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Skeletal muscle from meat-producing livestock such as cattle is a major source of food for
humans. To improve skeletal muscle growth efficiency or quality in cattle, it is necessary to
understand the genetic and physiological mechanisms that govern skeletal muscle
composition, development, and growth. Satellite cells are the myogenic progenitor cells in
postnatal skeletal muscle. In this study we analyzed the composition of bovine satellite cells
with single-cell RNA sequencing (scRNA-seq). We isolated satellite cells from a 2-week-old
male calf, cultured them in growth medium for a week, and performed scRNA-seq using the
10x Genomics platform. Deep sequencing of two scRNA-seq libraries constructed from
cultured bovine satellite cells yielded 860 million reads. Cell calling analyses revealed that
these reads were sequenced from 19,096 individual cells. Clustering analyses indicated that
these reads represented 15 cell clusters that differed in gene expression profile. Based on the
enriched expression of markers of satellite cells (PAX7 and PAX3), markers of myoblasts
(MYOD1, MYF5), and markers of differentiated myoblasts or myocytes (MYOG), three
clusters were determined to be satellite cells, two clusters myoblasts, and two clusters
myocytes. Gene ontology and trajectory inference analyses indicated that cells in these
myogenic clusters differed in proliferation rate and differentiation stage. Two of the remaining
clusters were enriched with PDGFRA, a marker of fibro-adipogenic (FAP) cells, the progenitor
cells for intramuscular fat, and are therefore considered to be FAP cells. Gene ontology
analyses indicated active lipogenesis in one of these twoclusters. The identity of the remaining
six clusters could not be defined. Overall, the results of this study support the hypothesis that
bovine satellite cells are composed of subpopulations that differ in transcriptional and
myogenic state. The results of this study also support the hypothesis that intramuscular
fat in cattle originates from fibro-adipogenic cells.
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INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is a relatively new technology that analyzes transcriptomes in
individual cells by deep sequencing (Tang et al., 2009). scRNA-seq has proved to be a powerful method
for assessing the heterogeneity of a cell population and for identifying rare or previously uncharacterized
cell types in complex organs and tissues (Tang et al., 2009; Andrews and Hemberg, 2018).

Satellite cells are myogenic progenitor cells in skeletal muscle of postnatal animals (Mauro, 1961).
Satellite cells are characterized by the expression of the transcription factor paired box protein 7
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(PAX7) or PAX 3 (Maroto et al., 1997; Seale et al., 2000; Kuang
and Rudnicki, 2008). Satellite cells play an essential role in skeletal
muscle regeneration and growth (Dhawan and Rando, 2005).
Satellite cells are normally quiescent but are activated under
conditions such as muscle injury (Dhawan and Rando, 2005).
Once activated, satellite cells proliferate as myoblasts,
differentiate, and fuse with each other to generate muscle
fibers or with existing muscle fibers to increase muscle size.

In our research involving bovine satellite cells (Ge et al., 2013;
Leng et al., 2019; Leng and Jiang, 2019), we noticed that these cells
in culture did not all become myofibers upon induction of
myogenic differentiation. We hypothesized that bovine satellite
cells are composed of subpopulations that differ in myogenic
potential. The objective of this study was therefore to determine if
bovine satellite cells are heterogeneous in terms of myogenic
potential. We approached this objective by analyzing a
population of bovine satellite cells with scRNA-seq.

MATERIALS AND METHODS

Isolation and Culture of Bovine Satellite
Cells
Bovine satellite cells were isolated from the longissimus muscle of
a 2-week-old Holstein bull calf following euthanasia. Satellite cells
were isolated using a procedure involving pronase digestion and
differential centrifugation as described before (Hathaway et al.,
1991). Satellite cells were cultured in growth medium consisting
of Dulbecco’s modified eagle medium, 10% fetal bovine serum,
2 mM L-glutamine, and 1% antibiotics-antimycotics (Thermo
Fisher Scientific, Waltham, MA, United States) for a week to
remove dead cells and increase the number of viable cells prior to
scRNA-seq. The animal-related procedure was approved by the
Virginia Tech Institutional Animal Care and Use Committee.

scRNA-Seq Library Construction
Cells cultured above were detached from the culture plate with trypsin-
EDTA (0.25%) and washed with resuspension buffer (phosphate-
buffered saline, 0.04% bovine serum albumin). Cells were filtered
through a 40 µm strainer to remove cell clumps. Cell viability was
determined to be 90% by trypan blue staining and hemocytometer
counting. Two scRNA-seq libraries were constructed from satellite cells
to increase the number of cells sequenced. The scRNA-seq libraries
were constructed using the Chromium Single Cell 3ʹ Gel Bead-in-
Emulsion (GEM), Library & Gel Bead Kit v3 (10x Genomics,
Pleasanton, CA, United States). We adjusted cell concentration to
1,000 cells/μl with resuspension buffer, and loaded 12.8 µl of diluted cell
suspension with a master mix of reverse transcription (RT) reagent,
template switch oligo, and RT enzyme into a Chromium Chip B (10x
Genomics). Single-cell GEM generation, barcoding, and reverse
transcription were achieved by running the Chromium Chip B on
the ChromiumController (10xGenomics). Specifically, single cells, RT
reagents, gel beads containing barcoded oligonucleotides, and oil were
combined on amicrofluidic chip to form reaction nanovesicles.Within
each reaction nanovesicle, a single cell was lysed, the gel bead was
dissolved to free the identically barcoded RT oligonucleotides, and
polyadenylatedmRNAwas then reverse transcribed into cDNA. Thus,

all cDNAs from the same cell would have the same barcode, which
would allow the sequencing reads to be traced back to their single cells
of origin. cDNAwas amplified for 11 cycles. Based on an Agilent High
Sensitivity TapeStation analysis, both scRNA-seq libraries contained a
single peak ofDNAbetween 300 and 700 bp, with an average fragment
size of 440 bp.

scRNA-Seq Sequencing and Data Analysis
Each scRNA-seq library was pair-end sequenced in a single cell
flow lane on an Illumina HiSeq system at the Novogene-UC
Davis Sequencing Center (Novogene, Sacramento, CA,
United States). Sequencing reads were processed and analyzed
using the 10x Genomics Cell Ranger 3.0.2 software, which was
composed of different analysis pipelines (Zheng et al., 2017).
Specifically, sequencing reads were de-multiplexed using the
cellranger mkfastq pipeline and aligned to the bovine genome
and transcriptome (Bos_taurus.ARS-UCD1.2) at default
parameters using the cellranger count pipeline. Uniquely
mapped sequences from each library were used for unique
molecular identifiers (UMI) counting using the cellranger
count pipeline. The output files from the cellranger counting
of reads from two scRNA-seq libraries were combined using the
cellranger aggr pipeline.

Cells were initially clustered by expression similarity using the
graph-based clustering algorithm, which consisted of building a
sparse nearest-neighbor graph followed by Louvain Modularity
Optimization, an algorithm that sought to find highly-connected
modules in the graph (Blondel et al., 2008). Cells were further
clustered by an additional cluster-merging step, which included
hierarchical clustering on the cluster-medoids in principal
components analysis (PCA) space and merging pairs of sibling
clusters if there were no genes differentially expressed between them
(with B-H adjusted p-value below 0.05). The hierarchical clustering
and merging was repeated until there were no more cluster-pairs to
merge. Differential gene expression between cell clusters was
identified using the quick and simple method sSeq and edgeR
(Robinson and Smyth, 2007; Yu et al., 2013). All these analysis
pipelines and algorithms were part of the Cell Ranger software and
run using parameters recommended by 10X Genomics.

Cell clusters were annotated based on significantly enriched
expression (with B-H adjusted p-value below 0.05) of marker genes
of cell types. Cell clusters and gene expression data were visualized
in the Loupe Cell Browser (10x Genomics). Gene ontology analysis
was performed with the PANTHER classification system (Mi et al.,
2013). Gene ontology terms with corrected p-values less than 0.05
were considered significantly enriched.

Trajectory inference was performed using the Monocle
algorithm (version 2.20.0) (Trapnell et al., 2014; Qiu et al.,
2017). Briefly, the output files of the cellranger count pipeline
were read in to generate the count matrix using the Read10X
function of Seurat 4 (Hao et al., 2021). A Seurat object was then
built from the count matrix using the CreateSeuratObject
function of Seurat. The Seurat object was converted to a
CellDataSet modeled with the negative binomial distribution
using the newimport function of Monocle. Genes with mean
expression levels >0.1 were selected to define the state of cells.
Following a dimensionality reduction using the reduceDimension
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TABLE 1 | Summary of scRNA-seq sequencing, mapping, and analysis.

Item Library 1 Library 2 Aggregation

Number of reads 431,539,783 429,256,266 860,796,049
Valid barcodes 97.6% 97.4% 97.5%
Reads mapped uniquely to genome (bos_taurus.ars-ucd1.2) 85.5% 85.2% 85.4%
Reads mapped uniquely to transcriptome (bos_taurus.ars-ucd1.2) 50.8% 51.5% 51.1%
Fraction reads in cells 90.8% 89.1% 90.0%
Estimated number of cells 9,939 9,157 19,096
Mean reads per cell 43,418 46,877 43,528
Median genes per cell 3,559 3,764 3,609
Total genes detected 16,227 16,356 16,816

FIGURE 1 | (A) Clustering of cells by the t-distributed stochastic neighbor embedding (t-SNE) algorithm. The 19,096 cultured bovine satellite cells are divided into
15 clusters. Cells close to each other have more similar gene expression patterns than those distant from each other. Cell types are inferred from significantly enriched
expression of known cell markers. FAP, fibro-adipogenic progenitors. (B) Heatmap of transcriptome similarities between cell clusters. Rows represent cell clusters.
Columns represent genes. Shown on top are representative genes. Numbers and colors on the right represent log2 fold changes relative to the median gene
expression level across all clusters.
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function, cells were ordered along the trajectory using the
orderCells function of Monocle.

Scripts and codes used to run the Cell Ranger, Seurat, and
Monocle programs in this study were adopted from the manuals
and websites for these programs and are listed in the
Supplementary File S1.

RESULTS AND DISCUSSION

Cultured Bovine Satellite Cells Are
Heterogenous in Gene Expression
Sequencing of the two scRNA-seq libraries of bovine satellite cells
in culture generated approximately 430 million reads per library.
More than 85 and 50% of these reads were uniquely mapped to
the bovine genome and transcriptome (bos_taurus.ars-ucd1.2),
respectively (Table 1). Based on the Cell Ranger analyses, these
reads represented the transcriptomes in more than 9,000 cells for
each library (Table 1). The mean number of reads detected per
cell was more than 43,000 for both libraries, and the median
number of genes detected per cell was over 3,500 for both libraries
(Table 1). These numbers met or exceeded the minimum
requirements for a quality scRNA-seq analysis (Handley et al.,
2015; Haque et al., 2017; Ziegenhain et al., 2017). Because the two
scRNA-seq libraries were prepared from the same cells,
sequencing data from the two libraries were combined to
increase the total number of cells analyzed. Clustering the
transcriptomes of 19,096 cells combined from the two scRNA-
libraries revealed 15 cell clusters that differed in gene expression
pattern (Figure 1, Supplementary File S2). These 15 clusters
contained 300–2,500 cells, or 2–13% total cells analyzed, with
cluster 1 being the largest cluster and cluster 15 being the smallest
cluster (Table 2).

Cultured Bovine Satellite Cells Contain
Subpopulations That Differ in Myogenic
Stage and Proliferation Rate
Based on the expression levels of marker genes (MYOD1, MYF5,
and DES) of myoblasts (Pownall et al., 2002), clusters 1, 2, 3, and

12 were characterized as subsets of myoblasts, which are activated
and proliferating satellite cells (Figures 1A, 2A). Expression of
MYF5 mRNA in cluster 1, expression of MYOD1 mRNA in
cluster 2, and expression of both MYF5 and MYOD1 mRNAs in
cluster 3 were significantly enriched (Supplementary File S2,
Figure 2A). PAX7 and PAX3 are markers of satellite cells
(Maroto et al., 1997; Seale et al., 2000). Expression of PAX7
mRNA was significantly enriched in cluster 4, and PAX3 mRNA
expression was significantly enriched in clusters 5 and 8
(Supplementary File S2). Because they were enriched with
PAX7 or PAX3, clusters 4, 5, and 8 were determined to be
subsets of satellite cells (Figure 1A).

MYOG is a master transcriptional regulator of myoblast
differentiation (Pownall et al., 2002). MYOG mRNA
expression was significantly enriched in clusters 3 and 12
(Supplementary File S2, Figure 2A). Besides MYOG, many
muscle-specific genes such as MB, MYH3, MYL1, NEB, and
STAC3 and several myoblast differentiation and fusion
regulatory genes such as MEF2A, MEF2D and MYMK (Millay
et al., 2013; Estrella et al., 2015) were upregulated in clusters 3
and 12 (Supplementary File S2, Figure 2A). These two
clusters clearly contained differentiating or differentiated
myoblasts, i.e., myocytes. Between clusters 3 and 12, more
muscle-specific genes were upregulated in cluster 12 than in
cluster 3, and the same muscle-specific genes were expressed
at greater levels in cluster 12 than in cluster 3 (Supplementary
File S2, Figure 2A). These differences suggest that myoblasts in
cluster 12 were more terminally differentiated than those in
cluster 3.

Gene ontology analyses of genes upregulated in each cluster
indicated that cells in different clusters differed in function. For
example, gene ontology analyses of genes upregulated in
clusters 2 and 4 indicated that many of these genes were
involved in the biological processes, cellular components, and
molecular function related to DNA synthesis and cell cycle
(Supplementary File S3), suggesting that cells in these clusters
were undergoing active proliferation. Gene ontology analyses of
genes upregulated in clusters 3 and 12 indicated that many of
these genes were involved in the biological processes, cellular
components, and molecular function related to mature skeletal
muscle structure and contraction (Supplementary File S3),
suggesting that cells in these two clusters were differentiating
into functional muscle cells.

A trajectory inference analysis using the Monocle program
(Trapnell et al., 2014) revealed the potential lineage
relationships between the seven myogenic cell clusters,
i.e., clusters 1–5, 8, and 12 (Figure 2B). This analysis
suggested two trajectories along which the myogenic
progenitors PAX3+ satellite cells transitioned toward
myogenic differentiation. On one trajectory, PAX3+ satellite
cells in cluster 8 committed to MYF5+ myoblasts in cluster 1,
and these MYF5+ myoblasts then differentiated into MYOG+
myocytes in cluster 3, which then differentiated further into
MYOG+ myocytes in cluster 12 (Figure 2B). On the other
trajectory, PAX3+ satellite cells in cluster 8 first transitioned to a
population of satellite cells in cluster 5 that had a different gene
expression pattern from cells in cluster 8 but were still PAX3

TABLE 2 | Numbers and percentages of clustered cells.

Number of cells % Total cells

Cluster 1 2,493 13.1
Cluster 2 2,119 11.1
Cluster 3 2,034 10.7
Cluster 4 1,768 9.3
Cluster 5 1,641 8.6
Cluster 6 1,575 8.2
Cluster 7 1,298 6.8
Cluster 8 1,241 6.5
Cluster 9 1,080 5.7
Cluster 10 1,010 5.3
Cluster 11 845 4.4
Cluster 12 627 3.3
Cluster 13 602 3.2
Cluster 14 446 2.3
Cluster 15 317 1.7
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positive; PAX3+ satellite cells in cluster 5 then became PAX7+
satellite cells in cluster 4, which were subsequently activated to
become MYOD1+ myoblasts in cluster 2 (Figure 2B). Overall,

this trajectory analysis further supports the conclusion earlier
that cultured bovine satellite cells are composed of subsets of
myogenic cells that differ in transcriptional and myogenic state.

FIGURE 2 | (A) t-SNE maps showing the expression levels of selected markers in different clusters of bovine satellite cells. MYOD1, MYF5, and DES are markers of
myoblasts; MYOG,MYH3, andMYMK aremarkers of differentiatedmyoblasts or myocytes; PDGFRA, PPARG, and ZNF423 aremarkers of fibro-adipogenic progenitors
and preadipocytes. (B) Trajectory inference analysis of myogenic cell clusters. The trajectory analysis was performed using Monocle. Cells in different clusters are
represented by different colors. Cluster numbers and cell types correspond to those in Figure 1A. Arrows indicate the direction of trajectory. Black lines and
numbers represent trajectory branches and branching points, respectively.
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Cultured Bovine Satellite Cells Contain
Subpopulations That May Be Intramuscular
Preadipocytes
Platelet derived growth factor receptor alpha (PDGFRA) is
established as a marker of the progenitor cells for intramuscular
adipocytes, i.e., intramuscular fibro-adipogenic progenitor (FAP)
cells, in mice and humans (Uezumi et al., 2010; Uezumi et al., 2014;
Joe et al., 2010). The expression of PDGFRA mRNA was
significantly higher in clusters 7 and 9 than in other clusters
(Supplementary File S2 and Figure 2A). It is interesting to
note that cells in cluster 9 were also enriched with peroxisome
proliferator activated receptor gamma (PPARG) and zinc finger
protein 423 (ZNF423) mRNAs, two transcriptional regulators of
early adipogenesis (Tontonoz and Spiegelman, 2008; Gupta et al.,
2010; Lefterova et al., 2014). Gene ontology analyses of genes
upregulated in clusters 7 and 9 indicated active lipogenesis in
cluster 9 (Supplementary File S3). Cells in neither cluster 7 nor
cluster 9 expressed markers of mature adipocytes such as leptin
(LEP) and adiponectin (ADIPOQ) (Supplementary File S2).
These data together indicated that clusters 7 and 9 were FAPs,
or intramuscular preadipocytes, with cluster 9 appearing to be
more developed preadipocytes than cluster 7. Because cells in
clusters 7 and 9 were not enriched with MYOD1, MYF5, DES,
or MYOG, markers of myogenic cells, it remains to be determined
if these FAP cells were derived from satellite cells during culture or
accidently co-isolated with satellite cells from skeletal muscle.

Cultured Bovine Satellite Cells Contain
Subpopulations Whose Identities Remain to
Be Determined
Compared to other clusters (Supplementary File S2), clusters 6,
10, 11, 13, 14, and 15 did not express significantly higher levels of
markers of myogenic cells such as PAX3, PAX7, MYOD1, MYF5,
and MYOG (Pownall et al., 2002); thus, these clusters were not
myogenic cells. Skeletal muscle contains not only myogenic cells
but also nonmyogenic cells such as endothelial cells, pericytes,
smooth muscle cells, fibroblasts, and glial cells. However, none of
clusters 6, 10, 11, 13, 14, and 15 appeared to be these nonmyogenic
cells based on the expression levels of marker genes such as CDH5
and PECAM1 for endothelial cells (Elmentaite et al., 2021),
NOTCH3 and MCAM for pericytes (Elmentaite et al., 2021),
ACTA2 and MYH11 for smooth muscle cells (Kumar et al.,
2017), COL1A and S100A4 for fibroblasts (Kumar et al., 2017),
and FOXD3 and SOX10 for glial cells (Elmentaite et al., 2021) in
these clusters (Supplementary File S2). It is possible that clusters 6,
10, 11, 13, 14, and 15 represented novel cell types in bovine skeletal
muscle co-isolated with satellite cells or that they were inaccurately
clustered by the computational program used.

CONCLUSIONS

Results of this scRNA-seq study suggest that bovine satellite cells
are possibly composed of subpopulations that differ in
transcriptional status, proliferation rate, and myogenic
potential. This notion is consistent with the conclusion from
scRNA-seq studies of mouse satellite cells (Cho and Doles, 2017;
van den Brink et al., 2017). Results of this study also suggest the
presence of FAP cells in bovine skeletal muscle, although their
origin remains to be determined. Because skeletal muscle growth
and intramuscular fat are economically important traits in cattle,
further characterization of the different subpopulations of
satellite cells as well as FAPs in bovine skeletal muscle could
lead to the development of new strategies to improve these traits
or to identify DNA sequences and variants associated with these
traits in cattle.
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GLOSSARY

ACTA2 actin alpha 2, smooth muscle

ADIPOQ adiponectin

BP biological process

CC cellular component

CDH5 cadherin 5

COL1A collagen type I alpha 1 chain

DES desmin

FAPs fibro-adipogenic progenitors

FDR false discovery rate

FE fold enrichment

FOXD3 forkhead box D3

GEM gel bead-in-emulsion

GO gene ontology

LEP leptin

MB myoglobin

MCAM melanoma cell adhesion molecule

MEF myocyte enhancer factor

MF molecular function

MYF5 myogenic factor 5

MYH3 myosin heavy chain 3

MYH11 myosin heavy chain 11

MYL1 myosin light chain 1

MYMK myomaker or myoblast fusion factor

MYOD1 myogenic differentiation 1

MYOG myogenin

NEB nebulin

NOTCH3 notch receptor 3

PAX3 paired box 3

PAX7 paired box 7

PDGFRA platelet derived growth factor receptor alpha

PECAM1 platelet and endothelial cell adhesion molecule 1

PPARG peroxisome proliferator activated receptor gamma

S100A4 S100 calcium binding protein A4

scRNA-seq single-cell RNA sequencing

SOX10 SRY-box transcription factor 10

STAC3 SH3 and cysteine rich domain 3

UMI unique molecular identifier

ZNF423 zinc finger protein 423
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