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Abstract
Background: In addition to their strong induction following stress, small heat shock proteins
(Hsp) are also expressed during development in a wide variety of organisms. However, the precise
identity of cell(s) expressing these proteins and the functional contribution of small heat shock
proteins in such developmental context remain to be determined. The present study provides a
detailed description of the Drosophila small heat shock protein Hsp23 expression pattern during
embryogenesis and evaluates its functional contribution to central nervous system development.

Results: Throughout embryogenesis, Hsp23 is expressed in a stage-specific manner by a restricted
number of neuronal and glial lineages of the central nervous system. Hsp23 is also detected in the
amnioserosa and within a single lateral chordotonal organ. Its expression within the MP2 lineage
does not require the presence of a functional midline nor the activity of the Notch signaling
pathway. Transactivation assays demonstrate that transcription factors implicated in the
differentiation of the midline also regulate hsp23 promoter activity. Phenotypic analysis of a
transgenic line exhibiting loss of Hsp23 expression in the central nervous system suggests that
Hsp23 is not required for development and function of this tissue. Likewise, its overexpression
does not cause deleterious effects, as development remains unaffected.

Conclusions: Based on the presented data, we suggest that the tightly regulated developmental
expression of Hsp23 is not actively involved in cell differentiation and central nervous system
development per se but rather reflects a putative role in preventive "pre-stress" neuroprotection
or in non-vital process(es) common to the identified cell lineages.

Background
The survival and perpetuation of a species depends on its
capacity to cope with stress factors from its environment.
One conserved manner by which all living organisms
defend themselves at the cellular level when confronted
with diverse types of stress is the induction of a defined
class of polypeptides termed heat shock proteins (Hsp)
[1]. The small heat shock proteins (sHsp) represent the

least conserved subfamily of Hsp as their number and size
(ranging from 12 to 40 kDa) vary from species to species.
Studies in different experimental systems have revealed a
variety of functions for the sHsp under stress conditions.
These different roles, including basic chaperoning activity
[2,3], cytoskeleton protection [4] and modulation of the
apoptotic process [5] directly represent means of cellular
defense against environmental aggression. Contrasting
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with the classical definition of heat shock proteins as
polypeptides induced by stress, cell-specific expression of
sHsp in the absence of stress has been reported during the
development of a wide range of organisms such as
Caenorhabditis elegans [6], Drosophila melanogaster [7-9],
Xenopus laevis [10], Mus musculus [11-13] and man [14].
Even if functional roles have been demonstrated for cer-
tain high molecular weight Hsps in non-stress related
processes such as RTK signaling [15] and spermatogenesis
[16-18], only preliminary experimental evidence so far
support such requirement for sHsp under non-stress con-
ditions [19]. Their peculiar cell-specific pattern of expres-
sion has lead to the hypothesis that sHsp may be
implicated in differentiation mechanisms. While recent
studies in cultured cells have provided support to this pos-
sibility [20], no such evidence has yet been provided for a
multicellular organism.

In Drosophila, sHsps are expressed throughout many
stages of the life cycle (reviewed in [21,22]). During oog-
enesis, Hsp27 displays a stage-specific intracellular locali-
zation within nurse and follicle cells [23] while Hsp23,
Hsp26 and Hsp27 are respectively expressed in distinct
cell types during the spermatogenic process [9,24]. During
embryogenesis, Hsp27 associates to cells of the brain and
of the ventral nerve cord while Hsp26 is found exclusively
in the gonads [25]. Hsp23 also displays a cell-specific pat-
tern of expression during embryonic neurogenesis [26,27]
and has recently been shown to be strongly downregu-
lated following the targeted expression of the glial "mas-
ter" gene gcm [28]. Despite this increasing knowledge on
the developmental expression of sHsps, the precise iden-
tity of cells expressing these proteins along with the in vivo
function(s) played by sHsp in these developmental
instances remain to be unveiled. The expression of Hsp23
within a highly characterized morphogenetic system (the
embryonic nervous system) combined to the isolation of
a P-element insertion in the promoter region of its gene,
provided the opportunity to precisely define its expression
pattern and evaluate its functional implication in a spe-
cific developmental process.

This study reports the expression of Hsp23 in neuronal
(MP2, VUMs) and glial (midline glia) lineage of the CNS,
as well as in a single chordotonal organ per hemisegment
and in cells of the amnioserosa. We demonstrate that
Hsp23 expression in the neuroectoderm is closely and
autonomously linked to the acquisition of MP2 fate as it
does not requires the presence of a functional midline and
is expanded in a neurogenic mutant where additional
MP2s are specified. In vitro transactivation assays support
that the Single-minded, Tango and Drifter transcription
factors, which are all involved in midline determination
and differentiation, may also regulate hsp23 promoter
activity. Finally, we evaluate a putative functional contri-

bution of Hsp23 to embryonic neurogenesis through phe-
notypic analysis of a P-element insertion line resulting in
an inhibition of Hsp23 expression in the CNS. The
absence of detectable phenotype in the ventral nerve cord
of homozygous embryos suggests that the loss of Hsp23 is
not detrimental to CNS formation. Furthermore, the fail-
ure to observe any differentiation or functional defects
following targeted misexpression of Hsp23 indicates that
its biological activity is related to non-vital features which
are distinct from the normal developmental program.

Results
The MP2 neuronal lineage expresses Hsp23 beginning at 
stage 11
To clearly define the profile of hsp23 expression during
embryogenesis, the distribution of its transcripts and pro-
tein species were both assessed. Data obtained by immu-
nohistochemistry and in situ hybridization yielded an
identical spatiotemporal pattern of expression associated
to restricted cell populations of the embryo.

During early embryogenesis, maternally-contributed
hsp23 transcripts and protein display a ubiquitous distri-
bution (data not shown) which fades away to become
undetectable at gastrulation. Onset of zygotic Hsp23
expression is first observed at early stage 11 through the
accumulation of Hsp23 protein (Fig. 1A) and transcripts
(Fig. 1B) in specific cells of the embryo. Prominent expres-
sion is detected in a segmentally-repeated population of
cells located on each side of the midline (brackets, Fig.
1A). Co-expression of the neural marker Elav (Fig. 1D)
indicates that these cells are neurons of the central nerv-
ous system. The origin (mesectoderm versus neuroecto-
derm) of these Hsp23-positive neurons was tested in a
single-minded-lacZ fly line, in which all cells of mesecto-
dermal origin are marked by β-Galactosidase (β-Gal)
expression [29]. Exclusion of β-Gal from these Hsp23-
expressing neurons (Fig. 1E) indicates that they arose
from the neuroectoderm. Interestingly, these neurons dis-
played constant peculiar morphological features: they
were large and rounded, and rapidly underwent cell divi-
sion after onset of Hsp23 expression. Their intra-segmen-
tal position with regards to the midline (Fig. 1E) and to
the domain of Engrailed expression (Fig. 1B') further sug-
gested that these might represent neuroblasts of the MP2
lineage, as these undergo their sole mitotic division dur-
ing stage 11 [30]. Their MP2 identity was confirmed by co-
localization of the Ftz molecular marker [31,32] with the
reporter gene from a hsp23(1.8)-lacZ transgenic fly line,
which reflects endogenous Hsp23 expression within the
MP2 lineage (Fig. 1C,1C'). The co-localization between
Ftz and the reporter for hsp23 promoter activity is
observed both before (Fig. 1F) and after (Fig. 1G) the MP2
mitotic division.
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Lower levels of Hsp23 protein and transcripts are also
detected in a single cell located on the lateral region of
each segment (arrow, Fig. 1A). This cell rapidly divides
(inset, Fig. 2B) and ultimately yields an elongated lateral
structure (Fig. 2C). The dorso-ventral position and strik-
ing morphology of this structure strongly suggested that
Hsp23 could be expressed by all cells of a single lateral
chordotonal lineage (lch). Co-localization with the
22C10 antibody [33] (Fig. 2D), which recognized a highly
organized pattern of motorneurons including all lch
neurons, confirmed this hypothesis and thereby indicated
that the single lateral cell seen at stage 11 (Fig. 1A,1B,1C;
Fig. 2A,2B) is a single chordotonal organ precursor. It is

noteworthy to point out that the single Hsp23-positive
chordotonal organ in abdominal segment is lateral
whereas in the thoracic segments T2 and T3, where lateral
chordotonal organs are absent, Hsp23 associates with one
of the dorsal chordotonal organs (white arrow, Fig. 2C).

In addition to the MP2 and lch lineages, Hsp23 expres-
sion at stage 11 is also detected in the amnioserosa
(arrow, Fig. 2A) and in uncharacterized cells of the
cephalic region (out of focus in Fig. 1A,1B,1C; 2A,2B).
Based on the amount of knowledge acquired on the mor-
phogenetic development of the ventral nerve cord, we
focused our analysis on the cells located therein and
excluded from the present study the Hsp23-positive
cephalic populations.

An additional neuronal population expresses Hsp23 at 
stage 13
Modulation of hsp23 expression is detected at stage 13
when a novel group of ventral cells expressing Hsp23 pro-
tein (arrow, Fig. 3A) and mRNA (Fig. 3B) are observed
within the ventral nerve cord (arrow, Fig. 3A). These rep-
resent neurons of the midline as characterized by the

Hsp23 expression in stage 11 embryosFigure 1
Hsp23 expression in stage 11 embryos. (A) Detection 
of Hsp23protein in a lateral [arrow] and midline associated 
population [brackets]. (B) In situ hybridization for hsp23 
mRNA showing distribution identical to that of panel A. (B') 
High magnification view of the midline region of two abdomi-
nal segments showing the relative position of hsp23-positive 
cells (purple) with regards to the expression of Engrailed 
(brown). (C) The expression of β-Galactosidase under the 
control of a 1.8 kb proximal fragment of the hsp23 promoter 
displays a similar distribution to that shown in panels A and 
B. (C') Confocal view similar to panel B' showing the co-
localization of β-Galactosidase and endogenous Hsp23 in the 
midline associated cells. (D-G) Confocal high magnification 
views of a similar region indicated by brackets in A. (D) Co-
expression of the neuronal marker Elav (green) and Hsp23 
(red). (E) Absence of the midline marker sim-lacZ (green) in 
Hsp23-positive cells (red). (F and G) Co-localization of hsp23 
promoter activity (green) and Ftz (red) in the MP2 neurob-
lasts both before (F) and after (G) their mitotic division. Ven-
tral views of stage 11 embryos are shown in all panels with 
the anterior oriented toward the left.

The amnioserosa and cells of a single chordotonal organ express Hsp23Figure 2
The amnioserosa and cells of a single chordotonal 
organ express Hsp23. (A) Hsp23 expression in cells of the 
amnioserosa (arrow) and in lateral cells (out of focus – see 
Fig. 1A) of a stage 11 embryo. (B) Similar distribution shown 
by hsp23 mRNA transcripts at stage 11. Inset shows hsp23 
mRNA detected in two adjacent cells of the lateral region, 
reminiscent of a mitotic division. (C) Confocal view of a stage 
13 embryo displaying Hsp23 expression (red) in cells of a sin-
gle chordotonal organ per abdominal segments (3 segments 
indicated by brackets) and in a single dorsal chordotonal 
organ in segments T2 (white arrow) and T3. Neurons of the 
peripheral nervous system are identified using the 22C10 
molecular marker (green) (D) Confocal high magnification of 
bracket region in C displaying co-expression of Hsp23 (red) 
in neuronal cells of lateral chordotonal organs (green). Lat-
eral view is shown in all panels.
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expression of the Elav (Fig. 3D) and sim-lacZ (Fig. 3E)
molecular markers within these cells. Furthermore, their
ventral position, peculiar morphology (grape-like cluster
– Fig. 3F) and co-expression of Engrailed (Fig. 3C,3C')
strongly suggest that they represent the Ventral Unpaired
Median (VUMs) neurons. To verify this hypothesis, co-
localization between Hsp23 and the X55 enhancer-trap
was tested. The X55 line marks the VUMs, the midline

neuroblasts (along with their respective support cells) and
the posterior midline glia (MGP) [34]. Figure 3 (H to I)
displays ventral confocal sections through a stage 13 nerve
cord. The ventral cell population located at the midline
exhibits co-localization of Hsp23 and β-Gal (Fig. 3H,3I)
while the more dorsally located MP2 daughter cells
(vMP2 and dMP2) located on either side of the midline
do not express the X55 reporter gene (Fig. 3I). Intrigu-
ingly, the MGP located in the dorsalmost region of the
nerve cord also expressed both Hsp23 and the X55
enhancer-trap (arrow, Fig. 3G,3J), suggesting that Hsp23
expression can also be found in midline glial cells of the
CNS. The cell identity of the VUMs and MGP is further
confirmed by the visualization of their respective dorso-
anterior axonal and ventral cytoplasmic projections (Fig.
3G), which are both significantly labeled by the Hsp23
antibody.

Hsp23 expression becomes restricted to midline glial cells 
at the end of neurogenesis
The observation that the MGP express Hsp23 at stage 13
combined to the detection at late stage 14 of Hsp23 pro-
tein (Fig. 4A) and mRNA (Fig. 4B) within three dorsal
non-neuronal cells (Fig. 4A and data not shown) exhibit-
ing the characteristic morphology of midline glia (Fig. 4C)
suggested that this small heat shock protein was expressed
by all surviving midline glial cells during late

Onset of Hsp23 expression in the midline at stage 13Figure 3
Onset of Hsp23 expression in the midline at stage 13. 
(A) Localization of Hsp23 in a distinct group of cells located 
ventrally in the nerve cord (arrow). (B) Similar distribution 
observed by in situ hybridization with hsp23 mRNA. (C) Co-
expression of hsp23 mRNA (purple) and Engrailed protein in 
the novel ventral population of cells. (C') High magnification 
of region shown by brackets in C. (D-J) Confocal views. (D-
E) Co-localization of Hsp23 (red) with Elav (D, green) and 
sim-lacZ (E, green), suggesting that these cells are neurons of 
the midline. (F, G) Sequential confocal sections. (F) Hsp23 
expression in the two MP2 daughter cells and the ventral 
group of midline neurons. Note the detection of Hsp23 in 
the dorsal axonal projection of the vMP2 and dMP2. (G) 
Presence of Hsp23 in the ventral VUMs neurons and their 
dorso-anterior projection as well as in the posterior midline 
glia (MGP) that exhibits a distinctive ventral projection. (H-I) 
Sequential confocal sections showing the distribution of the 
X55 enhancer-trap (green) with regards to Hsp23 expres-
sion (red). (H) Co-localization in the midline VUMs. (I) Co-
localization of X55 and Hsp23 in the VUMs but exclusion of 
X55 from the MP2 daughter cells located on each side of the 
midline. (J) Co-localization of Hsp23 and X55 in the MGP. 
Note that multiple posterior cells expressing X55 (presump-
tively identified as the MNB and its support cells) do not 
express Hsp23. Stage 13 embryos are shown in all panels. 
Ventral views are shown in panels C-E, H-J and lateral views 
in A, B, F, G. Anterior is towards the left in all panels.

Hsp23 becomes restricted to midline glia by the end of embryogenesisFigure 4
Hsp23 becomes restricted to midline glia by the end 
of embryogenesis. (A) Localization of Hsp23 in dorsal cells 
of the ventral nerve cord during late embryogenesis. (B) 
Detection of hsp23 transcripts in the same subset of cells. 
(C) Confocal high magnification view of Hsp23 expression in 
three abdominal segments. Declining Hsp23 expression can 
still be detected at lower levels in the ventral VUMs. Note 
the characteristic morphology of the dorsal midline glia 
(brackets). (D) Confocal high magnification of a similar region 
shown by brackets in C displaying co-localization of the mid-
line glia marker slit-lacZ (green) and Hsp23 (red). Lateral 
views of stage 16 embryos are shown in all panels, anterior is 
towards the left.
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embryogenesis. The glial identity of these dorsal cells of
the midline was confirmed using the slit-lacZ enhancer-
trap line, a specific marker for midline glial cells (Fig. 4D).

Regulation of Hsp23 expression
The tight regulation of Hsp23 expression suggested that its
induction might be regulated by specific signals confined
to restricted cells and time-windows of embryogenesis. In
an attempt to identify transcription factor(s) or signaling
pathway(s) involved in hsp23 regulation, knowledge on
developmental requirement for cells expressing Hsp23
(MP2, midline glia) was used to generate and test different
hypothesis.

To verify whether Hsp23 expression in the MP2 lineage
was dependent on an external signal emanating from
midline, the distribution of Hsp23 was examined in stage
11 single-minded mutant embryos, where the development
of the midline is impaired [29]. As shown in Fig. 5A,
Hsp23 is still expressed in stage 11 mutant embryos in a
group of 2 to 4 cells joined at the ventral midline (3
segments in brackets). These Hsp23-positive cells (Fig.
5A') represent cells of the MP2 lineage as judged by their

co-expression of 22C10 (Fig. 5A"). The collapsed charac-
ter of the MP2 cells reflects the absence of midline cells.

The selection of neuroblasts from the neuroectoderm is
mediated by lateral inhibition, a Notch signaling-medi-
ated process [35]. To verify if activation of hsp23 transcrip-
tion in the MP2 required Notch signaling, we probed
Delta null embryos where no Notch signaling occurs dur-
ing embryogenesis. The increase in the number of cells
expressing hsp23 transcripts (Fig. 5B) is consistent with
the specification of additional MP2 due to the absence of
Notch signaling. This observation also supports the
hypothesis that transcriptional activation of the hsp23
gene does not require Notch signaling. Coherent with
these observations, additional chordotonal organ precur-
sors expressing hsp23 transcripts are also observed in Delta
mutant embryos (data not shown).

Molecular analysis of the hsp23 promoter for putative reg-
ulatory elements unveiled the presence of a CME box
(CNS Midline Enhancer [36]: TACGTG, located at -329 of
the transcription initiation site) which has readily been
shown to be bound by the "master" determinant for

Regulation of hsp23 developmental expressionFigure 5
Regulation of hsp23 developmental expression. (A) Neuroectodermal expression of Hsp23 is maintained in a stage 11 
single-minded mutant. (A' and A") Confocal High magnification views of region in brackets in A displaying co-expression of 
Hsp23 (red, A') and 22C10 (green, A") in cells of the MP2 lineage. (B) Detection of hsp23 mRNA in additional MP2 neuroblasts 
generated in a delta mutant. Graph: Modulation of the proximal hsp23 promoter by the Single-minded (Sim), Tango (Tgo) and 
Drifter (Drf) transcription factors. Normalized β-Galactosidase activity obtained after transfection in S2 cells is shown. Note 
the capacity of Sim and Tgo to activate hsp23 promoter and the potent repressive effects of Drf.
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midline identity, Single-minded (Sim), and its dimeriza-
tion partner Tango (Tgo) in the direct regulation of at least
another midline gene, Slit [37]. As Hsp23 is expressed by
the VUMs and midline glia, the potential for these tran-
scription factors to regulate the hsp23 promoter was tested
in cell culture-based transactivation assays. Quantitative
analysis of hsp23 transactivation shows that Sim and Tgo
can synergize to activate the hsp23 promoter (Graph, Fig.
5). Interestingly, another transcription factor (Drifter)
previously shown to be involved in the regulation of Slit
[37] acted as potent repressor of hsp23 promoter in these
assays.

Hsp23 expression is not required for embryonic 
neurogenesis
To assay the functional significance of Hsp23 expression
during embryogenesis, we used a P-element line
(BG01483) obtained from the Berkeley Drosophila
Genome Project [38] carrying an insertion located at -149
of the transcriptional start site of hsp23. This insertion
strongly abrogates the endogenous pattern of Hsp23
expression, restricting it to a distinct cluster of a few cells
located in the posterior region of the brain, tentatively
identified as the crystal cells (Fig. 6B). Such loss of Hsp23
provides an ideal context to assess whether this Hsp is nec-
essary for global CNS organization and proper differenti-
ation of cell types where it is usually expressed. Despite
abrogating CNS-associated Hsp23 expression, the chro-

mosome carrying this insertion is fully viable and main-
tained in a homozygous state, thereby suggesting that
Hsp23 expression does not fulfill a vital role in the CNS.
Furthermore, labeling BG01483 embryos with the com-
missural marker BP102 reveals that the absence of Hsp23
within the CNS does not disturb its ultra structure, as lon-
gitudinal commissures are still well fasciculated and trans-
versal commissures are properly separated (Fig. 6D). This
simple observation directly supports that functional
VUMs and MG are present since both of these cell types
interact to engineer proper transversal commissure sepa-
ration [34]. 22C10 labeling further shows that
motorneuron axons projections, including the VUMs
projection through the anterior commissure, remain unaf-
fected in BG01483 embryos (inset, Fig. 6D).

Normal CNS development in the absence of Hsp23Figure 6
Normal CNS development in the absence of Hsp23. 
(A, B) Ventro-lateral view of Hsp23 expression at stage 16. 
(A) Wild-type embryo. (B) Embryo homozygous for the P-
element insertion BG01483. Note the absence of Hsp23 
expression in the CNS. The Hsp23-positive cells located 
behind the embryonic brain are tentatively identified as the 
crystal cells of the immune system. (C, D) Ventral views of 
CNS ultra structure in stage 16 embryos using the BP102 
antibody. Insets show the anterior VUMs axonal projections 
visualized with the 22C10 antibody. (C) Wild-type embryo. 
(D) Embryo homozygous for the P-element insertion 
BG01483. No differences are detected between C and D.

Overexpression of Hsp23 in the CNS and PNSFigure 7
Overexpression of Hsp23 in the CNS and PNS. (A) 
Western blot showing the increase in Hsp23 protein level in 
flies carrying the actin-GAL4 chromosome in conjunction with 
the UAS-hsp23/4 insertion. For control purposes, levels of 
Hsp23 in heat-shocked S2 cells and in flies carrying the same 
UAS chromosome with the CyO balancer are also shown. 
(B) Stage 16 embryos of the elav-GAL4;UAS-hsp23/4 genotype. 
Cellular co-localization of Hsp23 (red) and Elav (green) in 
embryonic neurons. Note that perfect merging of the two 
signals is not obtained as the proteins differ in their intracel-
lular localization (Elav: nuclear, Hsp23: cytoplasmic). Left 
inset shows ventro-lateral view with strong Hsp23 expres-
sion in the nerve cord. Right inset is a high magnification ven-
tro-lateral view of the nerve cord showing unaffected 
separation of the transversal commissures (green, visualized 
with BP102) and general Hsp23 expression (red).
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Overexpression of Hsp23 during development is not 
detrimental
As Hsp23 expression is confined to given cell types during
specific developmental stages, it was conceivable that this
protein plays defined role(s) associated with the process
of differentiation for each of these cells. To test for the
putative implication of Hsp23 in the differentiation
program and identify any detrimental effect of its overex-
pression on CNS formation and function, we overex-
pressed Hsp23 using the GAL4-UAS system. For this
purpose, three different GAL4 drivers targeting distinct
subpopulations of cells (actin-GAL4 / general, scabrous-
GAL4 / neuroectoderm, elav-GAL4 / neuronal) were used.
Increase in endogenous Hsp23 levels resulting from cross-
ing out a UAS-hsp23 line (UAS-hsp23/4) to an actin-GAL4
driver is shown in Fig. 7A while spatial modulation of
Hsp23 expression using an elav-GAL4 driver crossed to the
same UAS-hsp23 line is shown in Fig. 7B. Although a
marked increase in Hsp23 levels was observed in flies
which carry any of these GAL4 driver and the UAS-hsp23
construct, no disruption of the CNS or PNS was observed
based on the two independent criteria of fly viability and
tissue ultra structure visualized with BP102 staining for
the CNS (right inset, Fig. 7B) and Elav for the PNS (Fig.
7B). Hsp23 also retained its cytoplasmic localization
when misexpressed and still showed high association with
axonal / cellular projection. The capacity of Hsp23 to
serve as a "cell morphology tracer" is best visualized in the
lateral chordotonal organs clusters of the PNS (boxes, Fig.
7B). Thus, misexpression of Hsp23 in cells where it is nor-
mally absent is not detrimental to CNS and PNS forma-
tion and function.

Discussion
The developmental expression of sHsp, which has now
been observed in many species, differs from their stress-
induced expression in two major ways. Under stress stim-
uli, most cells of the organism activate the transcription of
all sHsp genes, leading to a massive and ubiquitous
expression of all sHsp. In contrast, sHsp developmental
expression displays cell type and stage specificity. Such a
spatio-temporal regulation suggests that sHsp fulfill dis-
tinct function(s) in a cell-specific fashion within normal
developmental processes. This study characterized the
expression pattern of a Drosophila cytoplasmic sHsp
(Hsp23) during embryonic neurogenesis and assessed its
functional implication during development of the CNS.
The combinatorial use of different detection methods
(transcript / protein and promoter activity) allowed us to
precisely define the pattern of Hsp23 expression while rul-
ing out the possibility of cross-detecting other members of
this conserved family. This is particularly relevant as
scanning of the Drosophila genome [39] reveals at least
twelve ORF containing the alpha-crystallin domain, hall-
mark of the sHsp (CG4167, CG4183, CG4190, CG4460,

CG4461, CG4463, CG4466, CG4533, CG7409,
CG13133, CG14207, CG32041). The CNS cell lineages
and their respective time window for Hsp23 expression
were first identified. Analysis of loss of function and
overexpression for Hsp23 suggests that this sHsp does not
fulfill a vital function during embryonic CNS
development.

Hsp23: mediator of cell contact or morphology?
In the CNS, Hsp23 is first detected at stage 11 in the MP2
neuroblast, which is subsequent to its specification and
delamination from the neuroectoderm (stage 8; [31]).
This delay suggests that hsp23 activation is an event occur-
ring downstream of MP2 fate acquisition. The presence of
Hsp23 in the extra MP2 neuroblasts specified in a Delta
mutant (Fig. 5B) is consistent with this idea. Intriguingly,
onset of hsp23 transcription in this particular lineage
correlates in time with the occurrence of its sole division
(stage 11) raising the possibility that similar signals may
induce both events. After its division, the vMP2 and dMP2
daughter cells will establish the medial lateral commis-
sural tract by sending out growth cones.

At stage 13, the ventrally-located VUM neurons and the
posterior midline glia (MGP) also begin to express Hsp23.
As observed in the MP2 lineage, Hsp23 expression follows
cell determination in both lineages. The VUMs are first
specified in the dorsal region of the nerve cord and must
undergo a ventral migration to occupy their final position
[40]. During late stage 12 and stage 13 the trailing axons
of the VUMs (now located in a dorso-anterior position
with regards to their soma) serve as guidance cue for the
migrating middle midline glial cells. In the MGP, induc-
tion of Hsp23 correlates with its contact to the
commissure, which marks the end of its anterior migra-
tion [34]. In the last stages of embryogenesis, Hsp23
expression becomes restricted to the three surviving mid-
line glia of the CNS (Fig. 1D to 1I and 3E) at a time when
they ensheath the transversal commissures of the nerve
cord.

Therefore, the timing of Hsp23 expression in both of these
lineages favors the hypothesis of Hsp23 implication in
cell anchoring or in mediation of cell contact (VUMs /
MGM or MGP / commissure) rather than a role in the
migratory process itself. Such role(s) would be reminis-
cent of its mammalian counterpart (Hsp25/27) that is
involved in cytoskeleton modulation [4].

Hsp23 is regulated in a cell-autonomous fashion
The association of Hsp23 with different cell types at differ-
ent time points during CNS development prompted us to
assess whether its expression was induced through a com-
mon inductive cue or by different cell-specific mecha-
nisms. As two of three Hsp23-expressing lineages derive
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from the mesectoderm, such origin could favor the expres-
sion of Hsp23 by potentiating its promoter to further be
modulated by cell-specific factors. While in vivo analysis
clearly demonstrated that the acquisition of midline iden-
tity was a requirement for Hsp23 expression in the
presumptive VUMs and midline glia, transactivation
assays using the midline "master gene" Single-minded
and its dimerization partner Tango revealed that both of
these proteins can act as activators of hsp23 promoter
activity in cultured cells (Fig. 5). The absence of Hsp23
expression in different midline lineages however suggests
that additional factors must be implicated in the regula-
tion of the hsp23 gene during CNS development.
Interestingly, the Sim-Tgo heterodimer has previously
been shown to act as a "priming" agent allowing promot-
ers to be modulated by additional cell-specific factors
such as Drifter and Dichaete, both of which are present in
cells of the midline [37]. Furthermore, dichaete mutants
exhibit midline glia defects [41] while its gene product has
been shown to regulate cell fate in the intermediate neu-
roblast column of the early neuroectoderm by preventing
the expression of medial column identity genes [42]. This
suggests that Dichaete could positively regulate hsp23
expression in the context of the midline (in the midline
glia) while acting as a negative regulator within neuroec-
todermal lineages of the intermediate column.

To test whether hsp23 expression in the MP2 neuroblast
resulted from a combination of intracellular transcrip-
tional programs integrated with external activating sig-
nals, we examined its distribution in absence of Notch (in
a delta mutant) or Egfr (in a single-minded mutant) signal-
ing. In both instances, Hsp23 remained expressed in the
MP2, suggesting that its regulation in this lineage is cell
autonomous. Independence to Egfr signaling was also
observed in the neuronal lineage of the midline (VUMs),
as both gain and loss of function of the two main effectors
of this cascade (PointedP2 [43] and Yan [44]) did not pre-
vent nor ubiquitously activate Hsp23 expression (data not
shown). Analysis of Notch signaling in the midline was
impaired by the early requirement of Notch for the estab-
lishment of the mesectoderm [45].

No vital function of Hsp23 during neurogenesis
The expression of Hsp23 within restricted cell types raised
the possibility that it may be required within these
lineages for appropriate cell differentiation. To test this
hypothesis, we examined a P-element line where Hsp23
expression was drastically abrogated. Examination of CNS
ultra structure and individual cell differentiation failed to
provide any detectable phenotype, thereby suggesting that
Hsp23 function is dispensable for embryonic CNS estab-
lishment and function. This simple conclusion is directly
correlated by the fact that the chromosome bearing the P-
element insertion is homozygous viable. In addition, spe-

cific lineages which usually express Hsp23 remain appar-
ently unaffected in the absence of this protein as they
retain the expression of respective identity molecular
markers such as 22C10 (MP2 and the VUMs – data not
shown) and completion of specific in vivo function such as
separation of transversal commissures (VUMs and mid-
line glial cells).

In experiments designed to evaluate if Hsp23 overexpres-
sion could impair neurogenesis, flies overexpressing
Hsp23 displayed normal CNS structure and developed to
adulthood without any obvious detrimental signs. Both
loss and gain of function data therefore support that
Hsp23 function is not required for embryonic CNS estab-
lishment and function.

Conclusion
The data gathered so far on Hsp23 expression within the
CNS converge to a common theme identified for sHsp
developmental expression: cell-specificity. As expression
often relates to function, a requirement for Hsp23 during
CNS establishment could be expected. However, none of
the observations made during the course of this study
supports that Hsp23 fulfills a vital function within the
identified lineages. Not only have overall CNS establish-
ment and function (through fly survival) remained unaf-
fected, but we have also examined the development and
function of specific lineages using a battery of molecular
markers. Although the possibility that a subtle phenotype
has eluded the current analysis cannot be formally dis-
carded, the data support that Hsp23 is not required for
CNS development. The additional possibility that Hsp23
requirement is masked by other member(s) of the sHsp
family displaying functional redundancy appears unlikely
as it would require that the complementing protein be
expressed in a similar spatiotemporal pattern and pos-
sesses an activity affecting identical intracellular
process(es).

Another appealing hypothesis is that Hsp23 expression
within the CNS could serve as a protective mechanism
seeded by evolution in cells carrying out vital functions
for CNS development. The MP2 daughter cells are pioneer
neurons for the MP1/MP2 longitudinal commissural tract
while the VUMs, through their axonal projections, serve to
guide the midline glial cells for the proper separation of
transversal commissural tracts. Therefore, the constitutive
expression of a chaperone protein such as Hsp23 making
these cells more resistant to environmental insults would
undoubtedly be beneficial to the organism. In vitro,
Hsp23 has been shown to be a powerful chaperone
which, in addition to prevent protein aggregation, can
also help in protein refolding both within the reticulocyte
lysate system and in microinjected Xenopus oocytes (Mor-
row et al., in preparation). While sHsp levels are
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upregulated during the normal ageing process [46], an in
vivo increase of sHsp expression has been reported in
genetically selected lines for increased longevity [47]. The
beneficial effects of sHsp expression have also been
observed at neuronal synapses, where targeted expression
of distinct Hsps has been shown to confer neuroprotec-
tion [48,49]. Furthermore, ongoing studies in our and
other laboratories demonstrate that overexpression of dif-
ferent sHsp confers beneficial effects in vivo [50] and G.
Morrow, et al, submitted).

The identification of intracellular role(s) of Hsps in nor-
mal development, whether it be to act as simple
chaperones with or without substrate specificity, or to ful-
fill unsuspected functions, remains an important step in
order to fully grasp the implication of these highly con-
served polypeptides on non-stress-related processes.

Methods
Drosophila strains
Flies were raised on standard Drosophila medium at 25°C.
The Oregon-R was used as wild type strain and the w1118

strain for transgenic generations. The following mutants
and enhancer-trap lines were used: BG01483 (insertion of
P(GT1) in hsp23 promoter – BDGP), X55 enhancer-trap
[34], slit1.0-lacZ [29], sim-lacZ [36], DeltaX. Ectopic pro-
tein expression was achieved by the transactivation GAL4-
UAS system [51] using the following lines: scabrous-GAL4,
actin-GAL4, elav-GAL4. The UAS-hsp23 and hsp23(1.8)-
lacZ transgenic lines were developed during this study and
are described below.

Immunohistochemistry and in situ hybridization
Standard procedures for whole mount immunohisto-
chemistry [52] and in situ [53] were used for all reactions,
with the exception of antibody staining using the anti-
Hsp23, where the methanol treatment for embryo devitel-
lination was kept to a maximum of 30 seconds and
directly followed by washes in PBS 0.2% Tween-20. After
the primary antibody, embryos were either incubated
with biotinylated (Vector) or fluorochrome-associated
secondary antibodies (Alexa 488 or Cy3 – Molecular
Probes). For biotinylated secondary antibodies, signal was
revealed using the Vectastain ABC kit (Vector) according
to the manufacturer protocol. Following the staining reac-
tion, embryos were dehydrated and mounted in DPX
(Fluca). Fluorescently-labeled embryos were directly
mounted in Vectashield (Vector) and visualized on a LSM
310 laser scanning confocal microscope (Zeiss). The fol-
lowing primary antibodies were used at the indicated
dilutions: rabbit anti-Hsp23 1362 (1/1000) produced
against a recombinant Hsp23 (Tanguay, unpublished),
mouse anti-Eng 4D9 (1/50), mouse BP102 (1/50), mouse
22C10 (1/50), mouse anti-Elav (1/50), mouse anti-βGal
J1E7 (1/50), rabbit anti-βGal (Promega – 1/500), rabbit

anti-Ftz (1/200). Mabs BP102, anti-Elav, J1E7 and 22C10
were obtained from the Developmental Study Hybridoma
Bank (DSHB – University of Iowa) developed under the
auspices of the NICHD. For in situ hybridization, Digoxi-
genin-labeled hsp23 RNA probe (Roche Molecular Bio-
chemicals) was generated from a partial hsp23 cDNA
clone containing the complete hsp23 open reading frame.
The clone was PCR-amplified from genomic DNA using
the following primers: hsp23_F 5'-
CAGCTAAAGCGAAAGTAACC-3' and hsp23_R 5'-
TCTCGGAACGAGTCCTCTAC-3'.

DNA constructions
hsp23 promoter – lacZ chimeric genes
The pBR322-Dm202.7 genomic clone of the 67B genomic
region was used to excise a 3.3 kb XbaI-SalI fragment that
contains 2.2 kb of hsp23 promoter along with its entire
coding region. This fragment was subcloned in the
pBluescript II SK(-) vector (Stratagene) at identical sites,
yielding the pBS23-(3.3) vector. Removal of the hsp23
coding region was achieved through partial digestion of
pBS23-(3.3) using the XbaI site and an EcoRI site located
32 nucleotides downstream of the TATAA box in the
promoter followed by treatment with T4 DNA polymerase
and recircularization of the vector. The resulting vector,
pBS23-(2.2), was submitted to partial digestion with a
combination of SalI and either EcoRI or PstI. The trun-
cated versions of the promoter (0.4 to 1.8 kb) were
blunted and recircularized. Two versions of the hsp23 pro-
moter, of 0.4 and 1.8 kb in length, were subsequently
excised from pBS23-(0.4) or pBS23-(1.8) using XhoI and
XbaI and subcloned into the XhoI and NheI sites of a
modified version of the original pCaSpeR-AUG-βGAL
(pCAβ) vector, yielding the pCAβM23-0.4 and pCAβM23-
1.8 vectors respectively carrying the hsp23(0.4)-LacZ and
hsp23(1.8)-LacZ chimeric genes. The modified pCAβ,
thereafter named pCaSpeR-AUG-βGAL-MCS (pCAβM),
was generated by inserting the multiple cloning site from
the pMEP vector (Invitrogen) using the flanking BamHI
and KpnI sites into the similar sites of pCAβ, thereby ena-
bling the use of the XbaI-compatible NheI site for direc-
tional subcloning.

UAS-hsp23 vector and generation of transgenic lines
The UAS-hsp23 construct was generated by inserting a
EcoRI – XbaI fragment from pTZ1888.25 [54] containing
the full length Hsp23 coding sequence into respective
sites of the pUAST vector (Brand and Perrimon, 1993).
Transgenic lines carrying either the pUAS-hsp23 or
pCAβM23-1.8 constructs were generated by standard
injection procedures [55] of Qiagen Endofree prepared
DNA along with the pHSΠ [56] helper plasmid into a
w1118 strain. For targeted expression of Hsp23, the UAS-
hsp23/4 line that carries a homozygous insertion on the
third chromosome was used in all experiments.
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Protein extracts and western blot
GAL4-UAS induction of Hsp23 was tested on adult heads
of both control and targeted genotypes dissected in PBS
and mechanically homogenized in 100 µl SDS-PAGE
buffer [23]. Proteins were separated by SDS-gel electro-
phoresis [57] and transferred to nitrocellulose mem-
branes (Gelman). Hsp23 was detected using a specific
monoclonal antibody for this sHsp (7B12- [8]) diluted 1/
100. Chemiluminescent detection was achieved using the
POD kit according to the manufacturer's protocol
(Boehringer).

Cell culture transactivation assays
Transactivation of the hsp23 promoter was assessed by
transient transfection of S2 Drosophila cells using different
combinations of a reporter vector for hsp23 promoter
activity (pCAβM23-0.4) and a normalization vector
(pCMV-Su9Luciferase – a derivative of pGEM-
Su9Luciferase which encodes for a mitochondrially-tar-
geted luciferase) [58] along with expression vectors driv-
ing the expression of different proteins under the control
of the constitutive actin promoter (actin-sim, actin-tgo,
actin-drf; [37]). 500 ng of each vector (except for the nor-
malization vector – 200 ng) were used for each transfec-
tion combination and the total of DNA per transfection
reaction was adjusted to 2.2 µg using the empty pCaSpeR-
ACT(R) plasmid. Transfection reactions were carried out
in 30 mm petri dishes on 2 × 106 S2 cells using the FuGene
6 transfection reagent (Roche). After 36 to 48 hours of
expression, cells were lysed in 250 µl Passive Lysis Buffer
(PLB – Promega) and the activity of both the Luciferase
and βGal reporter proteins were assayed. Luciferase activ-
ity, which served to normalize any variation in transfec-
tion efficiency, was quantified with the Dual Luciferase
Assay kit (Promega) using 10 µl of cell extract. The
enzymatic activity of β-galactosidase was measured by a
colorimetric assay using the following protocol: 50 µl of
cell extract was added to 100 µl of PLB. 150 µl of 2× βGal
assay buffer (200 mM NaPO4 pH 7.3, 2 mM MgCl2, 100
mM β-mercaptoethanol, 1.33 mg/ml O-Nitrophenyl-β-D-
galactopyranoside (Calbiochem)) was then added and
the mixed samples were incubated at 37°C for at least 30
minutes. The reaction was stopped by addition 500 µl of
1 M sodium carbonate and optic density recorded at a
wavelength of 420 nm on a spectrophotometer. The
reported data constitute an average of triplicates ± s.d.
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