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Characterization of Pairwise 
Correlations from Multiple 
Quantum Correlated Beams 
Generated from Cascaded Four-
Wave Mixing Processes
Hailong Wang1, Leiming Cao1 & Jietai Jing1,2

We theoretically characterize the performance of the pairwise correlations (PCs) from multiple quantum 
correlated beams based on the cascaded four-wave mixing (FWM) processes. The presence of the 
PCs with quantum corre- lation in these systems can be verified by calculating the degree of intensity 
difference squeezing for any pair of all the output fields. The quantum correlation characteristics of all 
the PCs under different cascaded schemes are also discussed in detail and the repulsion effect between 
PCs in these cascaded FWM processes is theoretically predicted. Our results open the way for the 
classification and application of quantum states generated from the cascaded FWM processes.

Quantum correlation shared between multiple quantum correlated beams is important for fundamental quantum 
mechanics1 and significant applications in quantum information technologies2. The relationship between the 
quantum correlation shared by the multiple quantum correlated beams and the pairwise correlations (PCs) of 
the multiple beams remains an open question. For example, ref. 3 discusses the trade-off between A’s correlation 
with B and its correlation with C in a three qubits (A, B and C) system; ref. 4 reviews the properties of the PCs in 
many-body systems; refs 5, 6 and ref. 7 give the classification of three-qubit correlation and four-qubit correlation 
respectively which both involve the consideration of PCs. ref. 8 have formalized and extended the operational 
classification and quantification of multipartite correlated states related to the PCs. Therefore, the characterization 
of PCs existed in the multiple quantum correlated beams is worth investigating for both the classification and 
application of quantum states.

Four-wave mixing (FWM) process in a hot rubidium (Rb) vapor9–24 has several advantages of practical imple-
mentations, e.g., no need of cavity due to strong nonlinearity of the system, natural spatial separation of the gen-
erated non-classical beams, etc. Our group has experimentally demonstrated the generation of strong quantum 
correlation between the three bright beams from a cascaded FWM process25. Under that experimental condition, 
there doesn’t exist any quantum correlation between any two of the three beams, i. e., no PC with quantum cor-
relation has been shown in our previous work. Therefore, the dependence of the PCs on the system operating 
condition of the cascaded FWM processes is very interesting and worth studying. In this letter, based on two 
different cascaded FWM processes, i. e., asymmetrical cascaded scheme and symmetrical cascaded scheme, we 
theoretically characterize the performance of the PCs of the multiple quantum correlated beams and analyze their 
dependences on the system intensity gains Gk (k =​ 1, 2). The theoretical predictions can give a rough estimation 
of the obtained experimental results.

Results
Single FWM scheme.  Firstly, we give a simple description of the single FWM scheme. FWM is a nonlinear 
process in which two pump photons can convert to one signal photon and one idler photon, or vice versa. In the 
cell1 of Fig. 1(a), an intense pump beam and a much weaker signal beam are crossed in the center of the Rb vapor 
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cell with a slight angle. Then the signal beam is amplified as ′â2  and a new beam called idler beam is generated as 
â1 on the other side of the pump beam at the same time. The signal beam and idler beam have different frequen-
cies. The input-output relation of the single FWM scheme shown in Fig. 1(a) is given by

= + − = + −ν ν′ˆ ˆ ˆ ˆ ˆ ˆ† †a G a G a a G a G a1 , 1 , (1)1 1 1 1 0 2 1 0 1 1

where G1 is the power gain of the FWM process. νâ 1 is the vacuum input and â0 is the coherent input. Following 
the expressions of the creation and annihilation operators, the optical intensities ( = ˆ ˆ†N a ai i i (i =​ 1, 2’)) for the 
beams â1 and ′â2  can be given by
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where = ˆ ˆ†N a a0 0 0 . Then the PC for the two beams â1 and ′â2  can be quantified by the degree of intensity differ-
ence squeezing (DS), i. e., the ratio of the variance of the correlated beams to the variance at the standard quantum 
limit (SQL)26
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≈ −G N(2 1)1 0. Here the superscript and subscript for the DSij

k represent the kth (k =​ 1, 2, 3) scheme (we have 
three schemes throughout the whole discussion, i. e., the single FWM scheme (1), the asymmetrical cascaded 
scheme (2) and the symmetrical cascaded scheme (3), the ith (i =​ 1, 2, 3) beam and the jth (j =​ 2′​, 2, 3, 4) beam in 
the scheme. Var (A) =​ 〈​A2〉​ −​ 〈​A〉​2 denotes the variance of A. <′DS 112

1  demonstrates the presence of PC with 
quantum correlation between the two beams from the FWM process. Since G1 is always larger than 1, the PC with 
quantum correlation of the two beams can be easily obtained in the experiment. However, the DSs of the single 
beams â1 and ′â2  are given by
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This corresponds to a linear increase in the noise on both the signal and idler beams as gain is increased. Thus 
the beams â1 and ′â2  in the FWM process are both in thermal states.

Asymmetrical cascaded FWM scheme.  Secondly, compared to the above mentioned single FWM 
scheme, here we construct the asymmetrical cascaded scheme in Fig. 1(a). We take the signal beam from the first 
FWM process (cell1) as the seed for the second FWM process (cell2) in Fig. 1(a)25. â1, â2 and â3 are three 

Figure 1.  (a) Asymmetrical cascaded scheme. â0 is coherent input signal, νâ 1 and νâ 2 are vacuum inputs, G1 and 
G2 are the power gains of cell1 and cell2 respectively. ′â2  is the output signal beam from the first FWM, â1, â2 and 
â3 are the triple output beams. P1 and P2 are the pump beams for the Cell1 and Cell2 respectively. (b) The region 
plot of Eq. (8), Eq. (9) and Eq. (10). The green region (1, 2) is the region of <DS 112

2 , the red line (1, 3) is the 
region of =DS 113

2  (G2 =​ 2 −​ 1/G1), the magenta region (2, 3) is the region of <DS 123
2 . The black point (2.9, 2.1) 

is the experimental gain point. The blank region is the region in which ≥DS 112
2 , ≥DS 113

2  and ≥DS 123
2 . In all 

region, <DS 1123
2 .
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newly-generated beams in the output stage of the cascaded processes. In our previous work25, we have shown the 
generation of strong quantum correlation between the three bright beams but not the PCs with quantum correla-
tion for any pair of the three beams. Here we will study all the PCs of the triple beams â1, â2 and â3 in Fig. 1(a) and 
look for the possibilities for the existence of PCs with quantum correlation. The input-output relation of the 
asymmetrical cascaded scheme in Fig. 1(a) can be written as
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where G1 and G2 are the power gains for the cell1 and cell2 respectively. The optical intensities ( = ˆ ˆ†N a ai i i (i =​ 1, 2 
and 3)) for the individual beams â1, â2 and â3 can be given by
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where = ˆ ˆ†N a a0 0 0 . Here the second-order vacuum terms are omitted. It should be noted that the DS of the triple 
beams (â1, â2 and â3) is given by
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where G1 and G2 are the power gains for the two FWM processes. Compared with Eq. (3), Eq. (7) means that the 
cascaded FWM process can enhance the quantum correlation of the system. The symmetrical dependence of the 
DS123

2  on the gains is shown in Fig. 2(a) and can be enhanced with the increasing of the gains G1 and G2. The 
quantum correlation shared by the triple beams is present if G1G2 >​ 1, i. e., G1 >​ 1 or G2 >​ 1.

Next we analyze all the possible PCs using the DS criterion. PC between â1 and â2 can be quantified by
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Eq. (8) will be reduced to 2G2 −​ 1 and 1/(2G1 −​ 1) when we set G1 =​ 1 and G2 =​ 1 respectively, corresponding 
to the cases of Eq. (4) and Eq. (3) respectively. These phenomena can be understood as follows. When we set 
G1 =​ 1, the PC between the thermal states â1 and â2 translates into the one between the vacuum state â1 and the 
thermal state â2, i. e., = −DS G2 112

2
2 . When we set G2 =​ 1, the PC between the thermal states â1 and â2 translates 

into the one between the twin beams from the first FWM process, i. e., = −DS G1/(2 1)12
2

1 . The region in which 
<DS 112

2 , i. e., there exists quantum correlation between beams â1 and â2, is shown in green denoted as (1, 2) in 
Fig. 1(b). The value of G2 on the boundary (see the boundary given by = + − −G G G1 ( 4 3 1)/22 1 1 in 
Fig. 1(b)) of that region reaches its maximal value of 1.33 when G1 =​ 3 and it decreases when G1 >​ 3 and will even-
tually reaches at the value of 1. To clearly see how the DS12

2  depends on the gains G1 and G2, the contour plot of it 
is shown in Fig. 2(b). The larger G1 and smaller G2 are preferred for achieving <DS 112

2 . The study of DS12
2  pre-

sented above is actually the question of how to preserve the quantum correlation between beams â1 and â2 under 
the introduction of a second FWM which brings the deterioration effect to the quantum correlation by the quan-
tum amplification of one of the beams (â2). The results shown in Figs 1(b) and 2(b) actually shows the value of G2 
on the boundary below which the quantum correlation can always be preserved as the value of G1 increases. That 
is to say, in the low gain regime (G1 <​ 3), the stronger the quantum correlation between beams â1 and â2 is, the 
more robust to the deterioration effect from the quantum amplification of the second FWM it becomes. More 
interestingly, in the high gain regime (G1 >​ 3), the stronger the quantum correlation between beams â1 and â2 is, 
the more fragile to the deterioration effect from the quantum amplification of the second FWM it becomes.

PC between â1 and â3 can be quantified by
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Eq. (9) is equal to 1 when G2 =​ 2 −​ 1/G1, meaning that the quantum fluctuation of intensity difference of two 
thermal states can be equal to the one of two coherent states with equal powers. Except that, DS13

2  is always  
larger than 1, i. e., there is no quantum correlation between beams â1 and â3. The region in which =DS 113

2  
(G2 =​ 2 −​ 1/G1) is shown as the red line denoted as (1, 3) in Fig. 1(b). The contour plot of DS13

2  is also shown in 
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Fig. 2(c) in which the value of all the region is more than or equal to 1 for any G1, G2 >​ 1. In this sense, there isn’t 
any quantum correlation between beams â1 and â3 for any value of G1 and G2 since DS13

2  is always more than or 
equal to 1.

PC between â2 and â3 can be quantified by

=
−
−
.DS G
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2 1
2 1 (10)23
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The simplified results, i. e., 1/(2G2 −​ 1) and 2G1 −​ 1 for Eq. (10) can be obtained when G1 and G2 are set to 
equal to 1 respectively, corresponding to the cases of Eq. (3) and Eq. (4) respectively. This is because when we set 
G1 =​ 1, the PC between the thermal states â2 and â3 translates into the one between the twin beams from the sec-
ond FWM process, i. e., = −DS G1/(2 1)23

2
2 . When we set G2 =​ 1, the PC between the thermal states â2 and â3 

translates into the one between the thermal state â2 and the vacuum state â3, i. e., = −DS G2 123
2

1 . The region in 
which <DS 123

2  (G1 <​ G2) is shown in magenta denoted as (2, 3) in Fig. 1(b), meanwhile, the contour plot of DS23
2  

is also shown in Fig. 2(d) in which the region of G1 <​ G2 gives <DS 123
2 . Therefore, the PC with quantum correla-

tion between beams â2 and â3 will be present for any G1 less than G2. This is not difficult to figure out if one looks 
at the functional form of Eq. (10). As we all know, in order to generate strong quantum correlation from FWM 
process, the shot noise limited seed beam, such as coherent state or vacuum state, is always preferred. From this 
point of view, the analysis presented above actually answers the question of how to produce quantum correlation 
with the seeding of a thermal state. Figs 1(b) and 2(d) actually gives the answer that the quantum correlation will 
be produced as long as the FWM gain for producing the quantum correlation is larger than the FWM gain for the 
thermal state generation. In such region (G1 <​ G2), the existence of quantum correlation between beams â2 and â3 
eliminates the possibility of the one between beams â2 and â1. In other words, beam â2 can’t be simultaneously 
quantum correlated with beams â1 and â3. In this sense, we could call this phenomena as repulsion effect of quan-
tum correlation between the PCs in this cascaded FWM process. It can be explained as follows. The repulsion 
effect is actually the result of the competition between the correlation mechanism and decorrelation mechanism. 
As shown in Fig. 1(a), firstly, for the PC between beams â1 and â2, obviously, cell1 will provide the correlation 
between them and cell2 will destroy their quantum correlation by adding extra vacuum noise, thus cell1 and cell2 

Figure 2.  The contour plot of (a) DS123
2 ; (b) DS12

2 ; (c) DS13
2  and (d) DS23

2 .
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can be viewed as the correlation mechanism provider and decorrelation mechanism provider respectively, thus 
the larger G1 and smaller G2 are preferred for the PC between beams â1 and â2. Secondly, for the case of the PC 
between beams â2 and â3, cell1 will generate a thermal state ′â2  which will destroy their quantum correlation by 
adding extra vacuum noise into the system while the cell2 will make them quantum correlated through the FWM 
process. In this case, cell1 and cell2 can be viewed as the decorrelation mechanism provider and correlation mech-
anism provider respectively, thus the smaller G1 and larger G2 are preferred for the PC between beams â2 and â3. 
Finally, the complete opposite dependence of the PC between beams â1 and â2 and the PC between beams â2 and 
â3 on the gains leads to the repulsion effect between the PCs of certain pairs. In the blank region of Fig. 1(b), all 
the PCs with quantum correlation are absent since ≥DS 112

2 , ≥DS 113
2  and ≥DS 123

2 , however, the quantum 
correlation between the triple beams is still present.

In order to give a summary of the theoretical predictions of Figs 1(b) and 2. We plot the dependence of (A) 
DS123

2 ; (B) DS12
2 ; (C) DS13

2  and (D) DS23
2  on the gain G2 when G1 =​ 2.9 (cell1 gain in the experiment) in Fig. 3. DS123

2  
(trace A) can be enhanced with the increasing of G2 which is consistent with Fig. 2(a), the value of DS12

2  (trace B) 
will be larger than 1 as long as G2 >​ 1.33 which is consistent with the boundary of DS12

2  in Fig. 1(b), DS13
2  (trace C) 

will approach the SQL only G2 =​ 1.66 which is consistent with G2 =​ 2 −​ 1/G1 in Fig. 1(b), the value of DS23
2  (trace 

D) will be smaller than 1 as long as G2 >​ 2.9 which is consistent with Figs 1(b) and 2(d).
To verify these theoretical predictions, we apply them to the experimental results. The measured results are 

shown in Fig. 4, the traces A, B, C and D are the measured DSs between â1 and â2, â1 and â3, â2 and â3 and the triple 
beams respectively, the trace E is the corresponding normalized SQLs for traces A ~ D (See the methods). The 
experimental results show 10Log(DS12

2 ) =​ 7.0 ±​ 0.2 dB, 10Log(DS13
2 ) =​ 5.5 ±​ 0.1 dB, 10Log(DS23

2 ) =​ 1.0 ±​ 0.2 dB 
and 10Log(DS123

2 ) =​ −​6.7 ±​ 0.4 dB at 1 MHz where the maximal degree of squeezing can be considered as the best 
choice to reflect the quantum properties of the system because there exist huge classical noise peaks at lower fre-
quencies from the laser, the bandwidth limitation of the photodetector and even the bandwidth limitation of the 
squeezing generation. As we can see from Fig. 4, the noise power of the three beams increases quickly as the fre-
quency increases. It also increases faster than the one of the two beams. We can understand this results as follows. 
Although the probe and idler beams in the single FWM scheme are generated almost simultaneously, there are 
still some time delay between them during their propagation through the cell27. This difference limits the squeez-
ing bandwidth to some extent. This time delay induced squeezing bandwidth becomes narrower in the case of 
asymmetrical cascaded FWM scheme due to two of the three beams experiencing additional time delay in the 

Figure 3.  The dependence of (A) DS123
2 ; (B) DS12

2 ; (C) DS13
2  and (D) DS23

2  on the gain G2 when G1 = 2.9 (cell1 
gain in the experiment). The black dashed line: SQL.

Figure 4.  Experimentally measured (A) DS12
2 ; (B) DS13

2 ; (C) DS23
2 ; (D) DS123

2  and (E) the corresponding SQLs 
of the traces A ~ D in the asymmetrical cascaded scheme. The vertical dashed line: 1 MHz.
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second vapor cell. The faster increasing of the noise power of the three beams than the one of the two beams is due 
to that the number of beams of the three beams related to the time delay is more than the one of the two beams. 
For the experimental gains G1 ≈​ 2.9 and G2 ≈​ 2.1, our theoretical predictions give 10Log(DS12

2 ) =​ 5.9 dB, 
10Log(DS13

2 ) =​ 2.2 dB, 10Log(DS23
2 ) =​ 1.8 dB and 10Log(DS123

2 ) =​ −​10.5 dB in which the positive and negative val-
ues represent antisqueezing and squeezing respectively. As we can see, although these theoretical predictions do 
not perfectly agree with the experimental results at 1 MHz, they still give a rough estimation of the relationship 
between the obtained experimental noise power traces.

Symmetrical cascaded FWM scheme.  Finally, we construct the following symmetrical cascaded scheme 
as shown in Fig. 5(a). We take the signal beam from the first FWM process (cell1) as the seed for the second FWM 
process (cell2) and the idler beam as the seed for the third FWM process (cell3) in Fig. 5(a). â1, â2, â3 and â4 are the 
quadruple newly-generated beams in the output stage of the cascaded processes. We will also study all the PCs of 
the quadruple beams â1, â2, â3 and â4 in Fig. 5(a) and look for the possibilities for existence of the PCs with quan-
tum correlation. The input-output relation of the symmetrical cascaded scheme in Fig. 5(a) can be written as
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where G1, G2 are the power gains of cell1, cell2 (cell3) respectively. Here we assume that the two FWM processes in 
the cell2 and cell3 have the same power gains for simplicity. The optical intensities ( = ˆ ˆ†N a ai i i (i =​ 1, 2, 3 and 4)) 
for the individual beams â1, â2, â3 and â4 can be given by
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Figure 5.  (a) Symmetrical cascaded scheme. â0 is coherent input signal, νâ 1, νâ 2 and νâ 3 are vacuum inputs, G1 
and G2 are the power gains of cell1 and cell2 (cell3) respectively. â1, â2, â3 and â4 are the output beams. P1, P2 and 
P3 are the pump beams for the Cell1, Cell2 and Cell3 respectively. (b) The region plot of Eq. (14), Eq. (15). The 
green region (1, 2) is the region of <DS 112

3 , the magenta region ((1, 4), (2, 3)) is the region of <DS 114
3  and 

<DS 123
3 . The black point (2.94, 2.85) is the experimental gain point. The blank region is the region of ≥DS 112

3 , 
≥DS 113

3 , ≥DS 114
3 , ≥DS 123

3 , ≥DS 124
3  and ≥DS 134

3 , meaning that there is no PC with quantum correlation 
for any pair of the quadruple beams. In all region, <DS 11234

3 .
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where = ˆ ˆ†N a a0 0 0 . Here the second-order vacuum terms are omitted. It should be noted that the DS of the quad-
ruple beams (â1, â2, â3 and â4) is given by
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compared with Eq. (7), this cascaded scheme has also enhanced the quantum correlation of the system. The  
symmetrical dependence of the DS1234

3  on the gains is shown in Fig. 6(a) and it can be enhanced with the  
increasing of the gains G1 and G2, similar to the case of DS123

2 . The quantum correlation shared by the quadruple 
beams is present if (2G1 −​ 1)(2G2 −​ 1) >​ 1, i. e., G1 >​ 1 or G2 >​ 1. Next let us analyze all the possible PCs in this 
scheme and the triple correlations can also be obtained from the expressions of the PCs in the asymmetrical  
cascaded FWM scheme, for example, the DS for the triple beams (â1, â2 and â4) can be expressed as 

= − + −
− − + −

DS DS G G G
G G G G134

3
13
2 1 ( 1)

(2 1)( 1) ( 1)
1 1 2

3 1 1 2
. Therefore, we only focus on the PCs. PC between â1 and â2 can be quanti-

fied by

=
− +
−

.DS G G G
G

2 2 1
2 1 (14)12

3 1 2 1

1

The region in which <DS 112
3  is shown in green denoted as (1, 2) in Fig. 5(b), the contour plot of the depend-

ence of DS12
3  on the gains G1 and G2 is shown in Fig. 6(b). With the increasing of G1, the value of G2 on the bound-

ary always increases and eventually saturates at the value of 2 (see the boundary given by G2 =​ 2 −​ 1/G1 in 
Fig. 5(b)). This is different from the asymmetrical scheme discussed above, where the value of G2 on the boundary 
finally reaches 1. This is because here beams â1 and â2 from the first FWM process experience the same amount of 
amplification in the second and third FWM processes, which leads to their good noise balance, thus the perfor-
mance of the PC with quantum correlation between beams â1 and â2 is not as sensitive to the G2 as the one in the 
asymmetrical cascaded FWM scheme, where only beam â2 experiences the amplification, leading to noise unbal-
ance. The study of DS12

3  presented above is actually the question of how to preserve the quantum correlation 
between beams â1 and â2 under the introduction of two FWMs which bring the deterioration effect to the quan-
tum correlation by the quantum amplification of both the beams (â1, â2). The results shown in Figs 5(b) and 6(b) 
actually shows the boundary for the values of G2 below which the quantum correlation can always be preserved 
as the value of G1 increases. More interestingly, any value of G2 more than 2 will eliminate the possibility of the 
existence of PC with quantum correlation between beams â1 and â2 regardless of the value of G1.

PC between â1 and â4 (â2 and â3) can be quantified by

=
−
−






=
−
−





.DS G

G
DS G

G
2 1
2 1

, 2 1
2 1 (15)

14
3 1

2
23
3 1

2

Eq. (15) is similar to the case of Eq. (10). The region in which <DS 114
3  ( <DS 123

3 ) is shown in magenta 
denoted as ((1, 4), (2, 3)) in Fig. 5(b) and the contour plot is shown in Fig. 6(c). Therefore, beams â1 (â2) and â4 (â3) 
are quantum correlated within the magenta region (G1 <​ G2) in Fig. 5(b).

PC between â1 and â3 (â2 and â4) can be quantified by

Figure 6.  The contour plot (a) DS1234
3 ; (b) DS12

3  and (c) DS14
3  and DS23

3 .
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=
− + + − +

− −
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+ − − +
− − +





.

DS G G G G G G G
G G G G

DS G G G G G
G G G G
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,

2 2 3 1
2 1 (16)

13
3 1 2 1 2

2
1
2

1 2

1 2 1 2

24
3 1 2

2
1
2

1 2

1 2 1 2

Eq. (16) is always larger than 1 for any value of G1, G2 >​ 1 as shown in the contour plot of DS13
3  and DS24

3  in 
Fig. 7(a) and (b). In this sense, there isn’t any quantum correlation between beams â1 and â3 (â2 and â4) since DS13

3  
(DS24

3 ) is always larger than 1 for any value of G1, G2 >​ 1. The absence of =DS 113
3  ( =DS 124

3 ) here compared with 
the red line in Fig. 1(b) is due to that both the beams â1 and â3 (â2 and â4) are amplified by the second and the third 
FWM processes independently.

PC between â3 and â4 can be quantified by

=
−
−

.DS G G
G

2 1
2 1 (17)34

3 1 2

1

The PC with quantum correlation between beams â3 and â4 will be absent because G2 is always more than or 
equal to 1. This can be easily found if one looks at the functional form of Eq. (17). Its contour plot is shown in 
Fig. 7(c) in which the value of all the region is more than 1 for any G1, G2 >​ 1. As discussed above, for this sym-
metric cascaded scheme, there are three possible PCs with quantum correlation, namely DS12

3 , DS14
3  and DS23

3 . In 
addition, the existence of quantum correlation between beams â1 and â2 eliminates the possibility of the one 
between beams â1 (â3) and â4 (â2). In other words, beam â1 (â2) can’t be simultaneously quantum correlated with 
beam â2 (â1) and â4 (â3). These effects in this symmetric scheme are similar to the above mentioned repulsion 
effect of quantum correlation between the PCs in the asymmetrical cascaded FWM process. Firstly, for the PC 
between beams â1 and â2, clearly, cell1 will provide the correlation between them while cell2 and cell3 will destroy 
their quantum correlation by adding extra vacuum noise, thus cell1, cell2 (cell3) can be viewed as the correlation 
mechanism provider and decorrelation mechanism provider respectively, thus the larger G1 and smaller G2 are 
preferred for the PC between beams â1 and â2. Secondly, for the case of the PC between â1 and â4 (â2 and â3), cell1 
will generate two thermal states which will destroy their quantum correlation by adding extra vacuum noise into 
the system while the cell3 (cell2) will make them quantum correlated through the FWM processes. In this case, 
cell1, cell3 (cell2) can be viewed as the decorrelation mechanism provider and correlation mechanism provider 
respectively, thus the smaller G1 and larger G2 are preferred for the PC between beams â1 and â4 (â2 and â3). 
Finally, the complete opposite dependence of the PC between beams â1 and â2 and the PC between beams â1 and 
â4 (â2 and â3) on the gains results in the repulsion effect between the PCs of certain pairs. In the blank region of 
Fig. 5(b), all of the PCs have no quantum correlation since ≥DS 112

3 , ≥DS 113
3 , ≥DS 114

3 , ≥DS 123
3 , ≥DS 124

3  and 
≥DS 134

3 , however, the quantum correlation between the quadruple beams is still present.
Here we also give a summary of the theoretical predictions of Figs 5(b), 6 and 7. We plot the dependence of the 

(A) DS1234
3 ; (B) DS12

3 ; (C) DS13
3 ; (D) DS14

3  and DS23
3 ; (E) DS24

3  and (F) DS34
3  on the gain G2 when G1 =​ 2.94 (cell1 gain 

in the experiment) in Fig. 8. DS1234
3  (trace A) can be enhanced with the increasing of G2 which is consistent with 

Fig. 6(a), the value of DS12
3  (trace B) will be larger than 1 as long as G2 >​ 1.67 which is consistent with the bound-

ary (G2 =​ 2 −​ 1/G1) in Fig. 5(b), the value of DS14
3  and DS23

3  (trace D) will be smaller than 1 as long as G2 >​ 2.9 
which is consistent with Figs 5(b) and 6(c). In addition, DS13

3  (trace C), DS24
3  (trace E) and DS34

3  (trace F) are also 
consistent with Fig. 7(a–c) respectively.

We have also applied these theoretical predictions to the experimental results of the symmetrical cascaded 
scheme as shown in Fig. 9, the traces A, B, C, D and E are the measured DSs between â3 and â4, â1 and â2, â1 and 
â4, â2 and â3 and the quadruple beams respectively, the trace F is the corresponding normalized SQLs for traces 
A ~ E (See the methods). The experimental results show 10Log(DS34

3 ) =​ 5.9 ±​ 0.3 dB, 10Log(DS12
3 ) =​ 3.8 ±​ 0.6 dB, 

10Log(DS14
3 ) =​ 0.1 ±​ 0.4 dB, 10Log(DS23

3 ) =​ −​0.2 ±​ 0.7 dB and 10Log(DS1234
3 ) =​ −​8.2 ±​ 0.5 dB at 0.6 MHz. For the 

Figure 7.  The contour plot of (a) DS13
3 ; (b) DS24

3  and (c) DS34
3 .



www.nature.com/scientificreports/

9Scientific Reports | 7:40410 | DOI: 10.1038/srep40410

experimental gains G1 ≈​ 2.94 and G2 ≈​ 2.85, the theoretical predictions give 10Log(DS34
3 ) =​ 5.1 dB, 

10Log(DS12
3 ) =​ 3.9 dB, 10Log(DS14

3 ) =​ 0.2 dB, 10Log(DS23
3 ) =​ 0.2 dB and 10Log(DS1234

3 ) =​ −​13.6 dB. As we can see, 
although these theoretical predictions do not perfectly agree with the experimental results at 0.6 MHz, they still 
give a rough estimation of the relationship between the obtained experimental noise power traces.

Discussion
The PCs existed in the asymmetrical cascaded scheme and symmetrical cascaded scheme are both studied. We 
found that the symmetrical cascaded scheme has the following distinctions compared with the asymmetrical 
cascaded scheme: (1) Quantum enhancement. The DS of the quadruple beams in the symmetrical cascaded 
scheme (Eq. 13) has quantum enhancement compared with the one of the triple beams in the asymmetrical cas-
caded scheme (Eq. 7) with the same gains; (2) Boundary effect. The boundary of the PC with quantum correlation 
between beams â1 and â2 in the asymmetrical cascaded FWM scheme shown in Fig. 1(b) is obviously different 
from the one of the symmetrical cascaded FWM scheme shown in Fig. 5(b). This is because here beams â1 and â2 
from the first FWM process experience the same amount of amplification in the second and third FWM pro-
cesses, which leads to their good noise balance, thus the performance of the PC with quantum correlation 
between beams â1 and â2 is not as sensitive to the G2 as the one in the asymmetrical cascaded FWM scheme, where 
only beam â2 experiences the amplification, leading to noise unbalance. (3) SQL Approaching. The PC between 
beams â1 and â3 in the asymmetrical cascaded FWM scheme is clearly different from the one in the symmetrical 
cascaded FWM scheme. The PC between beams â1 and â3 in the asymmetrical cascaded FWM scheme can 
approach its corresponding SQL (see the trace C in Fig. 3), while the PC between beams â1 and â3 in the symmet-
rical cascaded FWM scheme is always much higher than its corresponding SQL (see the trace C in Fig. 8). This is 
because in the asymmetrical cascaded FWM scheme only one beam â3 is amplified by the second FWM process, 
while in the symmetrical cascaded FWM scheme both of the beams â1 and â3 are amplified by the second and 
third FWM processes independently.

In summary, we have theoretically characterized the performance of the PCs from the multiple quantum 
correlated beams and analyzed the dependence of all the PCs on the system intensity gains based on two differ-
ent cascaded FWM processes. For both cases, we have theoretically predicted the so called repulsion effect of 

Figure 8.  The dependence of (A) DS1234
3 ; (B) DS12

3 ; (C) DS13
3 ; (D) DS14

3  and DS23
3 ; (E) DS24

3  and (F) DS34
3  on the 

gain G2 when G1 = 2.94 (cell1 gain in the experiment). The black dashed line: SQL.

Figure 9.  Experimentally measured (A) DS34
3 ; (B) DS12

3 ; (C) DS14
3 ; (D) DS23

3 ; (E) DS1234
3  and (F) the 

corresponding SQLs of the traces A ~ E in the symmetrical cascaded scheme. The vertical dashed line: 
0.6 MHz.
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quantum correlation between the PCs of the cascaded systems. Our results presented here can be applied to the 
classification and application of the quantum states generated from the cascaded FWM processes.

Methods
Experimental measurements of PCs.  The output beams âi (i =​ 1, 2, 3, and 4) from the cascaded FWM 
processes are sent to the photodetectors and their noise power values Ni (i =​ 1, 2, 3, and 4) are measured. One 
beam is subtracted from the other beam in the pairwise beams and thus the intensity-difference squeezing shared 
by the pairwise beams is measured. In addition, the SQL of the measured pairwise beams can be measured in this 
way by using a beam in a coherent state with a power equal to the total power of the measured pairwise beams 
impinging on the photodetectors. We then split it with a 50/50 beamsplitter, direct the obtained beams into two 
photodetectors. and record the noise power of the differential photocurrent. This balanced detection system 
makes it possible to cancel all the sources of classical noise and obtain a measure of the SQL.
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