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Abstract

Background: Given the increased link between retirement age and payments to the
development in life expectancy, a precise and regular forecast of life expectancy is of
utmost importance. The choice of the jump-off rates, i.e. the rates in the last year of the
fitting period, is essential for matching mortality forecasts to the most recently observed
data. A general approach to the choice of the jump-off rates is currently lacking.

Objective: We evaluate six different options for the jump-off rates and examine their
effects on the robustness and accuracy of the mortality forecast.

Data and methods: Death and exposure numbers by age for eight European countries
over the years 1960–2014 were obtained from the Human Mortality Database. We
examined the use of model values as jump-off rates versus observed values in the last
year or averaged over the last couple of years. The future life expectancy at age 65 is
calculated for different fitting periods and jump-off rates using the Lee-Carter model
and examined on accuracy (mean absolute forecast error) and robustness (standard
deviation of the change in projected e65).

Results: The choice for the jump-off rates clearly influences the accuracy and
robustness of the mortality forecast, albeit in different ways. For most countries using
the last observed values as jump-off rates resulted in the most accurate method, which
relates to the relatively high estimation error of the model in recent years. The most
robust method is obtained by using an average of observed years as jump-off rates.
The more years that are averaged, the better the robustness, but accuracy decreases
with more years averaged.

Conclusion: Carefully considering the best choice for the jump-off rates is essential
when forecasting mortality. The best strategy for matching mortality forecasts to the
most recently observed data depends on the goal of the forecast, the country-specific
past mortality trends observed, and the model fit.
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Introduction
The growth in public expenditure, such as expenditure on state pension, due to an ageing

population is one of the key challenges in European countries (Lanzieri 2011). To ensure

the sustainability of the pension system expenditures, pension reforms in several countries

in Western Europe have been carried out, linking the retirement age and/or retirement

payments to the rapidly increasing life expectancy (Carone et al. 2016). In some countries,

such as Finland and the Netherlands, the link is made with a forecasted remaining life ex-

pectancy (OECD 2015). Given the increased link between retirement age and/or retire-

ment payments to the development in life expectancy, a precise and regular forecast of

life expectancy is of utmost importance.

The growing relevance of life expectancy forecasts has resulted in a lot of attention re-

garding the quality of mortality forecasts. There has been a growing range of models for

forecasting mortality and studies performing quantitative and qualitative comparisons of

these models (Booth and Tickle 2008; Cairns et al. 2011; etc.). Also, in recent literature,

there has been a lot of attention for the elements that influence the quality of mortality

forecasts, i.e. the fitting period (Booth et al. 2002) or additional information, such as

smoking (Janssen et al. 2013) or trends in other countries (Li and Lee 2005). Less atten-

tion has been given, however, to the choice of the jump-off rates, i.e. the rates in the last

year of the fitting period or jump-off year (Booth et al. 2006). The choice of the jump-off

rates is leading when matching the mortality forecast to the most recently observed data.

The matching is in turn important for a precise and regular forecast of the life expectancy

and thus for the determination of the retirement age and payments.

The choice of the jump-off rates is essential for matching mortality forecasts to the most

recently observed data (Lee and Miller 2001; Booth et al. 2006) and is a practical consider-

ation in every mortality forecast, regardless of the method chosen. A different choice of

the jump-off rates may improve the accuracy of a single forecast and/or reduce the dis-

continuity between the last observed death rate and the first forecasted death rate (Lee

and Miller 2001; Booth et al. 2006). A forecast is called accurate if the out-of-sample fore-

cast errors, examined using historical data, are small (Booth et al. 2008). An accurate

method produces precise forecasts which are relevant to determine the retirement age in

a future year based on the forecasted life expectancy. However, the choice of the jump-off

rates can also influence how much successive forecasts differ, thereby affecting the robust-

ness of the forecast (Cairns et al. 2011). A forecast is called robust if only modest changes

in the forecasts occur after a small change to the sample period (for example, adding the

latest mortality data). For instance, if a retirement age in a future year is set based on the

forecasted life expectancy, it is undesirable if a forecast based on one more year of data

gave a different outcome. Both accuracy and robustness are important for a mortality fore-

cast (Cairns et al. 2011) but can be differently affected by the choice of the jump-off rates.

The choice for the jump-off rates being more a practical problem than a theoretical

one is also highlighted by the fact that there are only four papers about the choice for

the jump-off rates. Lee and Carter (1992) used model values (i.e. fitted rates in the

jump-off year) as jump-off rates and accepted the discontinuity in observed to fore-

casted death rates. They stated that the jump-off bias affects only death rates which are

absolutely very low and have little impact on the forecasted life expectancy. However,

Bell (1997) as well as Lee and Miller (2001) concluded that a correction for the

jump-off bias improves the accuracy of the forecast of life expectancy, especially in the
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early years of the forecast. They used the last observed values (i.e. actual rates) as

jump-off rates. Finally, Booth et al. (2006) evaluated as well a 2-year average of the last

observed values as jump-off rates as part of the evaluations of Lee-Carter models and

variants. The literature thus gives us only three options to choose from: model values,

last observed values, and a 2-year average of last observed values.

In practice, statistical and actuarial offices use different options for the jump-off rates

(mostly last observed values) and, with a new update of the forecast, the choice of the

jump-off rates might differ as well. Often, however, it is not explained how they reached

these jump-off rates. There are some examples where there are more extensive adjust-

ments of the jump-off bias, but they are relevant for the practical problem at hand and

not for universal use (for instance, the statistical office of New Zealand adjusts the rates

in the first few years to give plausible life expectancy at birth and death numbers

(Woods and Dunstan 2014). In fact, a general approach on how to choose between dif-

ferent options for the jump-off rates seems to be lacking.

In the literature (Lee and Carter 1992; Bell 1997; Lee and Miller 2001) and in practice,

the jump-off rates are adjusted to improve the accuracy of the forecast. Also, quantitative

and qualitative comparisons of different models are mainly focused on improving accur-

acy. However, in light of regular forecasts for the determination of retirement age and

payments, it is also of interest to take into account the robustness of the method.

This article examines the effects of different options for the jump-off rates on the ac-

curacy and the robustness of the mortality forecast. This information can be used to

determine the optimal choice for a given forecast, which will depend on the relative im-

portance of accuracy and robustness for the applications for which the forecast is used.

We will do so by forecasting future life expectancy at age 65 for eight Western

European countries using different fitting periods and six different options for the

jump-off rates. An accurate and robust forecast of the life expectancy at age 65, with

the mortality forecast matched as optimally as possible to the most recently observed

data, is important for the pension reforms in Western Europe.

Data and methods
Data

For the analysis, deaths and exposures by calendar year and single year of age from the

Human Mortality Database (2018) are used, from 1960 to 2014. In our calculations, we

aggregated the data for ages 95 and over (Wunsch and Termote 1978).

To contribute to the debate about the retirement age in Western Europe, and to observe

commonalities and differences in the effect of the choice of the jump-off rates for the mor-

tality forecast, data from eight Western European countries is used: the Netherlands (NLD),

France (FRA), Belgium (BEL), Spain (ESP), Finland (FIN), United Kingdom (UK), Norway

(NOR), and Sweden (SWE).

These countries experienced foremost fairly regular mortality trends in the chosen

period, for which extrapolative forecasting methods would be suitable. Differences exist

however in the extent of mortality decline between the individual countries.

We selected data from 1960 up until 2014, which gave us the opportunity to compute

forecasts for the more recent years in the period in order to test the accuracy of the

forecasting method.
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Model

Many statistical offices are currently using extrapolation methods to forecast mortality

(Stoeldraijer et al. 2013). To evaluate the effect of different choices for the jump-off

rates, we will apply the most used extrapolation method: the Lee-Carter method (Lee

and Carter 1992; Booth and Tickle 2008).

The Lee-Carter model (Lee and Carter 1992) is given by:

ln mx;t
� � ¼ ax þ bxkt þ εx;t

where mx, t denotes the death rate at age x and year t, ax equals the average over time of

ln(mx, t), bx is the set of age-specific constants that describe the relative rate of change at

any age, kt denotes the underlying time development and εx, t the residual error (Lee and

Carter 1992). Singular Value Decomposition is used to estimate bx and kt under the as-

sumptions
X

x

bx ¼ 1 and
X

t

kt ¼ 0 (Lee and Carter 1992). After estimation, kt is extrap-

olated using a random walk with drift (as also found by Lee and Carter 1992, after

carrying out the standard model specifications (see Box and Jenkins 1970)).

Jump-off rates

For the analysis, three options for the jump-off rates are compared:

– Jump-off rates equal to the model values in the last year of the fitting period (Lee

and Carter 1992);

– Jump-off rates equal to the last observed death rates (Lee and Miller 2001); this

corresponds to taking ax equal to the last observed values of ln(mx, t) and kt equal

to zero in the last observed year;

– Jump-off rates equal to an average of multiple years of the observed death rates;

this corresponds to taking ax equal to the average of multiple observed years of

ln(mx, t) and kP ti=n
, the midpoint of the years on which is averaged, equal to zero.

By distinguishing four alternatives for the last option (average over 2, 3, 4, or 5 years)

we end up with in total six different alternatives.

Analysis

For the analysis, we made for each country ten forecasts of life expectancy at age 65,

men and women combined, using data for ten different fitting periods: from 1960 to

2005, 1960 to 2006, …, and 1960 to 2014. The forecasts are calculated using the six dif-

ferent alternatives of the jump-off rates: the model values, the observed values, and an

average of two/three/four/five observed values.

Subsequently, we compared between the different choices for the jump-off rates the

accuracy (fit of the model) and the robustness of the forecast, as these are the most im-

portant evaluation criteria for mortality forecasts (e.g. Dowd et al. 2010a, 2010b; Cairns

et al. 2011; Booth and Tickle 2008).

A model is accurate if the out-of-sample forecast errors, examined using historical

data, are small (Booth et al. 2008). For evaluating the accuracy we used the mean abso-

lute forecast error (MAFE) (Booth et al. 2006). The MAFE measures how close fore-

casts are to the eventual outcomes. The smaller the error, the more accurate the

forecast, given the option for the jump-off rates. For each country and choice of the
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jump-off rates, we calculated the MAFE by comparing the forecasted values with the

actual values of the life expectancy at age 65. The MAFE for the first year of the fore-

casting period (i.e. the first year after the fitting period) was calculated using fitting pe-

riods 1960–2005, …, 1960–2013. The forecast of 2006 (with fitting period 1960–2005)

was compared with the actual value in 2006, the forecast of 2007 (with fitting period

1960–2006) was compared to the actual value in 2007, and in a similar way for the sub-

sequent forecasts until the forecast of 2014 (with fitting period 1960–2013) which is

compared to the actual value of 2014. The errors are then averaged across the nine dif-

ferent forecasts (2006–2014). The MAFE for the second year of the forecasting period

was calculated using fitting periods 1960–2005, …, 1960–2012 and then averaged

across the eight different forecasts. In the results (see Table 1), only the MAFE for the

first and fifth year of the forecasting period are presented, because the results for the

intervening years did not provide useful additional information.

Furthermore, to explain the results regarding the accuracy of the forecast (fit of the

model), we calculated the mean absolute (percent) error over the period 1960–2014

and the mean error over the period 2005–2014 of the log death rates, limited to age 65

and above, of the Lee-Carter forecast (estimated over the period 1960–2014).

With a robust forecast, only modest changes would occur to the forecasted life expectancy

after a small change to the sample period (e.g. adding one more year) (Cairns et al. 2011). It

is important here to look at the stability of each incremental change to the sample period.

This is relevant in the case a forecast is regularly updated, i.e. when a new forecast is made

each time new data becomes available. Normally, robustness is measured by looking at the

changes in model parameters (Cairns et al. 2008). However, these parameters do not depend

on the option that is used for the jump-off rates. Therefore, to evaluate the robustness of

the forecast given the different options for the jump-off rates, we calculated the standard

Table 1 Mean absolute forecast error (MAFE) of remaining life expectancy at age 65 for the first
and fifth year in the forecasting period, for six different choices of the jump-off rates applied to a
Lee-Carter model, for eight Western European countries, men and women combined, fitting
periods 1960–2005, 1960–2006, …, 1960–2014

Jump-off rates FRA ESP SWE BEL UK NOR FIN NLD Av1

Mean absolute forecast error in the first year of the forecasting period

Model values 0.16 0.16 0.24 0.10 0.56 0.24 0.41 0.39 0.28

Last observed values 0.13 0.17 0.08 0.14 0.13 0.12 0.10 0.13 0.12

Average 2 years observed 0.13 0.15 0.07 0.15 0.16 0.11 0.08 0.16 0.13

Average 3 years observed 0.13 0.16 0.09 0.14 0.19 0.12 0.09 0.21 0.14

Average 4 years observed 0.14 0.17 0.10 0.15 0.24 0.13 0.12 0.26 0.16

Average 5 years observed 0.16 0.19 0.11 0.17 0.28 0.16 0.16 0.32 0.19

Mean absolute forecast error in the fifth year of the forecasting period

Model values 0.20 0.17 0.31 0.18 0.76 0.45 0.41 0.55 0.38

Last observed values 0.16 0.30 0.10 0.17 0.38 0.20 0.13 0.31 0.22

Average 2 years observed 0.17 0.32 0.11 0.18 0.41 0.21 0.14 0.35 0.24

Average 3 years observed 0.18 0.35 0.13 0.19 0.44 0.24 0.15 0.41 0.26

Average 4 years observed 0.20 0.38 0.16 0.20 0.46 0.29 0.18 0.47 0.29

Average 5 years observed 0.21 0.40 0.18 0.21 0.49 0.34 0.19 0.55 0.32

The lowest MAFE is marked in bold, the highest MAFE in italics
1Unweigthed average of all eight countries
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deviation (SD) of the increase/decrease of the (out-of-sample) life expectancy at age 65 in

2020 obtained for ten successive forecasts using fitting periods 1960–2005, …, 1960–2014.

A lower SD means that the forecast is more robust.

Results
Past trends in remaining life expectancy at age 65

Over the period 1960 to 2014, the remaining life expectancy at age 65 (e65) increased

in the eight selected European countries, for men and women combined (Fig. 1). On

average, from 14.2 years in 1960 to 20.3 years in 2014, France has seen the largest in-

crease over the whole period, while Norway has seen the lowest increase. Especially for

the Netherlands and the UK, there was a higher increase in e65 in the last decade of

the observation period than in the decades before. In 2014, the highest e65 was ob-

served for France (21.5 years) and the lowest for Finland (19.8 years), the

UK(19.9 years), and the Netherlands (19.9 years).

Effect of choice of the jump-off rate on the accuracy of mortality forecast

The six different options for the jump-off rates resulted in clear differences in the out-

come for the accuracy of the forecast (see Table 1): on average, there was a difference of

0.18 between the option which gave the minimum accuracy and the option which gave

the maximum accuracy for the first year of the forecasting period. The minimum differ-

ence was found for France (0.03) and the maximum difference was found for the UK

Fig. 1 Life expectancy at age 65, 1960–2014 for eight countries, men and women combined
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(0.43). With a large difference, such as for the UK, it makes a clear difference which option

is chosen for the jump-off rates. The larger the difference between the options for the

jump-off rates, the more important it is to choose the correct jump-off rates so that the

accuracy of the forecast can be improved.

Using the last observed values as jump-off rates or an average of 2 years resulted

in the most accurate forecast in the first year of the forecasting period for most

countries (looking at the minimum MAFE by country). Only for Belgium, the most

accurate forecast was achieved by using the model values as jump-off rates. The

minimum MAFE in the first year of the forecast ranged from 0.07 (Sweden) to

0.15 (Spain). The most accurate forecast for the fifth year of the forecasting period

was achieved by using the last observed values as jump-off rates, except for Spain,

where the most accurate forecast was achieved by using the model values as

jump-off rates. The minimum MAFE in the fifth year of the forecast ranged from

0.10 (Sweden) to 0.38 (the UK).

Except for France, Spain, and Belgium, using the model values as jump-off rates

resulted in the least accurate forecast in the first year. For France, Spain, and

Belgium, using the average of five observed years resulted in the least accurate

forecast in the first year. The least accurate for the fifth year of the forecasting

period showed the same pattern as the accuracy for the first year of the forecast-

ing period. For all countries, the accuracy decreases distinctly with the averaging

of more years.

Generally, the MAFE in the fifth year is higher than in the first year (using the same op-

tion for the jump-off rates), reflecting that uncertainty further in the future is greater.

The most optimal choice for the jump-off rates for an accurate forecast is re-

lated to the error the model makes in the recent estimation period (fitting errors,

Table 2). The mean error over the estimation period 2005–2014 is close to zero

for Belgium. This was the only country for which the model values as jump-off

rates gave the most accurate results. For Sweden, the UK, Norway, Finland, and

the Netherlands, the mean error is negative, i.e. the recent period was underesti-

mated by the Lee-Carter model. For these countries, the model values as

jump-off rates were the worst option for an accurate forecast. These countries

had a stronger increase in e65 in the recent decade compared to earlier decades.

Hence, using observed values as jump-off rates would mean the forecast is

already closer to the observed future values than using the model values. For

France and Spain, the mean error was positive and differences in accuracy be-

tween the options for the jump-off rates were small.

Table 2 Mean absolute (percent) error over the period 1960–2014 and mean error over the period
2005–2014 of the log death rates limited to age 65 and above of the Lee-Carter forecast estimated
over the period 1960–2014, for eight Western European countries, men and women combined

FRA ESP SWE BEL UK NOR FIN NLD

Mean absolute error (1960–2014) 0.028 0.040 0.031 0.032 0.036 0.037 0.046 0.036

Mean absolute percent error (1960–2014) 1.20 1.72 1.49 1.61 1.51 1.61 2.34 1.65

Mean error (2005–2014) 0.017 0.019 − 0.016 0.001 − 0.035 − 0.016 − 0.028 − 0.019
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Effect of choice of the jump-off rate on the robustness of mortality forecast

The choice of the jump-off rates clearly affected the robustness of the forecast: on average,

there was a difference of 0.18 between the minimum value of the SD and the maximum

value of the SD. The minimum difference was found for the Netherlands (0.10) and max-

imum for Finland (0.36) (Table 3).

Using an average of recent observed years as jump-off rates results in a lower standard de-

viation of the increase/decrease of the life expectancy at age 65 in 2020 and thus a more ro-

bust method. This holds for all countries under study. The minimum standard deviation

(per country) ranges from 0.05 (Spain and Sweden) to 0.15 (Finland). For most countries, an

average of at least 4 years gives the minimum standard deviation. The difference between a

2-year average and a 5-year average (maximum 0.5) is small compared to the differences

with last observed or model values.

The worst options for the jump-off rates in terms of the robustness are either the model

values (Sweden, Norway, Finland, and the Netherlands) or the observed values (France,

Spain, Belgium, and the UK). The maximum standard deviation (per country) ranges from

0.17 (the UK and the Netherlands) to 0.51 (Finland).

The fact that the last observed values as jump-off rates are not performing well on

robustness is related to the nature of the data: the observed life expectancy fluctuates

greatly from year to year. By using the last observed values as jump-off rates in the

forecasting model, also the future values will fluctuate when recent data is added. Tak-

ing an average of multiple years makes sure there are fewer fluctuations. The model

values are similar to taking an average, but over the whole period in that case. Because

the relative decline of the model will influence the forecast more when using the model

values as jump-off rates than an average of recent observed years, the robustness of the

forecast is better using the average as jump-off rates.

Another feature of the results is also apparent: the countries in the south of Western

Europe (France and Spain) have the last observed values as the worst option for the

jump-off rates, but for the countries in the north of Western Europe (Sweden, Norway, and

Finland) have the model values as the worst option. For France and Spain, the model values

are not much different with the average as jump-off rates, while for Sweden, Norway, and

Finland, the difference between the last observed values and the average are small. Belgium,

the UK, and the Netherlands are more in between (in location and in the results). For these

Table 3 Standard deviation (SD) of the increase/decrease of the life expectancy at age 65 in 2020
between ten successive forecasts (fitting periods 1960–2005, 1960–2006, …, 1960–2014) for six
different choices of the jump-off rates applied to a Lee-Carter model, for eight Western European
countries, men and women combined

Jump-off rates FRA ESP SWE BEL UK NOR FIN NLD Av1

Standard deviation in 2020

Model values 0.11 0.11 0.23 0.17 0.15 0.26 0.51 0.17 0.22

Last observed values 0.19 0.24 0.09 0.20 0.17 0.12 0.16 0.13 0.16

Average 2 years observed 0.11 0.10 0.06 0.10 0.11 0.09 0.15 0.08 0.10

Average 3 years observed 0.10 0.09 0.06 0.08 0.09 0.09 0.18 0.08 0.10

Average 4 years observed 0.08 0.05 0.05 0.06 0.07 0.10 0.18 0.08 0.08

Average 5 years observed 0.07 0.05 0.06 0.06 0.06 0.09 0.16 0.07 0.08

The lowest SD is marked in bold, the highest SD in italics
1Unweigthed average of all eight countries
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three countries, it also holds that the difference between using the model values and last ob-

served values as jump-off rates does not differ as much as for the other five countries.

Discussion
We evaluated the accuracy and robustness of the forecast of life expectancy at age 65 in

Western Europe for six different options for the jump-off rates. We observed that the op-

tions for the jump-off rates clearly influence the accuracy and robustness of the mortality

forecast, albeit in different ways. For most countries, the most accurate forecast resulted

from taking the last observed values as jump-off rates, which relates to the relatively high es-

timation error of the model in recent years. The most robust forecast was obtained by using

an average of the most recent observed years as jump-off rates. The more years that are av-

eraged, the better the robustness, but accuracy decreases with more years averaged. The best

choice for the jump-off rates, thus, seems to depend on whether you are interested mainly

in accuracy or robustness, on the country-specific past mortality trends, or the model fit.

The influence of the choice of the jump-off rates on the accuracy and robustness of the

forecast can be substantial. Figure 2 in Appendix 1 gives an example for the Netherlands of

a forecast with the model values as jump-off rates, a forecast with the last observed values

as jump-off rates, and a forecast with an average of five observed years as jump-off rates,

with different fitting periods. The forecasts with the model values as jump-off rates are not

accurate, i.e. there are large gaps between the observed values and the forecasts in the first

year. The forecasts with the model values are also not robust: the successive forecasts, using

different fitting periods, show large differences (i.e. increases and decreases between succes-

sive forecasts) between the successive forecasted e65 for a particular year. For the forecasts

with the last observed values as jump-off rates the accuracy is improved, and, from the ana-

lysis, the most accurate from the six options for the jump-off rates. However, the successive

forecasts are also showing large differences between the successive forecasted e65 in a par-

ticular year. Lastly, the successive forecasts with an average of five observed years as

jump-off rates are slowly increasing with each new year of data added to the fitting period.

This option for the jump-off rates was the most robust for the Netherlands.

Evaluation of analysis

We assessed the effect of the choice of the jump-off rates by means of two import-

ant evaluation criteria for a mortality forecasting method: robustness and accuracy

(Dowd et al. 2010a, 2010b; Cairns et al. 2011). A third evaluation criterion for

evaluating a mortality forecast is plausibility (Cairns et al. 2011): is the outcome of

the forecast reasonable given what we know? This is rather a subjective issue for

which there are no objective measures, and for that reason, we did not include it

in the analysis. Nonetheless, plausibility is important to consider when performing

a mortality forecast. A plausible future age pattern is an important issue related to

the plausibility of the results. Different characteristics of the jump-off rates, such

as a rough age pattern of the last observed values, have an effect on the plausibil-

ity of the future age pattern of mortality. To limit the effect of the choice of the

jump-off rates on the plausibility of the future age pattern, smoothing the observed

mortality rates by age is recommended.
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We performed the different mortality forecasts using the Lee-Carter method, which is

frequently used for mortality forecasting in practice (Stoeldraijer et al. 2013), as benchmark

method (Booth and Tickle 2008), and as the basis for more recent mortality forecasting

models (Booth and Tickle 2008; Lee and Carter 1992). The Lee-Carter method, however, is

known to be biased and tends to underpredict future mortality (Bell 1997; Lee 2000; Lee

and Miller 2001; Booth et al. 2002; Girosi and King 2007; Liu and Yu 2011), as we have also

seen in Table 2 where the mean error in the last ten years of the fitting period was negative

for most countries. Therefore, differences between the last observed values and the model

values tend to be relatively large. For this reason, we performed a sensitivity analysis using

two additional models: (i) a Lee-Carter model using three principal components (Appendix

2), because based on earlier research, it is unnecessary to adjust the jump-off rates when

several principal components are used (Hyndman et al. 2013); and (ii) the

Cairns-Blake-Dowd model (Cairns et al. 2006; Appendix 3), which is considered a different

stochastic model compared to the Lee-Carter model and widely used in actuarial sciences.

The results show smaller differences in outcomes compared to differences we observed

earlier with the Lee-Carter model, but, especially for accuracy, the importance of the

jump-off rates remains. This highlights the importance of the model for the best choice of

the jump-off rates.

We showed the results of our analysis for men and women combined. Similar re-

sults are observed however for men and women separately (see Tables 8 and 9 in

Appendix 4). Also for men (with the exception of Finland) and women separately,

an average of multiple years as jump-off rates was preferred for the most robust

forecast. For the most accurate forecast, there was some more variation in the re-

sults for men and women separately compared to men and women combined. For

men in France and Spain, the forecast is most accurate when using model values

as jump-off rates, although accuracy is only slightly higher compared to the last

observed values. For women, the most accurate forecast in the fifth year of the

forecasting period is obtained by using the last observed values. The accuracy of

the forecast for the first year of the forecasting period shows for women mostly

small differences between choices for the jump-off rates but resulted in model

values (France, Sweden), last observed values (Belgium, the UK), and an average

(Spain, Norway, Finland, the Netherlands).

We deliberately computed the accuracy and the robustness measures directly for

life expectancy at age 65, because of the use of this indicator in the pension re-

forms. For different contexts, e.g. life insurance and pension valuation, an evalu-

ation of other outcomes (e.g. death rates or probabilities) would be relevant and

could lead to different outcomes. That is, for different age groups the model fit,

and subsequently, the choice of the jump-off rates might be different. Booth et al.

(2006) compared both errors in life expectancy and log death rates when analysing

the accuracy for different choices of the jump-off rate. They concluded that the ac-

curacy in log death rates does not necessarily translate into accuracy in life expect-

ancy. Analysis based on forecasted log death rates might therefore lead to different

conclusions, but in general, last observed values as jump-off rates would give the

most accurate forecast (Booth et al. 2006). The above indicates that the context of

the forecast determines the outcome measure used in the analysis of the jump-off

rates and, hence, the final choice for the best jump-off rates.
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Generalizability of our outcomes

We evaluated the results based on the life expectancy at age 65 in relation to pension re-

forms. Results based on the life expectancy at birth (e0) are very similar to the results based

on e65 (Appendix 5). The differences between the six options for the jump-off rates for both

accuracy and robustness are slightly larger for e0 than for e65. This means that our conclu-

sions can be generalised to other ages of life expectancy.

We focused our analysis on Western Europe, because of the prevalence of the pension

reforms. Our findings can be generalised to countries which have seen similar trends in

the past. For example, the results for the Netherlands are expected to be close to the re-

sults for Denmark, since both experienced a stagnation of the increase in life expectancy

at approximately the same time (Janssen et al. 2004). Similarly, our results for the

remaining Western European countries can be generalised to other countries exhibiting

fairly regular increases in life expectancy, like Japan since 1970 (Leon 2011). Generalising

our results to Eastern Europe, however, will be more daunting because these countries ex-

perienced very different past mortality trends due to the health crisis from 1975 onwards

(McKee and Shkolnikov 2001; Vallin and Meslé 2004; Leon 2011). The Lee-Carter method

is most likely not suited to account for these specific past mortality trends (Bohk and Rau

2015). Before evaluating different choices for the jump-off rates in the context of Eastern

Europe, first, the forecasting method needs to be improved.

Recommendations

Following our findings, we recommend the goal of the forecast, and the related em-

phasis on accuracy, robustness, or both, to be leading for determining the best choice

of the jump-off rates.

If the goal of the mortality forecast is focused on accuracy, it is relevant to

examine the error of the estimates of the model over the period it is applied to,

following its importance in explaining our results for accuracy. We recommend

the model values as most suitable as jump-off rates for an accurate forecast when

the errors are small. We recommend the last observed values as most suitable

jump-off rates when the model errors are large and there is an underestimation

of the model in the most recent period. With large errors and an overestimation

of the model in the most recent period, we recommend to use the model values

as jump-off rates, following our results of men and women separately.

If the goal of the mortality forecast is focused on robustness, we recommend using an

average of multiple years as jump-off rates, as it was the most suitable for a robust forecast

for all countries in our analysis. There was little difference in the outcomes between a

2-year average and a 5-year average; thus, the number of years used in the averaging is less

important. Robustness becomes more important in situations where the forecast is made

regularly, for instance when the future retirement age based on the forecasted life expect-

ancy needs to be determined every year.

Because often the goal of the forecast is focused both on accuracy and robust-

ness, the most optimal choice for the jump-off rates must give the most accurate

as well as the most robust forecast. For each country in our analysis, there was

no option of the jump-off rates that guaranteed accuracy and robustness at the

same time. Thus, there always has to be a trade-off between accuracy and
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robustness. Therefore, we recommend looking into developing a choice for the jump-off

rates that is both accurate and robust. Our four recommendations for determining the

best choice for the jump-off rates that give both an accurate and robust forecast are as fol-

lows: (1) Because the accuracy of the forecast decreases distinctly with the averaging of

more observed years as jump-off rates, whereas the robustness of the forecast stayed ap-

proximately the same, it is preferable to use an average using as few years as possible to

improve the accuracy with a robust forecast. (2) Using the observed values instead of the

model values in case the model fits the data well does not improve accuracy and deterio-

rates the robustness. Thus, in the case the model fits well, it is best to use the model

values as jump-off rates and not the observed values as is often done by force of habit. (3)

The further ahead, the less accurate the forecast gets. This means that the relative price

you pay for more robustness is lower for a forecast further in the future. If the forecast

further in the future is of more importance than the short-term forecast, there should be

a greater value attached to the robustness of the forecast, and thus the best option for the

most robust forecast can be selected. (4) In line with the previous recommendations, to

best unite the results for robustness and accuracy, we would recommend interpolation

(see Appendix 6 for an example). Robustness is more important for the long-term forecast

(for instance, from 5 years in the future) as a result of the increasing uncertainty with dur-

ation. For the first few years, accuracy would be more relevant because data for these

years will be available quickly. Our recommendation would be to start with a forecast

using a jump-off rate that is the most accurate in the first year. Subsequently, make a fore-

cast that is most robust in, say, the fifth year of the forecast period. Between the two fore-

cast, each year, more weight should be given to the most robust forecast, i.e. we

recommend interpolating from the most accurate forecast to the most robust forecast. By

interpolating between the two forecasts, both accuracy in the first year of the forecast and

robustness of the forecast 5 years ahead is obtained.

An additional issue to consider is to match the forecast to recent data, it is important that

it is of good quality. Preliminary data might underestimate or overestimate the life expect-

ancy. Using jump-off rates based on this data might not work well for the accuracy (to final

data) of the forecast. It might also turn out to be disadvantageous for the robustness if the

preliminary data is replaced by final data. The use of preliminary data is therefore not rec-

ommended when matching the forecast to recent data.

Overall conclusion
The choice of the jump-off rates clearly influences, in different ways, the accuracy and

robustness of the mortality forecast. It is therefore important to carefully consider the

best choice for the jump-off rate when forecasting mortality. This is especially relevant

when a forecast is regularly updated, as is the case for the pension reforms.

The best choice depends on the goal of the forecast, the country-specific past

mortality trends observed, and the model fit. Because the best option of the

jump-off rates for accuracy (most often last observed values) and the best option

for robustness (average of observed years) are not equal, there will always have to

be a trade-off between the two. The recommendations presented, of which

interpolation between the jump-off rates with optimal accuracy and optimal robust-

ness combines accuracy and robustness, give guidelines to make a just trade-off

between accuracy and robustness of the forecast.
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Appendix 1

Fig. 2 (See legend on next page.)
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Appendix 2
In Tables 4 and 5, the results of the different choices for the jump-off rates with

a Lee-Carter model using three principal components are presented. The differ-

ent model mostly influences the robustness results, with for France, Spain, and

the Netherlands, the model values as jump-off rates as the most optimal. Differ-

ences in outcome between the choices of the jump-off rates are much smaller

than the difference in outcome with the Lee-Carter model with only one princi-

pal component. The results for the accuracy of the model are similar as with the

Lee-Carter model with only one principal component (mostly observed values as

jump-off rates are most optimal). Again, we see less differences in outcomes be-

tween the different choices of the jump-off rates.

(See figure on previous page.)
Fig. 2 Example of forecasts with different choices for the jump-off rates, the Netherlands, men and
women combined, Lee-Carter model, fitting periods 1960–2005, 1960–2006, …, 1960–2014. a Forecast
in 2005 with three options of the jump-off rates. b Forecasts with jump-off rates equal to model
values. c Forecasts with jump-off rates equal to last observed values. d Forecasts with jump-off rates
equal to the average 5 years observed

Table 4 Mean absolute forecast error (MAFE) of remaining life expectancy at age 65 for the first and
fifth year in the forecasting period and standard deviation (SD) of the increase/decrease of the life
expectancy at age 65 in 2020 between ten successive forecasts, for six different choices of the jump-off
rates applied to a Lee-Carter model with three principal components, for eight Western European
countries, men and women combined, fitting periods 1960–2005, 1960–2006, …, 1960–2014

Jump-off rates FRA ESP SWE BEL UK NOR FIN NLD Av1

Standard deviation in 2020

Model values 0.17 0.23 0.25 0.14 0.16 0.28 0.50 0.20 0.24

Last observed values 0.21 0.30 0.17 0.20 0.14 0.19 0.45 0.25 0.24

Average 2 years observed 0.20 0.25 0.18 0.15 0.13 0.17 0.51 0.20 0.22

Average 3 years observed 0.18 0.24 0.19 0.14 0.16 0.22 0.54 0.21 0.23

Average 4 years observed 0.18 0.23 0.20 0.13 0.17 0.23 0.53 0.21 0.23

Average 5 years observed 0.18 0.24 0.21 0.13 0.17 0.24 0.52 0.21 0.24

Mean absolute forecast error in the first year of the forecasting period

Model values 0.24 0.24 0.22 0.12 0.21 0.22 0.36 0.21 0.23

Last observed values 0.14 0.18 0.13 0.14 0.14 0.13 0.30 0.18 0.17

Average 2 years observed 0.15 0.15 0.12 0.12 0.15 0.13 0.31 0.16 0.16

Average 3 years observed 0.15 0.15 0.12 0.12 0.17 0.14 0.31 0.17 0.17

Average 4 years observed 0.16 0.16 0.12 0.12 0.18 0.15 0.31 0.18 0.17

Average 5 years observed 0.17 0.16 0.13 0.12 0.19 0.15 0.32 0.19 0.18

Mean absolute forecast error in the fifth year of the forecasting period

Model values 0.31 0.40 0.31 0.18 0.51 0.43 0.38 0.41 0.37

Last observed values 0.18 0.23 0.15 0.17 0.43 0.28 0.24 0.36 0.26

Average 2 years observed 0.20 0.24 0.20 0.20 0.46 0.28 0.25 0.36 0.27

Average 3 years observed 0.21 0.25 0.19 0.21 0.48 0.29 0.25 0.37 0.28

Average 4 years observed 0.23 0.27 0.20 0.22 0.50 0.30 0.25 0.37 0.29

Average 5 years observed 0.24 0.28 0.22 0.21 0.51 0.32 0.28 0.39 0.31

The lowest MAFE is marked in bold, the highest MAFE in italics
1Unweigthed average of all eight countries
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Appendix 3
In Tables 6 and 7, the results of the different choices for the jump-off rates with the

Cairns-Black-Dowd (CBD) model (Cairns et al. 2006), a variant of the Lee-Carter model

which relies on the linearity of the logit of 1-year death probabilities at older ages, are

presented. With this model, the differences between the outcome of the different

choices of the jump-off rates are much more smaller compared to the differences in

outcomes for the Lee-Carter model. The fit of this model over the whole fitting period

is similar to the fit of the Lee-Carter method, but the mean error in recent years of the

fitting period is now positive, which might influence the outcomes as well.

Table 5 Mean absolute (percent) error over the period 1960–2014 and mean error over the period
2005–2014 of the log death rates limited to age 65 and above of the Lee-Carter forecast with three
principal components estimated over the period 1960–2014, for eight Western European countries,
men and women combined

FRA ESP SWE BEL UK NOR FIN NLD

Mean absolute error (1960–2014) 0.020 0.025 0.028 0.030 0.022 0.035 0.042 0.024

Mean absolute percent error (1960–2014) 0.91 1.17 1.35 1.50 1.04 1.54 2.19 1.17

Mean error (2005–2014) −
0.007

−
0.006

−
0.012

−
0.004

−
0.004

−
0.011

−
0.019

−
0.001

Table 6 Mean absolute forecast error (MAFE) of remaining life expectancy at age 65 for the first and
fifth year in the forecasting period and standard deviation (SD) of the increase/decrease of the life
expectancy at age 65 in 2020 between ten successive forecasts, for six different choices of the
jump-off rates applied to the Cairns-Black-Dowd method (ages 65 to 95), for eight Western European
countries, men and women combined, fitting periods 1960–2005, 1960–2006, …, 1960–2014

Jump-off rates FRA ESP SWE BEL UK NOR FIN NLD Av1

Standard deviation in 2020

Model values 0.24 0.29 0.12 0.24 0.20 0.15 0.13 0.16 0.19

Last observed values 0.22 0.28 0.11 0.23 0.19 0.15 0.12 0.15 0.18

Average 2 years observed 0.22 0.28 0.11 0.23 0.19 0.15 0.13 0.15 0.18

Average 3 years observed 0.22 0.28 0.11 0.22 0.19 0.15 0.13 0.15 0.18

Average 4 years observed 0.22 0.28 0.11 0.22 0.19 0.15 0.13 0.15 0.18

Average 5 years observed 0.22 0.28 0.11 0.22 0.19 0.15 0.13 0.15 0.18

Mean absolute forecast error in the first year of the forecasting period

Model values 0.15 0.17 0.08 0.15 0.12 0.11 0.12 0.11 0.13

Last observed values 0.13 0.17 0.08 0.14 0.12 0.12 0.10 0.13 0.12

Average 2 years observed 0.13 0.17 0.08 0.13 0.12 0.12 0.10 0.13 0.12

Average 3 years observed 0.13 0.17 0.08 0.13 0.12 0.12 0.10 0.13 0.12

Average 4 years observed 0.13 0.17 0.09 0.13 0.12 0.12 0.10 0.13 0.12

Average 5 years observed 0.13 0.17 0.09 0.13 0.12 0.12 0.10 0.13 0.12

Mean absolute forecast error in the fifth year of the forecasting period

Model values 0.19 0.25 0.04 0.17 0.34 0.11 0.26 0.27 0.20

Last observed values 0.16 0.32 0.06 0.17 0.35 0.18 0.19 0.28 0.21

Average 2 years observed 0.16 0.32 0.06 0.17 0.35 0.18 0.19 0.28 0.21

Average 3 years observed 0.16 0.32 0.06 0.17 0.35 0.18 0.19 0.28 0.21

Average 4 years observed 0.16 0.31 0.06 0.17 0.35 0.19 0.19 0.28 0.21

Average 5 years observed 0.17 0.31 0.06 0.17 0.35 0.19 0.19 0.28 0.21

The lowest SD/MAFE is marked in bold, the highest SD/MAFE in italics
1Unweigthed average of all eight countries
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Appendix 4

Table 7 Mean absolute (percent) error over the period 1960–2014 and mean error over the period
2005–2014 of the log death rates limited to age 65 and above of the Cairns-Black-Dowd method
(ages 65 and above) estimated over the period 1960–2014, men and women combined

FRA ESP SWE BEL UK NOR FIN NLD

Mean absolute error (1960–2014) 0.055 0.039 0.041 0.042 0.033 0.042 0.047 0.038

Mean absolute percent error (1960–2014) 2.18 1.71 1.84 2.03 1.65 1.94 2.44 1.89

Mean error (2005–2014) 0.025 0.019 0.016 0.022 0.009 0.013 0.019 0.012

Table 8 Mean absolute forecast error (MAFE) of remaining life expectancy at age 65 for the first
and fifth year in the forecasting period, and standard deviation (SD) of the increase/decrease of
the life expectancy at age 65 in 2020 between ten successive forecasts, for six different choices of
the jump-off rates applied to a Lee-Carter model, for eight countries, men (a) and women (b),
fitting periods 1960–2005, 1960–2006, …, 1960–2014

Jump-off rates FRA ESP SWE BEL UK NOR FIN NLD Av1

a. Men

Standard deviation in 2020

Model values 0.11 0.11 0.36 0.16 0.16 0.26 0.52 0.13 0.23

Last observed values 0.15 0.23 0.10 0.21 0.13 0.16 0.13 0.14 0.16

Average 2 years observed 0.09 0.08 0.09 0.11 0.09 0.11 0.14 0.09 0.10

Average 3 years observed 0.08 0.08 0.07 0.08 0.08 0.09 0.15 0.08 0.09

Average 4 years observed 0.06 0.05 0.08 0.07 0.07 0.11 0.15 0.07 0.08

Average 5 years observed 0.05 0.05 0.09 0.06 0.06 0.10 0.14 0.06 0.08

Mean absolute forecast error in the first year of the forecasting period

Model values 0.11 0.14 0.69 0.52 0.75 0.80 0.58 1.15 0.59

Last observed values 0.12 0.18 0.10 0.16 0.12 0.16 0.10 0.20 0.14

Average 2 years observed 0.13 0.17 0.13 0.17 0.16 0.17 0.10 0.25 0.16

Average 3 years observed 0.15 0.19 0.17 0.19 0.21 0.20 0.09 0.34 0.19

Average 4 years observed 0.19 0.22 0.21 0.22 0.27 0.26 0.12 0.44 0.24

Average 5 years observed 0.23 0.24 0.25 0.26 0.34 0.32 0.15 0.53 0.29

Mean absolute forecast error in the fifth year of the forecasting period

Model values 0.21 0.35 0.93 0.69 1.04 1.25 0.84 1.60 0.86

Last observed values 0.25 0.42 0.35 0.24 0.42 0.48 0.16 0.65 0.37

Average 2 years observed 0.28 0.45 0.38 0.28 0.45 0.53 0.17 0.74 0.41

Average 3 years observed 0.33 0.50 0.42 0.33 0.50 0.58 0.20 0.84 0.46

Average 4 years observed 0.38 0.54 0.47 0.39 0.56 0.65 0.26 0.95 0.52

Average 5 years observed 0.43 0.57 0.52 0.44 0.62 0.73 0.31 1.05 0.58

b. Women

Standard deviation in 2020

Model values 0.13 0.14 0.15 0.23 0.18 0.40 0.62 0.26 0.26

Last observed values 0.21 0.24 0.14 0.19 0.20 0.19 0.22 0.15 0.19

Average 2 years observed 0.13 0.11 0.08 0.11 0.12 0.12 0.18 0.09 0.12

Average 3 years observed 0.11 0.09 0.04 0.09 0.11 0.10 0.23 0.09 0.11

Average 4 years observed 0.10 0.05 0.03 0.06 0.08 0.09 0.21 0.09 0.09

Average 5 years observed 0.08 0.06 0.03 0.07 0.06 0.07 0.20 0.09 0.08
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Appendix 5
In Tables 10 and 11, the results of the different choices for the jump-off rates with the

Lee-Carter model are presented for the life expectancy at birth (eo). For the most accurate

forecast, the last observed values as jump-off rates are the best choice, similar as with the

life expectancy at age 65 (e65). For Spain, the best option of the model values as jump-off

rates is more clear than in the results with e65. For France, an average of multiple years as

jump-off rates is better than the last observed values, but the difference is small. For the

most robust forecast, an average of multiple years is the best choice for the jump-off rates

based on the results of e0, which was also the best choice based on the results of e65.

Table 8 Mean absolute forecast error (MAFE) of remaining life expectancy at age 65 for the first
and fifth year in the forecasting period, and standard deviation (SD) of the increase/decrease of
the life expectancy at age 65 in 2020 between ten successive forecasts, for six different choices of
the jump-off rates applied to a Lee-Carter model, for eight countries, men (a) and women (b),
fitting periods 1960–2005, 1960–2006, …, 1960–2014 (Continued)

Jump-off rates FRA ESP SWE BEL UK NOR FIN NLD Av1

Mean absolute forecast error in the first year of the forecasting period

Model values 0.13 0.20 0.08 0.14 0.47 0.14 0.54 0.15 0.23

Last observed values 0.14 0.17 0.11 0.12 0.14 0.13 0.11 0.12 0.13

Average 2 years observed 0.15 0.15 0.10 0.13 0.17 0.11 0.09 0.10 0.13

Average 3 years observed 0.15 0.15 0.09 0.13 0.19 0.10 0.13 0.14 0.14

Average 4 years observed 0.17 0.16 0.10 0.13 0.21 0.10 0.17 0.17 0.15

Average 5 years observed 0.16 0.17 0.08 0.13 0.24 0.09 0.20 0.20 0.16

Mean absolute forecast error in the fifth year of the forecasting period

Model values 0.26 0.37 0.12 0.25 0.61 0.14 0.46 0.24 0.31

Last observed values 0.18 0.26 0.09 0.17 0.36 0.11 0.25 0.21 0.20

Average 2 years observed 0.21 0.28 0.10 0.18 0.38 0.12 0.26 0.23 0.22

Average 3 years observed 0.19 0.31 0.11 0.18 0.40 0.11 0.27 0.27 0.23

Average 4 years observed 0.22 0.33 0.10 0.20 0.41 0.15 0.28 0.31 0.25

Average 5 years observed 0.22 0.34 0.10 0.19 0.44 0.16 0.29 0.34 0.26

The lowest SD/MAFE is marked in bold, the highest SD/MAFE in italics
1Unweigthed average of all eight countries

Table 9 Mean absolute (percent) error over the period 1960–2014 and mean error over the period
2005–2014 of the log death rates limited to age 65 and above of the Lee-Carter forecast estimated
over the period 1960–2014, men (a) and women (b)

FRA ESP SWE BEL UK NOR FIN NLD

a. Men

Mean absolute error (1960–2014) 0.027 0.039 0.046 0.049 0.043 0.061 0.064 0.067

Mean absolute percent error (1960–2014) 1.39 1.91 2.25 2.61 2.06 2.82 3.66 3.06

Mean error (2005–2014) 0.005 0.019 − 0.046 − 0.028 − 0.047 − 0.052 − 0.045 − 0.063

b. Women

Mean absolute error (1960–2014) 0.029 0.042 0.036 0.039 0.035 0.046 0.062 0.040

Mean absolute percent error (1960–2014) 1.09 1.79 1.57 1.73 1.36 1.89 2.82 1.73

Mean error (2005–2014) 0.018 − 0.007 0.004 0.015 − 0.034 0.000 − 0.055 0.010
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Table 10 Mean absolute forecast error (MAFE) of remaining life expectancy at birth for the first
and fifth year in the forecasting period, and standard deviation (SD) of the increase/decrease of
the life expectancy at birth in 2020 between ten successive forecasts, for six different choices of
the jump-off rates applied to a Lee-Carter model, for eight countries, men and women combined,
fitting periods 1960–2005, 1960–2006, …, 1960–2014

Jump-off rates FRA ESP SWE BEL UK NOR FIN NLD Av1

Standard deviation in 2020

Model values 0.16 0.15 0.36 0.25 0.22 0.37 0.71 0.25 0.31

Last observed values 0.20 0.25 0.09 0.22 0.18 0.11 0.25 0.16 0.18

Average 2 years observed 0.12 0.11 0.08 0.11 0.12 0.10 0.19 0.11 0.12

Average 3 years observed 0.11 0.10 0.07 0.10 0.10 0.11 0.20 0.11 0.11

Average 4 years observed 0.10 0.05 0.07 0.07 0.08 0.13 0.20 0.11 0.10

Average 5 years observed 0.08 0.07 0.09 0.07 0.06 0.12 0.19 0.10 0.10

Mean absolute forecast error in the first year of the forecasting period

Model values 0.21 0.17 0.38 0.08 0.46 0.38 0.42 0.47 0.32

Last observed values 0.15 0.19 0.08 0.15 0.13 0.11 0.13 0.16 0.14

Average 2 years observed 0.14 0.19 0.08 0.15 0.15 0.12 0.09 0.20 0.14

Average 3 years observed 0.14 0.21 0.10 0.15 0.19 0.16 0.10 0.26 0.16

Average 4 years observed 0.15 0.24 0.11 0.16 0.24 0.22 0.12 0.33 0.20

Average 5 years observed 0.19 0.27 0.13 0.17 0.29 0.27 0.13 0.42 0.23

Mean absolute forecast error in the fifth year of the forecasting period

Model values 0.24 0.37 0.49 0.18 0.78 0.74 0.62 0.70 0.51

Last observed values 0.17 0.48 0.16 0.16 0.50 0.38 0.25 0.39 0.31

Average 2 years observed 0.16 0.52 0.16 0.17 0.51 0.40 0.25 0.44 0.33

Average 3 years observed 0.18 0.58 0.19 0.19 0.52 0.45 0.26 0.52 0.36

Average 4 years observed 0.22 0.61 0.22 0.21 0.54 0.52 0.28 0.62 0.40

Average 5 years observed 0.25 0.65 0.25 0.24 0.57 0.60 0.31 0.71 0.45

The lowest SD/MAFE is marked in bold, the highest SD/MAFE in italics
1Unweighted average of all countries

Table 11 Mean absolute (percent) error over the period 1960–2014 and mean error over the
period 2005–2014 of the log death rates of the Lee-Carter forecast estimated over the period
1960–2014, men and women combined

FRA ESP SWE BEL UK NOR FIN NLD

Mean absolute error (1960–2014) 0.054 0.076 0.087 0.071 0.051 0.097 0.094 0.060

Mean absolute percent error
(1960–2014)

1.07 1.49 1.53 1.39 1.08 1.70 1.88 1.22

Mean error (2005–2014) − 0.005 − 0.010 − 0.010 − 0.010 − 0.007 − 0.016 − 0.010 − 0.015
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Appendix 6
In Figure 3, an example of a forecast using interpolation is shown for the Netherlands.

It starts with a forecast using a jump-off rate that gives the most accurate forecast in

the first year (red line). Subsequently, a forecast using jump-off rates that is most ro-

bust in the fifth year of the forecast period is made (green line). Between the two fore-

cast, each year, more weight is given to the most robust forecast until the weight is

equal to 1 from the fifth year of the forecast onwards (dashed purple line).
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