALFF value for each given voxel reflected the relation-
ship between its original ALFF value and the global average ALFF value for the brain.

FC analysis examines temporal correlation in the blood oxygenation level-dependent signal changes between 
different regions of the brain. In this study, 116 brain regions of the AAL template were selected as seed points, 
and the correlation coefficients between various sub-points and other voxels of the brain were calculated to find 
strong time correlations with these seed points. The brain region indicates that there is a functional connection 
between the brain region and the brain region where the seed point is located. This method was first proposed 
by Biswal et al.20. The FC characteristics of each brain region were calculated after data pre-processing.

All of the features were calculated using the Data Processing Assistant for Resting-State fMRI (DPARSF; 
Chao-Gan and Yu-Feng; http://​www.​restf​mri.​net)21, which is based on Statistical Parametric Mapping (SPM12, 
http://​www.​fil.​ion.​ucl.​ac.​uk/​spm).

All two whole-brain voxel-wise features mentioned above were converted to z-scores using Fisher’s r-to-z 
transformation.

Statistical analysis and machine learning.  Demographic and scale data for all study participants were 
analysed using SPSS (version 20; SPSS, Chicago, III). The Wilcoxon rank-sum test was used to compare the dif-
ferences in age, education level, ISI, PSQI, SAS and SDS scores between CI patients and HC. Age-related differ-
ences were assessed using the chi-square test. Table 1 listed demographic and scale data for all study participants.

An LR method was developed to train a machine learning model for classification of the CI patients and HC. 
This classification model used a 20 rounds fivefold cross-validation method to split all the data into training sam-
ples (44 CI patients and 42 HC patients) and independent validation samples (5 CI patients and 5 HC patients). 
To prevent overfitting, a two-sample t-test method was used on the training samples for feature selection, and 
the statistically significant voxel positions were obtained, which were used to extract the corresponding features 

Table 1.   Demographic and scale data of all study participants. Unless otherwise noted, data are presented 
as mean ± standard deviation. 1 The P value was obtained using the chi-square test. # The P value was obtained 
using Wilcoxon rank sum tests. CI chronic insomnia, HC healthy control, ISI insomnia severity index, PSQI 
Pittsburgh sleep quality index, SAS self-rating anxiety scale, SDS self-rating depression scale.

CI (49) HC (47) p value

Gender (F/M) 28/21 32/15 0.291

Age (year) 39.27 ± 11.00 39.85 ± 8.97 0.61#

Education 9.33 ± 5.88 8.34 ± 4.43 0.18#

ISI 19.67 ± 3.20 7.17 ± 2.58  < 0.001#

PSQI 12.80 ± 3.28 5.21 ± 2.77  < 0.001#

SAS 51.78 ± 10.6 40.02 ± 6.13  < 0.001#

SDS 55.10 ± 8.58 39.89 ± 9.21  < 0.001#

http://www.fil.ion.ucl.ac.uk/spm
http://www.restfmri.net
http://www.fil.ion.ucl.ac.uk/spm
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for each subject (in both the training set and validation set) for classification. The LR classifier was trained 
using these statistically significant features. Then, the final trained LR classifier model was used to classify for 
single‑shot testing on the independent validation data to acquire the classification performances (i.e. the accuracy, 
sensitivity, specificity, and area under the ROC curve (AUC)). All the machine learning processes for training 
and validation were executed in sklearn toolbox from Python.

Nonparametric permutation tests estimated the statistical significance of the average classification perfor-
mances by determining whether they exceeded the level of opportunity. The class labels of the training data were 
randomly ranked 1000 times before training, and the 20 rounds of the fivefold CV procedure were repeated. 
The p value of the permutation test was defined as Ppermutation = (Nexceeds + 1)/(Nsubstitution + 1) . Here, Nexceeds 
represents the number of times the permuted performance exceeded that obtained for the true labels. Nsubstitution 
represents the rounds of permutation.

In the CI group, a correlation analysis (multiple comparison correction—Bonferroni correction, p < 0.05/4) 
was conducted to determine whether the features contributing to the prediction were correlated with clinical 
characteristics, i.e. the ISI, PSQI, SAS, and SDS.

Results
Demographic and scale data results.  As listed in Table 1, there were no significant differences between 
the CI patients and the control group in terms of age (p = 0.61), gender (p = 0.29), and education level (p = 0.18). 
However, the CI patients had higher ISI, PSQI, SAS, and SDS scores (all p < 0.001) compared to the HC.

Machine learning results.  As shown in Table 2 and Fig. 1, LR model was developed based on the ALFF or 
FC features. The ALFF features provided an accuracy of 83.00%, a sensitivity of 70.00%, a specificity of 96.00%, 
and an AUC of 0.83. The FC features provided an accuracy of 86.60%, a sensitivity of 93.40%, a specificity of 
79.80%, and an AUC of 0.91. Combining the ALFF features and FC features also showed good discrimination, 
with an accuracy of 86.40%, a sensitivity of 93.00%, a specificity of 79.80%, and an AUC of 0.89 (all Ppermutation

< 0.001).

Table 2.   Classification results of CI-HC.

Features Accuracy (%) Sensitivity (%) Specificity (%)

ALFF 83.00 70.00 96.00

FC 86.60 93.40 79.80

ALFF + FC 86.40 93.00 79.80

Figure 1.   ROC curves of LR models based on different features for classification of CI patients and HC.
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Figures 2 and 3 display the regions showing between-group differences in the whole-brain voxel-wise 
ALFF features and whole-brain voxel-wise FC features, respectively (multiple comparison correction—GRF, 
p-voxel < 0.001, p-cluster < 0.05). The estimated Gaussian filter widths (FWHM, in millimetres) were [7.371, 
7.291, 6.984]. As shown in Fig. 2, CI patients had higher ALFF values mainly in the superior temporal gyrus 
and middle temporal gyrus. Compared with the HC, patients with insomnia showed decreased functional con-
nectivities among widespread regions, including the orbital part of the superior frontal gyrus, middle frontal 
gyrus, triangular part of the inferior frontal gyrus, rolandic operculum, medial superior frontal gyrus, orbital 
part of the middle frontal gyrus, anterior cingulate, paracingulate gyrus, median cingulate, paracingulate gyrus, 
posterior cingulate gyrus, calcarine fissure and surrounding cortex, lingual gyrus, superior occipital lobe, post-
central gyrus, inferior parietal gyrus, supramarginal gyrus, angular gyrus, praecuneus, middle temporal gyrus, 
superior cerebellum, and part of the cerebellum. These regions belong to the some functional connectivity 
networks, including those between the orbital part of the frontal lobe (ORB) and Rolandic operculum (ROL), 
postcentral gyrus (PoCG), sensory-motor network (SMN), lingual gyrus (LING), and calcarine fissure and 
surrounding cortex (CAL); between the ROL and PoCG, SMN, and CEN; between the DMN and DMN, CEM, 
median cingulated, and paracingulate gyrus (DCG); between the SN and DMN; between the AN and DMN; 
and between the DCG and the CEM and AN. In addition, increased functional connectivity was found between 
the cerebellum (CER) and the cerebellum (CER), occipital lobe, and lingual gyrus in CI patients. Details can be 
seen in Table 3 and Fig. 3a,b.

Correlation analysis results.  In the CI group, the correlation analysis results showed that the FC between 
the DMN and DMN, and between the DMN and DCG, were positively correlated with the ISI. Otherwise, the 
SDS was negatively related to the FC between the DCG and CEM. All correlation analysis results can be seen in 
Table 4.

Discussion
This study investigated whether the ALFF and FC features could be used as neurological markers for the clas-
sification of CI. LR was used for the classification of the CI-HC group. The results showed that combined ALFF 
and FC features had good discrimination, with an accuracy of 86.40%, a sensitivity of 93.00%, a specificity of 
79.80%, and an AUC of 0.89. In addition, seen in Table 4, the correlation analysis results suggested that some 
of the FC among related regions was positively correlated with the ISI and negatively correlated with the SDS.

Several previous findings9,11,14,18,21–23 based on fMRI suggested that spontaneous neural activity in the anterior 
cingulate, prefrontal cortex, and orbital part of the frontal lobe was disrupted in patients with insomnia. In line 
with these findings, this research found that when using these regions as seed regions of interest, the seed-based, 
voxel-wise FC metrics also differed between the CI patients and HC. In addition, previous findings9,24,25 generally 
suggested that the metabolism or spontaneous neural activity in the prefrontal cortex was reduced. Therefore, 
it was reasonable to explain why CI patients had decreased FC between the left superior frontal gyrus and the 
other brain regions with the left superior frontal gyrus as the seed region.

Specifically, the classification performances of FC features were excellent for diagnosing CI patients in this 
study (accuracy: 86.60%, sensitivity: 93.40%, specificity: 79.80%, and AUC: 0.91). Statistically significant FC 
features were found in many brain regions such as the anterior cingulate, prefrontal cortex, orbital part of the 
frontal lobe, angular gyrus, cingulate gyrus, praecuneus, parietal lobe, and temporal gyrus. From the perspective 

Figure 2.   Differences in whole-brain voxel-wise ALFF features between CI patients and HC. The thresholds 
were p < 0.001 at the voxel level and p < 0.05 at the cluster level with GRF corrections for multiple comparisons. 
The colour bar represents the t value.
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of a functional connection network9–12, these regions involve the DMN, SN, SMN, AN, and CEN. Consistent 
with previous studies, this study suggested that regions associated with wakefulness, mood, anxiety/contem-
plation, significant/attention, and sensorimotor activity showed significantly decreased interactions with each 
other in CI patients. However, in this study, for the seed voxels selected in Cerebelum_6_R (AAL template ROI 
100) (Cerebellum_Superior), the CI patients had significantly increased FC values in Cerebelum_Crus1_L, 
Cerebelum_Crus1_R, occipital lobe, and lingual gyrus. One explanation might be that the increased FC with 
the cerebellum as the seed region was compensatory to the dysfunction in the cerebellum.

Figure 3.   Visualisation of Table 3 created from brain region point of view: (a) decreased functional 
connectivities in CI patients and (b) increased functional connectivities in CI patients.
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Table 3.   Decreased and increased functional connectivities in CI patients (multiple comparison correction—
GRF, p-voxel < 0.001, p-cluster < 0.05). CI chronic insomnia, HC healthy control, L left, R right, DMN default 
mode network, SN salience network, AN affective network, CEN central-executive network, SMN sensory-
motor network, CER cerebellum, Frontal_Sup_Orb (ORB) superior frontal gyrus orbital part, Frontal_Mid 
middle frontal gyrus, Frontal_Inf_Tri (IFGtriang) inferior frontal gyrus, triangular part, Frontal_Inf_Oper_L 
(IFGoperc) inferior frontal gyrus, opercular part, Rolandic_Oper (ROL) rolandic operculum, Frontal_Sup_
Medial medial superior frontal gyrus, Frontal_Mid_Orb (ORB) middle frontal gyrus orbital part, Cingulum_
Ant anterior cingulate paracingulate gyrus, Cingulum_Mid (DCG) median cingulate paracingulate gyrus, 
Cingulum_Post posterior (PCG), cingulate gyrus, Calcarine (CAL) calcarine fissure and surrounding cortex, 
Lingual (LING) lingual gyrus, Occipital_Sup superior occipital lobe, Postcentral (PoCG) postcentral gyrus, 
Parietal_Inf Inferior parietal gyrus, Supra Marginal supramarginal gyrus, Angular angular gyrus, Precuneus 
precuneus, Temporal_Mid middle temporal gyrus, Cerebelum_6 Cerebellum_Superior, Cerebelum_Crus1 part 
of cerebellum.

Connected regions Network z value in CI patients z value in HC Two-sample 2-tailed t-tests p value

Frontal_Sup_Orb_R-Rolandic_
Oper_R ORB-ROL 0.06 ± 0.10 0.16 ± 0.14  − 3.79 0.00027

Frontal_Sup_Orb_R-Postcentral_R ORB-PoCG 0.69 ± 0.13 0.18 ± 0.16  − 3.65 0.00043

Rolandic_Oper_L-Postcentral_L ROL-PoCG 0.24 ± 0.16 0.40 ± 0.16  − 3.92 0.00017

Rolandic_Oper_L-SupraMarginal_L ROL-SMN 0.29 ± 0.19 0.44 ± 0.22  − 3.67 0.00040

Rolandic_Oper_L-Parietal_Inf_L ROL-CEN 0.19 ± 0.16 0.33 ± 0.16  − 3.89 0.00019

Frontal_Mid_Orb_L-Occipital_
Sup_R ORB-SMN 0.12 ± 0.14 0.22 ± 0.15  − 3.81 0.00025

Frontal_Mid_Orb_L-Lingual_R ORB -LING 0.07 ± 0.13 0.15 ± 0.14  − 3.85 0.00022

Frontal_Mid_Orb_L-Calcarine_R ORB -CAL 0.11 ± 0.12 0.21 ± 0.12  − 3.82 0.00024

Frontal_Sup_Medial_L-Precuneus_R DMN-DMN 0.24 ± 0.14 0.35 ± 0.15  − 3.79 0.00027

Frontal_Sup_Medial_L-Precuneus_L DMN-DMN 0.35 ± 0.17 0.49 ± 0.14  − 3.81 0.00025

Frontal_Sup_Medial_L-Cingulum_
Mid_R DMN-DCG 0.30 ± 0.15 0.42 ± 0.13  − 3.86 0.00021

Frontal_Sup_Medial_L-Cingulum_
Mid_L DMN-DCG 0.36 ± 0.17 0.50 ± 0.15  − 4.18 0.00007

Cingulum_Ant_L-Frontal_Mid_L SN-DMN 0.08 ± 0.11 0.20 ± 0.16  − 3.80 0.00026

Cingulum_Ant_L-Frontal_Inf_Tri_L SN-IFGtriang 0.05 ± 0.11 0.18 ± 0.15  − 3.89 0.00019

Cingulum_Ant_L-Frontal_Inf_
Oper_L SN-IFGoperc 0.02 ± 0.15 0.16 ± 0.19  − 3.78 0.00028

Cingulum_Mid_L-Parietal_Inf_R DCG-CEM 0.21 ± 0.12 0.32 ± 0.15  − 3.82 0.00024

Cingulum_Mid_R-Temporal_Mid_R DCG-AN 0.15 ± 0.14 0.31 ± 0.16  − 3.95 0.00015

Cingulum_Post_L-Frontal_Sup_
Medial_L PCG-DMN 0.27 ± 0.13 0.42 ± 0.16  − 4.00 0.00013

Precuneus_R-Angular_R DMN-DMN 0.24 ± 0.08 0.36 ± 0.13  − 3.69 0.00038

Precuneus_R-Parietal_Inf_R DMN-CEN 0.24 ± 0.13 0.37 ± 0.16  − 3.65 0.00043

Angular_L-Frontal_Sup_Medial_L DMN-DMN 0.18 ± 0.15 0.34 ± 0.14  − 4.02 0.00012

Angular_L-Frontal_Sup _L DMN-DMN 0.18 ± 0.17 0.34 ± 0.18  − 3.80 0.00026

Temporal_Mid_L-Frontal_Sup_
Medial_L AN-DMN 0.11 ± 0.09 0.21 ± 0.11  − 3.99 0.00013

Cerebelum_6_R-Cerebelum_Crus1_L CER-CER 0.47 ± 0.26 0.27 ± 0.27 3.52 0.00067

Cerebelum_6_R-Cerebelum_
Crus1_R CER-CER 0.51 ± 0.23 0.30 ± 0.22 3.92 0.00017

Table 4.   Associations of FC features and clinical characteristics in CI patients. CI chronic insomnia, ISI 
insomnia severity index, SDS self-rating depression scale; for other abbreviations please see Table 2.

Connected regions in CI patients Network

ISI SDS

r p value r p value

Frontal_Sup_Medial_L–Precuneus_R DMN-DMN 0.48 0.00047

Frontal_Sup_Medial_L–Cingulum_Mid_R DMN-DCG 0.38 0.00749

Cingulum_Mid_L–Parietal_Inf_R DCG-CEM  − 0.39 0.00620
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In a study by Li et al.5, CI patients displayed lower ALFF values in the bilateral cerebellum posterior lobes, with 
higher ALFF values in the right middle/inferior temporal lobe extended to the right occipital lobe. Compared 
with normal controls, Dai et al.7 also found that CI patients had higher ALFF values in the temporal and occipital 
lobes, with lower ALFF values in the bilateral cerebellum. This was consistent with the findings in this study 
that the ALFF features had statistical differences mainly in the superior temporal gyrus and middle temporal 
gyrus between CI patients and HC. The statistical ALFF features were also good for CI-HC classification with 
an accuracy of 83.00%, a sensitivity of 70.00%, a specificity of 96.00%, and an AUC of 0.83.

To the best of our knowledge, few studies have applied machine learning methods to the automatic classifica-
tion of CI patients using resting-state metrics (FC, ALFF). Li et al.18 suggested that the FC strength (FCS) could 
be potential neuromarkers for the classification of CI patients and HC using the support vector machine (SVM) 
method. The classification performance included an accuracy of 81.5%, a sensitivity of 84.9%, a specificity of 
79.1%, and an AUC of 83.0%. In this study, an LR model was developed for the classification of CI patients and 
HC and also showed better discrimination which proved that these two features can be used as neurological 
markers for the diagnosis of insomnia.

This study had several limitations. First, it was assumed that the participants represented a homogeneous 
sample of individuals with a single insomnia condition. However, it is increasingly believed that insomnia may 
be a heterogeneous disease. Therefore, if different studiesinclude different proportions of each subtype24,25, which 
may not be identified, this may lead to inconsistent findings. Second, the model parameter tuning used in this 
study used the method of grid optimisation. The grid optimisation method adopts an exhaustive method and 
traverses all possible combinations of parameters. Thus, it is not fast. Faster parameter optimisation methods 
such as genetic algorithms26 will be adopted in the future to improve the efficiency of the algorithm. Third, this 
study only used logistic regression as a machine learning method. Combining different machine learning meth-
ods would help to improve the model performance. Fourth, only functional MR imaging data were used. The 
integration of structural and functional data may be a more effective method to elucidate disease factors that 
are shared across different metrics. Fifth, the participants in the present study were all right-hand dominant; 
therefore, it was not possible to identify the relationship between the R-sided and L-sided findings with hand-
edness. Sixth, only the static characteristics of the traditional (low-order) FC were studied, not their dynamic 
characteristics. The ‘correlation of correlation’27,28 generates high-order functional connectivity (HOFC) based 
on the FC dynamics, which characterises higher-level brain functional interactions and supplements traditional 
(low-order) FC. HOFC has been successfully applied to early mild cognitive impairment (MCI) detection and 
has shown superior performance compared with the low-order FC-based methods29,30. Further research using 
HOFC is required when using machine learning methods for CI.

Conclusion
In summary, despite these limitations, the results of this study showed that ALFF features and FC features had 
excellent performance for diagnostic identification of chronic insomnia using logistic regression approach and 
might serve as potential neuromarkers for CI. This proposed methodology could be applied in clinical practice 
for diagnostic identification of CI.

Data availability
Datasets generated and/or analysed during the current study are not publicly available due the relevant regula-
tions of our hospital (Guangdong Second Provincial General Hospital) but are available from the corresponding 
author on reasonable request.
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