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Abstract: In combined quantum-mechanical/molecular-mechanical (QM/MM) dynamics
simulations, the adaptive-partitioning (AP) schemes reclassify atoms on-the-fly as QM or MM
in a smooth manner. This yields a mobile QM subsystem with contents that are continuously updated
as needed. Here, we tailor the Hamiltonian adaptive many-body correction (HAMBC) proposed
by Boreboom et al. [J. Chem. Theory Comput. 2016, 12, 3441] to the permuted AP (PAP) scheme.
The treatments lead to the HAMBC-PAP method (HPAP), which both conserves energy and produces
accurate solvation structures in the test of “water-in-water” model system.

Keywords: combined QM/MM; molecular dynamics simulations; energy conservation;
radial distribution function; adaptive partitioning

1. Introduction

Molecular dynamics (MD) simulations of diffusive systems, such as the diffusion of a solute
(a solvated ion or molecule) through solvent, has been a challenging task for multiscale methods,
especially for combined quantum-mechanics/molecular-mechanics (QM/MM) methods [1–26].
In conventional QM/MM methodology, atoms are designated as QM or MM at the beginning of
a simulation and do not change these identities throughout a simulation. This causes difficulties when
solvent molecules are exchanged between the solute’s solvation shells and the bulk solution, which may
occur frequently. Adaptive QM/MM mitigates these problems by reclassifying the atoms as QM or
MM on-the-fly based on their positions, assuring that the solute and its solvation shells are always
described at the QM level of theory [25,27–52]. As a result, the QM and MM partitions in adaptive
QM/MM are dynamically updated as needed, in contrast to the static partitions in conventional
QM/MM.

One adaptive QM/MM algorithm is the permuted adaptive partitioning (PAP) scheme [29,32],
which uses distance-based criteria for the QM and MM partitioning (Figure 1). In PAP, the QM zone,
also called the active zone, consists of the solute and all molecules within a preset cutoff distance rmin

from the solute. A group-based prescription is often adopted, where a whole molecule is treated as
an entity, and the distance from the solute r is measured using the center of mass or a representative
atom of the entire molecule. The description for whole molecules can also be applied to molecular
fragments, such as functional groups [32]. The MM zone, also known as the environmental zone,

Molecules 2018, 23, 2170; doi:10.3390/molecules23092170 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0002-3503-1558
https://orcid.org/0000-0002-0223-2695
https://orcid.org/0000-0002-3525-9122
http://www.mdpi.com/journal/molecules/special_issues/QM
http://www.mdpi.com/1420-3049/23/9/2170?type=check_update&version=1
http://dx.doi.org/10.3390/molecules23092170
http://www.mdpi.com/journal/molecules


Molecules 2018, 23, 2170 2 of 16

consists of molecules with r > rmax, where rmax is another preset cutoff distance. Between the QM
and MM zones is the buffer zone (rmax ≥ r ≥ rmin), and the molecules in the buffer zone are often
called the buffer groups. The energy of the system and the gradients of all (QM, buffer, and MM)
atoms are smoothly interpolated when molecules or functional groups migrate into, across, or out
of the buffer zone. This is accomplished by expressing the QM/MM potential as a weighted sum
of many-body contributions that vary continuously and smoothly as the buffer groups change their
positions. The PAP method conserves energy and momentum, and it has been found to yield superior
numerical stabilities in MD simulations [29,32].
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Figure 1. Adaptive QM/MM exemplified by a “water-in-water” model. One selected water molecule
(oxygen atom labeled by O′) serves as the active-zone center. This molecule and its immediate
surrounding water molecules within a distance (r < rmin) are treated at the QM level of theory,
while those at remote distances (r > rmax) at the MM level. The water molecules at intermediate
distances (rmax ≥ r ≥ rmin) are in the buffer zone and have mixed QM and MM characters. The energy
of the system and the gradients of all (QM, buffer, and MM) atoms are smoothly interpolated when
molecules migrate into, across, or out of the buffer zone.

A challenge in PAP (and other distance-based adaptive QM/MM methods) concerns the gradients
due to the smoothing functions employed in the interpolation procedure, which, if not negligible,
may cause artefacts in the MD simulations [30,35,42,46]. These forces, which are sometimes called
transition forces, are proportional to the difference between the QM and MM energies at the current
geometry. More specifically, the energy difference is the energy released (or absorbed) when a buffer
group is switched from MM to QM while holding the QM or MM classifications of the other groups
as well as all atomic coordinates fixed [42]. These transition forces are therefore associated with the
difference in chemical potential between the QM and MM descriptions of the given buffer group.
These transition forces drive the molecules moving towards the QM or MM zones, even in the absence
of the interpolated gradients between the QM and MM potential derivatives, which are considered the
“real” or “physical” forces.

In principle, the effects due to these transition forces can be eliminated or minimized by
carefully aligning the QM and MM potentials [29]. However, it is difficult to align multi-dimensional
potentials, and a simple and general algorithm to for potential alignment has not yet been developed.
An alternative solution is the modified PAP (mPAP) scheme, where external forces are applied
to cancel out these artificial forcs [35]. Mathematically, the transition forces are simply deleted.
Conceptually, this means that the chemical potentials are equalized at every step for the system [46].
It has been demonstrated that mPAP yields reasonably accurate structures and dynamics in MD
simulations [35,40,43]. The downside is that, because of the involvement of the external forces,
the scheme no longer has a Hamiltonian formulation and therefore cannot be used for studies where
Hamiltonian systems are required [43].
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Recently, Boreboom et al. [42] proposed the Hamiltonian adaptive many-body correction
(HAMBC) for sorted adaptive-partitioning (SAP) QM/MM simulations. Inspired by the works of the
molecular-mechanics/course-grained (MM/CG) community, especially the Hamiltonian adaptive
resolution scheme (H-AdResS) by Potestio et al. [53] the HAMBC method includes per-molecule-based
correction terms to the SAP QM/MM Hamiltonian. By design, the gradients of the correction terms
should cancel out the average transition forces due to the smoothing functions; the cancellation is not
necessarily exact at any single time step. The HAMBC was demonstrated in test calculations of a
“water-in-water” model using dual MM levels, where a selected water molecule as the solute and its
solvation shell are treated by one MM force field model and the bulk solvent by another MM force field
model [42]. (Due to their high efficiencies, dual-MM test calculations have frequently been employed
in testing adaptive QM/MM schemes, e.g., in the development of the original PAP scheme [29].) It is
encouraging to find that HAMBC was able to produce correct solvation structures for the selected
solute water while conserving energy in SAP simulations [42].

In this paper, we report the tailoring of the HAMBC treatment to the much more sophisticated PAP
method. In the HAMBC by Boreboom et al. [42] the per-molecule correction term is a function of the
fractional “QM character” for a solvent molecule, which is the sum of the weights of the contributing
partitions that describe this solvent molecule at the QM level. Because in general there is no analytical
function for the correction term, the correction must be calculated through thermodynamic integration
over the selected variable. In PAP, it is more convenient to use the value of the smoothing function
than the QM character for the given buffer group. We have previously shown that this QM character is
equivalent to the value of the smoothing function for a given buffer group in a fully expanded PAP
potential [46]. However, the many-body expansion of the PAP potential is often truncated to reduce
computational costs, and in a truncated PAP potential, the value of the smoothing function no longer
equals the QM character. In this work, we demonstrate that the correction can be taken as a function of
the value of the smoothing function even when the PAP potential is truncated.

2. Materials and Methods

2.1. The PAP Algorithm

In PAP, the QM/MM potential is expressed using a many-body expansion: [29]

V = VA +
N
∑

i=1
Pi
(
VA

i −VA)+ N−1
∑

i=1

N
∑

j=i+1
PiPj

(
VA

i,j −
(

VA + ∑
r=i,j

(
VA

r −VA)))

+
N−2
∑

i=1

N−1
∑

j=i+1

N
∑

k=j+1
PiPjPk

(
VA

i,j,k−
(

VA + ∑
r=i,j,k

(
VA

r −VA)
+ ∑

(p,q)=(i,j),(i,k),(j,k)

(
VA

p,q −
(

VA + ∑
r=p,q

(
VA

r −VA)))))+ · · ·

(1a)

Or more compactly, [32]

V = VA
N

∏
i=1

(1− Pi) +
N

∑
i=1

VA
i Pi

N

∏
j 6= i

(
1− Pj

)
+

N−1

∑
i=1

N

∑
j=i+1

VA
i,j PiPj

N

∏
k 6= j 6= i

(1− Pk) + · · · (1b)

= VAσ0 +
N

∑
i=1

VA
i σi +

N−1

∑
i=1

N

∑
j=i+1

VA
i,j σi,j + · · · (1c)

Here, VA is the QM/MM energy of the partitions with no buffer group treated at the QM level,
VA

i with the i-th buffer group treated at the QM level, VA
i,j with the i-th and j-th buffer groups treated

at the QM level, . . . VA
1,2,··· ,N with all N buffer groups at the QM level, Pi is the smoothing function

for the i-th buffer group, and the weights σ0, σi, σi,j . . . are assigned to the partitions VA, VA
i , VA

i,j . . .
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respectively. Note that N can vary from one time step to another. We have chosen the smoothing
function Pi to be a fifth-order spline:

P(αi) =


0 αi > 1

−6αi
5 + 15αi

4 − 10αi
3 + 1, 1 ≥ αi ≥ 0

1, αi < 0
(2)

where αi is a reduced distance for the i-th buffer group,

αi =
ri − rmin

rmax − rmin
(3)

where the distance ri = |ri| = |xi − xA| is between the buffer group at position xi and the solute at
position xA, and rmax ≥ ri ≥ rmin. The smoothing function Pi is continuous and differentiable over
the domain [0, 1], and corresponds to all possible ri that a buffer group can take in the buffer zone.
The PAP scheme is a Hamiltonian algorithm and conserves energy.

According to Equation (1), a buffer group is treated by QM in some partitions and by MM in the
others, in line with its dual QM-MM characteristics. This contrasts with the groups in the QM and
MM zones, which remain as QM and MM, respectively, in all possible partitions. (Note that the QM
and MM zones are also called the active and environmental zones, respectively.) All derivatives of the
PAP potential energy with respect to the coordinates vary smoothly up to the same order for which
Pi varies continuously. The full expansion of the PAP potential requires 2N calculations. However,
the potential is typically truncated and only the terms from a subset of lower-orders are calculated to
increase computational efficiency.

If we denote the included partitions by S, be it a subset or the total of all the partitions at a given
time step, the PAP potential can be written as:

V = ∑
s∈S

Vsσs (4)

The derivative with respect to any atomic Cartesian coordinate component xt is:

− ∂V
∂xt

= ∑
s∈S

(
−σs

∂V
∂xt
−Vs

∂σs

∂xt

)
(5)

The first term (Fphys = − ∑
s∈S

σs
∂V
∂xt

), the negative of the sum of the smoothed gradients,

represents the interpolated physical forces between the QM and MM forces. The second term
(Ftrans = − ∑

s∈S
Vs

∂σs
∂xt

) corresponds to the gradients due to the smoothing functions and is the so-called

transition forces. The transition forces are associated with the difference in chemical potentials between
the QM and MM regions [42]. These transition forces are pairwise, acting on both the solute molecule
at the QM-zone center and the buffer groups, and they cause structural artifacts if non-negligible.
This “transition-force problem” is universal in distance-based adaptive QM/MM algorithms and is not
limited to PAP [46]. Various treatments have been implemented to eliminate the problem or minimize
its effects. For example, in the non-Hamiltonian mPAP method [35], these transition forces are deleted,
and as a result, the remaining forces acting on the atoms no longer correspond to the potential defined
in Equation (1). The mPAP scheme has been shown to yield very accurate structural and dynamics
properties in a number of tests [35,40,41].

2.2. HAMBC Expression for PAP

To minimize the effects due to the transition forces while maintaining energy conservation,
Boreboom et al. [42] recently proposed the HAMBC for SAP QM/MM, which also suffers from the
transition force problem. In HAMBC-SAP, an energy correction term is added to the SAP potential
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for every buffer group. The correction term is assumed to depend only on the type of the buffer
group (e.g., water versus ethanol) and the so-called “QM character,” which is the sum of the weights
of the contributing partitions that describe this buffer group at the QM level. For PAP, it would be
more convenient to select the smoothing function Pi than to choose the QM character. Both Pi and
the QM character are metrics related to the buffer group′s position within the buffer zone; the QM
character is equivalent to Pi in a fully expanded PAP potential but differs otherwise [46]. The theory
and implementations for HAMBC-PAP (HPAP for short) are described below.

2.2.1. A Mean-Field Treatment of the Individual Group Corrections

As in Ref. [42], we assume here that the total correction is a sum of individual group corrections
over all N buffer groups and that the individual i-th group correction (HC

i (ri)) only depends on the
type of species of the group and on the group′s distance ri to the active-zone center. Because Pi
decreases monotonously from 1 to 0 as ri increases from rmin to rmax, the correction term HC

i (ri) can
also be expressed as a function of the dimensionless Pi, i.e., HC

i (Pi). That the corrections to the buffer
groups are independent of each other implies that the interactions between the groups are treated in a
“mean-field” manner as the correlations between the groups are neglected. Thus, many-body effects
are treated in an average fashion. For simplicity, we only consider one species, the solvent. Under this
circumstance, the new HPAP potential is:

VHPAP = ∑
s∈S

Vsσs −
N

∑
i=1

HC
i (Pi) = ∑

s∈S
Vsσs −

N

∑
i=1

HC(Pi) (6)

The subscript i in HC
i (Pi) is dropped because all corrections are identical for the same species.

The corresponding forces are given by:

− ∂VHPAP

∂xt
= −∑

s∈S

(
σs

∂V
∂xt

+ Vs

N

∑
i=1

∂σs

∂Pi

dPi
dri

∂ri
∂xt

)
+

N

∑
i=1

dHc(Pi)

dPi

dPi
dri

∂ri
∂xt

(7)

The correction force due to the derivative of the individual correction energy
(Fcorr = − dHc(Pi)

dPi

dPi
dri

∂ri
∂xt

) is designed such that, at any given distance ri that separates the solute
molecule and the i-th buffer group, it should cancel the average transition forces acting on the
buffer group:

〈− ∑
s∈S

Vs
∂σs

∂Pi

dPi
dri

∂ri
∂xt
〉+ dHc(Pi)

dPi

dPi
dri

∂ri
∂xt

= 0 (8a)

The requirement is enforced for any given ri and xt. Therefore, if follows that

〈− ∑
s∈S

Vs
∂σs

∂Pi
〉+ dHc(Pi)

dPi
= 0 (8b)

The relevant xt are the coordinates of the buffer group. Based on Newton’s Third Law of Motion,
such cancellation will automatically be realized at the active-zone center.

We compute the individual correction derivative dHc(Pi)
dPi

as the average energy difference between
a pair of partitions where the only variation is that the i-th group at ri is treated at QM or MM:

dHc(Pi)

dPi
= 〈Vi=QM(ri)−Vi=MM(ri)〉 = 〈∆Ei(ri)〉 = 〈∆Ei(Pi)〉 (9)

Here, the energies of the partition pair are denoted Vi=QM(ri) and Vi=MM(ri), respectively,
and 〈 indicates the corresponding average. As usual, the zeros of the potentials Vi=QM and Vi=MM
are chosen such that these energies represent the net interaction energies [46]. At any given time
step of the simulation, the number of partitions depends on the truncation order of mPAP potential,
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and usually there are multiple such pairs of partitions for the i-th group at ri, each with different buffer
groups treated by QM. Thus, the average is over the partition pairs for the buffer group at ri in a
sampled geometry and over all sampled geometries while keeping the buffer group at ri in the mPAP
simulations. By varying ri continuously, one obtains the complete profile of 〈∆Ei〉. Again, because Pi
decreases monotonously from 1 to 0 as ri increases from rmin to rmax, the average energy difference
〈∆Ei〉, which depends solely on ri, can also be expressed as a function of the dimensionless Pi.

2.2.2. Calculations of 〈∆Ei(Pi)〉 and HC(Pi)

First, we consider one partition pair for a sampled geometry at a given time step. Let us assume
that the partition of Vi=QM(ri) has a QM subsystem consists of the active-zone “A”, the i-th group,
and (m − 1) other groups selected from the N buffer groups. Accordingly, the other partition of
Vi=MM(ri) will feature a QM subsystem consisting of the active-zone “A” and the other (m− 1) buffer
groups, since the i-th group is treated by MM. These two partitions correspond to the m-th and
(m− 1)-th order terms in the mPAP potential, respectively. For the sake of brevity, we refer to this
partition pair as of the m-th order. Without losing generality, we label these m buffer groups by
1, 2 . . . m. The energy difference for this partition pair is

∆E(m)
i (Pi) = ∆E(m)

i (ri) = VA
1,2,··· ,i−1,i,i+1,··· ,m(ri)−VA

1,2,··· ,i−1,i+1,··· ,m(ri) (10)

Next, we combine all such partition pairs corresponding to a given m-th order term in the mPAP

Hamiltonian, where there are

(
N − 1
m− 1

)
= (N−1)!

(m−1)!(N−m)! such pairs, up to the p-th order at which the

mPAP Hamiltonian is truncated, all for the sampled geometry at the given time step. That is, we take
the average of ∆E(m)

i over partition pairs for a given m and then over m for m = 1, 2, . . . , p. This gives
the average energy difference for a given sampled geometry:

∆Ei =
∆E(1)

i + ∑all pairs ∆E(2)
i + ∑all pairs ∆E(3)

i + · · ·(
N − 1

0

)
+

(
N − 1

1

)
+

(
N − 1

2

)
+ · · ·

(11)

We then average ∆Ei over all sampled geometries in the simulations where the i-th group is
located at ri. This gives 〈∆Ei〉 for the corresponding Pi. The complete curve of 〈∆Ei(Pi)〉 is obtained by
varying Pi continuously from 0 to 1. For better statistics, we also average over all buffer groups of the
same type in the simulations.

In general, there is no analytic form for HC(Pi), which must be obtained through
thermodynamic integration:

HC(Pi) =
∫ Pi

0
〈∆Ei

(
P′i
)
〉dP′i (12)

where P′i is the dummy variable for integration.
The final correction is applied to each group in the system according to the following scheme:

HC(Pi) =


HC(0), ri > rmax

HC(Pi), rmax ≥ ri ≥ rmin

HC(1), ri < rmin

(13)

We note that HC(0) 6= HC(1) in general.
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2.2.3. Many-Body Contributions to ∆E(m)
i

To see how many-body interactions are incorporated into the energy difference for a partition
pair, we use the standard formula of many-body expansion for a system made of n monomers:

V1,2,··· ,n =
n

∑
a=1

εa +
n−1

∑
a=1

n

∑
b=a+1

εab +
n−2

∑
a=1

n−1

∑
b=a+1

n

∑
c=b+1

εabc + · · · (14)

where εa is the energy of an isolated monomer, εab is the energy of a dimer minus the energies of
the monomers it comprises (i.e., it is the pairwise interaction energy), etc. Applying Equation (14) to
VA

1,2,··· ,i−1,i,i+1,··· ,m(ri) and VA
1,2,··· ,i−1,i+1,··· ,m(ri), and after canceling identical terms, one has

∆E(m)
i = (∆εi + ∆εAi) +

m

∑
j 6= i

(
∆ε ji + ∆εAji

)
+

m

∑
j 6= i

m

∑
k 6= j 6= i

(
∆ε jki + ∆εAjki

)
+ · · · (15)

where
∆εi = εi=QM − εi=MM (16a)

∆εAi = εA,i=QM − εA=QM; i=MM (16b)

∆ε ji = ε j,i=QM − ε j=QM; i=MM (16c)

∆εAji = εA,j,i=QM − εA,k=QM; i=MM (16d)

∆ε jki = ε j,k,i=QM − ε j,k=QM; i=MM (16e)

∆εAjki = εA,j,k,i=QM − εA,j,k=QM; i=MM
. . .

(16f)

Here εi=QM and εi=MM are the QM and MM energies of the i-th group at the QM and MM levels,
respectively; ε j,i=QM is the pairwise interaction energy between groups i and j, both treated at the QM
level; ε j=QM; i=MM is the pairwise interaction energy between group j described at the QM level and
group i at the MM level; ε j,k,i=QM is the three-body contribution by groups i, j, and k treated at the QM
level; ε j,k=QM;i=MM is the three-body contribution by groups j and k described at the QM level and
group i at the MM level . . . Terms involving the active-zone “A” are defined similarly. The many-body
interactions where the i-th group treated by MM depend on the specific QM/MM embedding model.
Note that these many-body interactions never need to be explicitly evaluated; they are prescribed here
merely to assist understanding of the many-body interactions in ∆E(m)

i . The above analysis indicates

that ∆E(m)
i is a sum of the differences between the many-body terms in the partition pair involving the

i-th group in the many-body expansions up to the m-th order.

2.2.4. Effects Due to Truncation in mPAP Hamiltonian

If the mPAP potential is truncated at a low order p and if N � p, which is the case in our
current simulations, the average is dominated by the p-th order ∆E(p)

i , which has the largest number
of partitions:

〈∆Ei〉 ≈ 〈∆E(p)
i 〉 (17)

Moreover, because all groups are the same type of molecules,

〈∆E(p)
i 〉 = (〈∆εi〉+ 〈∆εAi〉) + (p− 1)

(
〈∆ε ji〉+ 〈∆εAji〉

)
+ (p−1)(p−2)

2

(
〈∆ε jki〉+ 〈∆εAjki〉

)
+ · · ·

(18)
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That is, 〈∆Ei〉 depends on the truncation order in the mPAP potential. A special case is dual-MM,
where effective two-body potentials are employed, the third and higher order terms are 0 in
Equation (14). Consequently, 〈∆εAji〉, 〈∆ε jki〉, and higher-order contributions vanish, leading to

〈∆E(p)
i 〉 = (〈∆εi〉+ 〈∆εAi〉) + (p− 1)〈∆ε ji〉 (19)

2.3. Simulation Details

An Open-MP-based parallel version of HPAP method has been implemented in our in-house
code, QMMM [54]. The QMMM code calls an MM program such as NAMD [55] for MM calculations
and a QM program such as MNDO [56] for QM calculations, synthesizes the energies and gradients
from both, and propagates the trajectory. Here, to reduce the computational expense from QM/MM
calculations, we carry out dual-MM (MM′/MM) simulations, as we have done previously in the
development of the original PAP algorithm [29] and as Boreboom et al. [42] did in their HAMBC
study. Since we are only focusing on the adaptive-boundary treatments, the use of dual-MM test
calculations suffices.

The model system for all calculations is a 30.25 × 30.25 × 30.25 Å3 water box that contains
915 water molecules (density = 0.99 g/mL). The water box was prepared by equilibration for 10 ns
under the NVT ensemble at the single-MM level using the TIP3P/Fs [57,58] water model. For the
adaptive-partitioning simulations, each water molecule is an adaptive partitioning group, with the
oxygen atom designated as the representative atom for the group. One water oxygen was chosen
to be the active-zone center for the simulation, and the buffer and active zone radii were set to
rmax = 6.4 Å and rmin = 5.5 Å respectively. All adaptive-partitioning potentials were truncated at the
2nd order. For all calculations, periodic boundary conditions with the minimum-image convention
were adopted. The cutoff for non-bonded interactions was set to 12 Å with smoothing switched on at
11 Å. All simulations are under constant volume with a time step of 0.5 fs. If constant temperatures
were required, a Nosé-Hoover [59] thermostat of 298.15 K was coupled to the model system with a
coupling coefficient of 40 fs.

First, to obtain the correction term HC, the model was simulated at constant temperature at the
MM′/MM level using the mPAP scheme, where MM′ = SPC/Fw [58] and MM = TIP3P/Fs [57,58]
(the force field parameters are compared in Table 1). Five 20-ps trajectories were propagated.
Only the second half 10 ps of every trajectory was utilized to determine the correction term HC,
during which the energies of the partitions were recorded. Note that multiple partitions and thus
multiple energy differences are available at one single time step, unless there is no or only one buffer
group. The combined 50-ps trajectories for the HC calculations resulted in a total of 16,791,809 energy
differences (∆E(1)

i and ∆E(2)
i ). Figure 2 shows the density distribution of ∆Ei(Pi). We found that the

50 ps combined simulation time was sufficient to converge the correction term in the present work
(more details in the Results section). These energy differences ∆Ei(Pi) were added to 100 bins equally
spaced over the domain [0, 1] according to the Pi value of the buffer group. The average of each
bin was then taken and used as input for linear regression to obtain the function ∆E(Pi). We have
dropped the subscript i, because ∆Ei(Pi) is identical for all buffer groups here. The linear regression
was motivated by the approximately linear nature of the ∆E(Pi) curve (more details in the Discussion
section). The analytical integral of the regression line was used to obtain HC(Pi). Both ∆E(Pi) and
HC(Pi) were discretized into 10,000 evenly spaced points between the domain [0, 1] and are stored as
a look-up table read in by the QMMM source code. The correction for a group was chosen by looking
up the ∆E(Pi) and HC(Pi) values in the table for the next largest Pi value.
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Table 1. Force field parameters for the water models employed in this work.

Interaction Parameter TIP3P/Fs 1 SPC/Fw 2

O-H stretching kb [kcal/mol/Å2] 1059.162 1059.162
B0 [Å] 0.960 1.012

H-O-H bending kθ [kcal/mol/rad2] 68.097 75.900
θ0 [deg] 104.500 113.24

Electrostatic qH [e] 0.417 0.41
qO [e] −0.834 −0.82

van der Waals (O only) Rmin/2 [Å] 1.7682 1.7767
ε [kcal/mol] −0.1522 −0.1524

1 Ref. [58] 2 Refs. [57,58].
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Second, to examine the solvation structures obtained through the HAMBC correction, we carried
out adaptive-partitioning simulations at constant temperature using three schemes: PAP, mPAP,
and HPAP. For each scheme, five trajectories were propagated using the final geometries and velocities
from the five mPAP simulations used to compute HC. Each trajectory was propagated for 10 ps.
The combined 50 ps trajectories were employed to calculate the pairwise radial distribution function
for a given scheme.

Finally, to examine the degree of energy conservation, we also performed NVE simulations for all
three schemes. One trajectory for each method was propagated for 25 ps with 0.5 fs time steps.

3. Results

3.1. HAMBC Correction Term

Figure 2a plots the energy difference over the thermodynamic variable ∆E(Pi) obtained from the
combined 50-ps trajectories, together with the linear regression results. The almost perfect linear fit is
incidental due to the similarity in some parameters of the two employed force fields (see Section 4
for detailed discussion). In general, the linearity is very approximate or does not hold. Nevertheless,
by taking advantage of the analytical representation of ∆E(Pi) from the linear regression, we estimated
the correction term HC(Pi), which is depicted in Figure 2b.

To explore the length of simulation needed to generate the HPAP correction, we calculated the
root mean squared deviation (RMSD) of ∆E(Pi) and HC(Pi) as functions of simulation time, taking as
reference the final curves from the accumulated 50-ps simulations (Figure 3). The RMSD values of
∆E(Pi) and HC(Pi) were calculated over the 100 bins that are equally distributed bins along the Pi
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domain [0, 1]. It can be seen that both RMSDs drop consistently after ~15 ps. The function ∆E(Pi)

converged to below 0.01 kcal mol−1 after 30 ps of combined simulations. Because integration reduces
the fluctuations in ∆E(Pi), the RMSD values of HC(Pi) are even smaller than those of ∆E(Pi).
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Figure 3. Root mean squared deviations (RMSDs) of (a) ∆E(Pi) and (b) HC(Pi), respectively,
as functions of simulation time, taking their final curves from the combined 50-ps simulations
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A necessary requirement for the correction term is that the correction force Fcorr must, on average,
cancel out the transition force Ftrans. This fact is exemplified in the distribution of the difference
between these two forces (∆F = Ftrans − Fcorr) in the final HPAP simulations (Figure 4). It can be
seen that ∆F is distributed approximately normally around 0 kcal·mol−1Å−1 across the entire domain
of Pi. The calculated average ∆F over all Pi is 0.0007 kcal·mol−1Å−1, with a standard deviation of
0.4 kcal·mol−1Å−1, in excellent agreement with the cancellation requirement.
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(defined as ∆F = Ftrans − Fcorr) in the HPAP simulations.

3.2. Solvation Structures

We examined the solvation structure around the solute water by computing the pairwise radial
distribution function (RDF) gO’O(r) between its oxygen (O′, serving as the center of the active zone)
and the surrounding oxygen (O) atoms for the original PAP, mPAP, and HPAP simulations under
constant temperature (Figure 5a). The original PAP results show an erroneous dip around r = 5.95 Å
which corresponds to the center of the buffer zone. This is caused by the transition forces pushing
water out of the buffer zone. However, this artifact is eliminated by inclusion of the correction term in
HPAP, for which the RDF closely matches the mPAP reference data, indicating that the HPAP method
is able to produce accurate solvation structures. The results here are in line with what were found by
Boreboom et al. [42] although different adaptive schemes are employed.
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Figure 5. (a) Comparison of radial distribution functions (RDF) between AP simulations. The water
oxygen atom O′ serves as the active-zone center, and O is the surrounding water oxygen atom.
The results are illustrated by a green dotted line for the PAP, orange dashed line for the HPAP, and blue
solid line for the reference mPAP methods, respectively. The buffer zone boundaries at rmax = 6.4 Å
and rmin = 5.5 Å are indicated by the two black dashed vertical lines. (b) Comparisons of RDF between
the mPAP and the two single-level MM simulations.

For comparison, we also present in Figure 5b the RDF computed from the mPAP and the two
single-level MM simulations. All three RDF curves are overall quite similar, although the TIP3P/Fs
water is slightly less structural than SPC/Fw. The mPAP RDF better resembles the SPC/Fw curve
in the active-zone, as it is supposed to be. Interestingly, despite the similarity between SPC/Fw and
TIP/Fs, a significantly distorted RDF was produced by PAP in the buffer-zone region, as observed
in Figure 5a. This demonstrates the sensitivity of the RDF to the boundary treatment in the adaptive
simulations and underscores the importance of proper treatments implemented in mPAP and HPAP.

Next, we checked the degree of energy conservation in the NVE simulations (Figure 6a,b).
As expected, there was a large energy drift during the duration of the mPAP simulation of
17 kcal·mol−1·ps−1. On the other hand, both the original PAP and the newly introduced HPAP
show negligible drifts in energy (0.004 and 0.015 kcal·(mol−1·ps−1), respectively) over the duration of
the 25-ps simulations. The root mean squared deviations of the energy over the timeseries were almost
the same for HPAP (~0.82 kcal·mol−1) and PAP (~0.76 kcal·mol−1).

Molecules 2018, 23, x 11 of 15 

 

Å  and 𝑟min  =  5.5 Å  are indicated by the two black dashed vertical lines. (b) Comparisons of RDF 

between the mPAP and the two single-level MM simulations. 

Next, we checked the degree of energy conservation in the NVE simulations (Figure 6a,b). As 

expected, there was a large energy drift during the duration of the mPAP simulation of 17 

kcal·mol−1·ps−1. On the other hand, both the original PAP and the newly introduced HPAP show 

negligible drifts in energy (0.004 and 0.015 kcal·(mol−1·ps−1), respectively) over the duration of the 25-

ps simulations. The root mean squared deviations of the energy over the timeseries were almost the 

same for HPAP (~0.82 kcal·mol−1) and PAP (~0.76 kcal·mol−1).  

 

Figure 6. (a) Total energy as the sum of kinetic and potential energies of the model system in the 25-

ps NVE simulations using the PAP (green), mPAP (blue), and HPAP (orange) methods. The many-

body expansions of the potentials were all truncated at the 2nd order. (b) PAP and HPAP Total 

energies in greater detail. The zero of energy was chosen to be the mean energy of the first 250 fs. 

4. Discussion 

It is interesting to note that the correction 〈Δ𝐸(𝑃𝑖)〉 is approximately a linear function of 𝑃𝑖 in 

the present work. To understand the origin of this approximate linearity, let us consider a given i-th 

buffer group. When the description of this buffer groups is switched between the two employed MM 

force fields, SPC/Fw and TIP3P/Fs, there will be changes in the non-bonded (van der Waals and 

electrostatic) interactions through which this buffer group interacts with active-zone groups, 

environmental-zone groups, and the other buffer groups. Also changing are the intramolecular 

bonded (O-H bond and H-O-H angle) interactions within this buffer group. The decomposition of 

〈Δ𝐸𝑖(𝑃𝑖)〉 is depicted in Figure 7a according to 

〈Δ𝐸𝑖〉  =  〈𝑉𝑖 = SPC/FW − 𝑉𝑖 = TIP3P/Fs〉 (20a) 

= 〈Δ𝐸𝑖,bonded〉 + 〈Δ𝐸𝑖,nonbonded〉  =  〈Δ𝐸𝑖,bond〉 + 〈Δ𝐸𝑖,angle〉 + 〈Δ𝐸𝑖,vdw〉 + 〈Δ𝐸𝑖,elec〉 (20b) 

where i denotes the i-th buffer group.  

The bonded energy terms are the dominant contributors to Δ𝐸𝑖. This is not surprising because 

of the similarity in the nonbonded interaction parameters (Table 1). Both the O-H bond and H-O-H 

angle energies are sizeable, but the O-H bond energy is overall more significant. The difference in the 

O-H bond energies between the two descriptions are 

Δ𝐸bond  =  𝑘1(𝑥 − 𝑥01)
2 − 𝑘2(𝑥 − 𝑥02)

2 (21) 

where x is the instantaneous O-H bond length, and 𝑘1 and 𝑘2 are the force constants parameters 

and 𝑥01 and 𝑥02 the equilibrium geometric parameters of the two water models, respectively. If 

𝑘1  =  𝑘2  =  𝑘, as it is for the two water models employed here, one has 

Δ𝐸bond  =  −2𝑘(𝑥01 − 𝑥02)𝑥 + 𝑘(𝑥01
2 − 𝑥02

2 ) 
(22) 

This means that the energy difference will vary linearly with respect to the instantaneous bond 

length. Figure 7b suggests smooth structural changes of the water molecule in the buffer zone 

between the TIP3P/Fs model at 𝑃𝑖  =  0 and the SPC/Fw model at 𝑃𝑖  =  1 and confirms that the 

average instantaneous O-H bond length in the simulations is indeed approximately linear with 

Figure 6. (a) Total energy as the sum of kinetic and potential energies of the model system in the 25-ps
NVE simulations using the PAP (green), mPAP (blue), and HPAP (orange) methods. The many-body
expansions of the potentials were all truncated at the 2nd order. (b) PAP and HPAP Total energies in
greater detail. The zero of energy was chosen to be the mean energy of the first 250 fs.

4. Discussion

It is interesting to note that the correction 〈∆E(Pi)〉 is approximately a linear function of Pi in
the present work. To understand the origin of this approximate linearity, let us consider a given i-th
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buffer group. When the description of this buffer groups is switched between the two employed
MM force fields, SPC/Fw and TIP3P/Fs, there will be changes in the non-bonded (van der Waals
and electrostatic) interactions through which this buffer group interacts with active-zone groups,
environmental-zone groups, and the other buffer groups. Also changing are the intramolecular bonded
(O-H bond and H-O-H angle) interactions within this buffer group. The decomposition of 〈∆Ei(Pi)〉 is
depicted in Figure 7a according to

〈∆Ei〉 = 〈Vi=SPC/FW −Vi=TIP3P/Fs〉 (20a)

= 〈∆Ei,bonded 〉+ 〈∆Ei,nonbonded〉 = 〈∆Ei,bond〉+ 〈∆Ei,angle〉+ 〈∆Ei,vdw〉+ 〈∆Ei,elec〉 (20b)

where i denotes the i-th buffer group.
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Figure 7. (a) Decomposition of 〈∆E(Pi)〉 into various energy components. The inset shows the van der
Waals and electrostatic components in greater detail. (b) The distribution of O-H bond as functions of
Pi. The average is indicated by the dashed curve. (c) Same as (b), but for H-O-H angle.

The bonded energy terms are the dominant contributors to ∆Ei. This is not surprising because of
the similarity in the nonbonded interaction parameters (Table 1). Both the O-H bond and H-O-H angle
energies are sizeable, but the O-H bond energy is overall more significant. The difference in the O-H
bond energies between the two descriptions are

∆Ebond = k1(x− x01)
2 − k2(x− x02)

2 (21)

where x is the instantaneous O-H bond length, and k1 and k2 are the force constants parameters and x01

and x02 the equilibrium geometric parameters of the two water models, respectively. If k1 = k2 = k,
as it is for the two water models employed here, one has

∆Ebond = −2k(x01 − x02)x + k
(

x2
01 − x2

02

)
(22)

This means that the energy difference will vary linearly with respect to the instantaneous bond
length. Figure 7b suggests smooth structural changes of the water molecule in the buffer zone between
the TIP3P/Fs model at Pi = 0 and the SPC/Fw model at Pi = 1 and confirms that the average
instantaneous O-H bond length in the simulations is indeed approximately linear with respect to Pi.
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The situation is similar in the H-O-H angle energy (Figure 7c), where k1 ≈ k2 = k, and the linearity
also roughly holds. As a result, 〈∆E(Pi)〉 is approximately linear with respect to Pi.

Of course, the above analysis can only be conducted when the interactions are pairwise,
which is true here for the dual-MM simulations. However, because pairwise interactions are usually
predominant (e.g., accounting for ~80% of total interaction energies in water [60]), the approximate
linearity may still hold when models with higher-order many-body potentials are employed, albeit to
a less extent, unless the two employed potentials differ significantly from each other. In reality,
the potentials should agree with each other reasonably well in the buffer region, otherwise it is likely
that at least one potential is very inaccurate and should not be used at all.

We note that while the forces by the correction term cancel the average transition forces,
the cancellation is not exact at every step. Inexact transient cancellations lead to “residue” forces,
whose effects on the simulation may or may not lead to erroneous solvation structures, which probably
varies from case to case. While further investigations will be needed to explore this in the future,
it is conceivable that narrow, symmetric distributions of the residue forces can help to minimize their
effects, which is the case in this work. Therefore, it is prudent to match the potentials as closely as
possible in the buffer zone. At this point, we note that Jiang et al. [61] are developing MM water
models specifically designed for adaptive QM/MM simulations.

Overall, the results presented here demonstrate that the HPAP can both yield accurate solvation
structures and conserve energy in NVE simulations. The progress thus fills a gap in the PAP algorithms.
The successful applications of the HAMBC treatment to both SAP by Boreboom et al. [42] and
PAP in this work suggest that other distance-based adaptive QM/MM schemes may also benefit
from this treatment. We expect that the new HPAP algorithm will be useful to many applications
where simulations of Hamiltonian systems are required. Future studies are especially encouraged to
investigate the cases where multiple types of buffer groups (e.g., water and ions) are present and to
explore the treatments for inhomogeneous systems (e.g., ion channels).
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